This is a preprint of an article accepted for publication in
the Journal of Combinatorial Designs (¢) 2010 (copyright
owner as specified in the journal).



Some rigid Steiner 5-designs

M. J. Grannell
Department of Mathematics and Statistics
The Open University, Walton Hall
Milton Keynes MK7 6AA
UNITED KINGDOM

(m.j.grannell@open.ac.uk)

January 8, 2010

Abstract

Hitherto, all known non-trivial Steiner systems S(5,k,v) have, as a
group of automorphisms, either PSL(2,v — 1) or PGL(2, “§2) x Cy. In
this paper, systems S(5,6,72), S(5,6,84) and S(5, 6, 108) are constructed

that have only the trivial automorphism group.
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1 Introduction

A Steiner system S(t, k,v), also called a Steiner t-design, is a pair (V, B) where
V is a set of cardinality v (the points) and B is a set of k-element subsets of V'
(the blocks) which has the property that each t-element subset of V' is a subset
of precisely one block. As is usual, we exclude trivial systems by requiring that
1 <t <k <wv. An automorphism of a system S(¢, k,v) = (V, B) is a mapping
¢ defined on V' that preserves B. A system is said to be rigid, or to have the
trivial automorphism group, if the only automorphism is the identity mapping.

Amongst possible parameters (¢, k), the smallest case of interest is in Steiner
systems S(2,3,v), generally known as Steiner triple systems. A necessary and
sufficient condition for the existence of these is that v = 1 or 3 (mod 6) [12].
Many constructions are known for Steiner triple systems and an extensive survey
is given in [4]. Systems S(3,4,v) are generally known as Steiner quadruple
systems, and a necessary and sufficient condition for the existence of these is
that v = 2 or 4 (mod 6), see for example [10]. Systems S(2,k,v) with & > 3
and S(3,k,v) with k > 4 have also been investigated, and results are surveyed
in [1, 11].

By contrast, for t = 4 and 5, only a finite number of Steiner systems S(¢, k, v)
are known, and no systems are known with ¢ > 5. Systems S(5, k,v) are only
known for (k,v) = (6,12),(8,24),(6,24),(7,28), (6,36), (6,48), (6,72), (6,84),
(6,108), (6,132), (6,168) and (6,244). All the known systems with these pa-
rameters, apart from S(5, 6, 36), have PSL(2,v — 1) as an automorphism group,
and the only known S(5, 6,36) has PGL(2,17) x C3. The systems S(5,6,12) and
S(5,8,24), which are unique up to isomorphism, have the larger groups M75 and
Moy respectively as their full automorphism groups, and all known S(5, 6, 244)s
have PXL(2,243). For references, see (2, 3, 5, 8, 9, 13, 14].

Given an S(t, k,v) = (V,B), a derived system S(t — 1,k — 1,0 — 1) may be
formed as follows. First select any point x € V, then remove = from all the
blocks that contain it. The resulting set B’ of (k — 1)-tuples provides the blocks
of the S(t — 1,k — 1,v — 1) on the point set V' = V '\ {z}. By repeating this
process, non-trivial derived Steiner systems S(t — ¢,k — 4,v — i) may be formed
for 1 < i <t—2. All known systems S(4, k, v) are derived systems. In a sense
therefore, all known Steiner systems S(¢, k, v) with ¢ > 4 are associated with an
automorphism group PSL or PGL.

There are classical constructions for the systems S(5,6,12) and S(5, 8, 24)
but, starting with the 1976 paper of Denniston [5], all remaining S(5, k, v) sys-
tems have been constructed by taking a suitable group G (such as PSL(2,v—1))
acting on a set of v points, computing the orbits of k-tuples under G, and then
searching for a suitable collection of these orbits to form the system. It is there-
fore of some interest to consider whether the involvement of a PSL or PGL
group as an automorphism group is intrinsic to systems S(5, k, v), or whether
the prevalence of these groups as automorphisms of all the systems found in the
past 30 years is due to the fact that their properties make the construction of
the design so much easier than it would otherwise be. The particularly useful
property of PSL(2,q), for ¢ a prime power with ¢ = 3 (mod 4), is the triple



homogeneity of its action on a set of v = ¢+ 1 points. The group PSL(2, ¢) may
be represented as the following set of mappings ¢ acting on the point set V =
GF(q) U {oc}:
az+b where a, b, ¢,d € GF(q) and ad — bc is
Oz , . . .
cz+d a non-zero quadratic residue in GF(q).

Triple homogeneity means that any unordered triple from V can be mapped
to any other such triple by an element of the group. As a consequence, if an
S(5,k,q + 1) is formed from orbits under PSL(2,q) with ¢ = 3 (mod 4) as
described, then all its derived S(2,k — 3,v — 3) systems are isomorphic. And
to verify that a particular collection of PSL(2,q) orbits does indeed form an
S(5,k,q+ 1) when ¢ = 3 (mod 4), it suffices to check that any one derived set
of (k — 3)-tuples (obtained by taking any three points x,y, z and deleting these
from the k-tuples in which they all lie together) forms an S(2,k — 3,v — 3).
The simplification afforded by this property is substantial; instead of having to
check that ZEZ:BEZ:;;EZ:%;EZ:Q k-tuples cover each 5-tuple of points from V

precisely once, one only has to check that % (k — 3)-tuples cover each

pair of points from V' = V' \ {z,y, 2z} precisely once.

2 Method

In essence, the method is to take an existing S(5,6,v), say S = (V, B), that has
a set of blocks B C B which can be removed and replaced by an alternative
set of blocks B’ covering the same 5-tuples as B, and hence to form another
S(5,6,v), say S" = (V,B’), where B’ = (B\ B) U B’. The sets B and B’ must
also have the property that the replacement of B by B’ yields a rigid system.

The pair {B, B’} is an example of a combinatorial trade, which may be
defined more generally for any S(¢,k,v). In the context of such systems, a
trade is a pair {T, T’} where T and T’ are disjoint sets of k-tuples, taken from
a point set V, that cover precisely the same t-tuples with multiplicity one.
The common cardinality of T and T is called the wolume of the trade and
the set of points covered is called the foundation of the trade. For Steiner
triple systems, the smallest trade, both by volume and by foundation, is the
Pasch or quadrilateral trade. A Pasch configuration or quadrilateral has the
form P = {abe, ade, bdf, cef} where a,b,c,d, e, f are distinct points. (Here and
subsequently when no confusion is likely, we omit set brackets and commas
from blocks such as {a,b,c}.) Whenever such a Pasch configuration occurs in
a Steiner triple system, it can be replaced by the Pasch configuration P’ =
{fbe, fde,bda,cea} to form a new, although possibly isomorphic, Steiner triple
system. The Pasch trade {P, P’} has volume 4 and foundation {a,b,c,d,e, f}.
We will write P = (a, b, ¢, d, e, f) to mean that the four blocks of P are as stated,
so that P' = (f,b,¢,d, e, a).

By analogy, in the context of S(5, 6, v) systems, we define a hyperquadrilateral
H = (a,b,c,d,e, f,g,h,i,7,k,1) to consist of the following 32 6-tuples on 12
distinct points.



abedef, abedgh, abcegi, abefhi,
ajkdef, ajkdgh, ajkegi, ajkfhi,
bjldef, bjldgh, bjlegi, bjlfhi,
ckldef, ckldgh, cklegi, cklfhi,
abjdeg, abjdfh, abjefi, abjghi,
ackdeg, ackdfh, ackefi, ackghi,
beldeg,  beldfh,  belefi,  belgha,
jkldeg, jkldfh, jklefi, jklghi.

If H' is formed from H by exchanging a and [, so that H' = (I,b,¢,d, e, f, g, h, 1, j,
k,a), then it is routine to verify that {H, H'} is a trade with volume 32 and
foundation {a,b,c,d, e, f, g, h,,j, k,1}.

Given a hyperquadrilateral H in a Steiner system S(5, 6,v) = S, its signature
in S, sig(H, S), is defined to be the vector (z1, za, ..., x,) where x; is the number
of blocks of H that lie in precisely ¢ hyperquadrilaterals. Thus Y ;" z; = 32.
In the computations described below we encounter no hyperquadrilaterals with
a signature vector of length greater than three, so we will write all these vectors
as vectors of length three. Note that H has no blocks in common with any other
hyperquadrilateral in S if and only if sig(H, S) = (32,0,0).

Our first goal is to find an S(5, 6, ¢+ 1) fixed by PSL(2, ¢) that contains some
hyperquadrilaterals. Any such system will be formed from orbits of 6-tuples
under PSL(2, g). The order of PSL(2,q) is (¢4 1)g(¢—1)/2, and the number of
blocks in an S(5,6,q41) is (¢+1)g(¢—1)(¢—2)(g—3)/6!. Hence if such a system
can be formed entirely of full orbits, (¢—1)(g— 3)/360 orbits are required, while
a system containing shorter orbits requires proportionately more. In principle,
we could take a random subset of 12 points from GF(q) U {oo}, write down a
hyperquadrilateral with this set as its foundation, and then apply PSL(2, q) to
each of the 32 blocks in the hope that the resulting set of blocks either formed,
or could be completed to form, an S(5,6, ¢+ 1). However, the chances of success
in a random attempt of this nature seem very remote, since for reasonably small
values of ¢, say g < 83, several of the blocks of the hyperquadrilateral would
have to lie together in some orbits. Of course, such a random procedure might
succeed for a much larger system such as an S(5, 6, 244), but there are different,
and possibly greater, computational challenges dealing with systems of this size.

There are precisely three nonisomorphic S(5,6,24) systems fixed by
PSL(2,23) [6], and a short computer search establishes that none of these con-
tain any hyperquadrilaterals. There are 459 nonisomorphic S(5,6,48) systems
fixed by PSL(2,47) [7] and, again, a computer search establishes that none of
these contains any hyperquadrilaterals. For v = 72 and 84 there are respec-
tively exactly 926299 and at least 348512 nonisomorphic S(5,6, v) systems fixed
by PSL(2,v — 1) [2]. Although it might be feasible to carry out an exhaustive
search for hyperquadrilaterals in these systems, the number of nonisomorphic
S(5,6,108) systems fixed by PSL(2,107) is likely to be substantially larger, and
for all three cases a different approach was used. Namely, it was assumed that
the hyperquadrilateral has a specific form fixed by an order four subgroup of
PSL(2,v — 1).



3 v=72

Take the mappings on GF(71) U {oo} given by a: 2z — —1 and 8 : z — 2L,
Since —17 = 142 in GF(71), G71 = (a,) forms an order 4 subgroup of
PSL(2,71). We consider possible hyperquadrilaterals H = (a, b, ¢,d, e, f, g, h, i, j,
k,l) where

:a(a)7 fzﬁ(a)v gzaﬁ(a),
(b)v €=ﬁ(b), hzaﬁ(b),
(¢), d=p(c), i=apbc).

The 32 blocks of such a hyperquadrilateral will lie in at most ten orbits un-
der PSL(2,71) because G71 partitions the 32 blocks into six orbits of length 4
and four orbits of length 2 as shown in Table 1. For example, a({abcdef}) =

{jkighi}.

{abcdef, jklghi}, {abcedgh, ckldef, abjghi, jklefi},
{abcegi, bjldef, ackghi, jkldfh}, {abefhi,ajkdef,bclghi, jkldeg},
{ajkdgh, cklfhi,abjdeg,bclefi}, {ajkegi,bjlfhi,ackdeg,beldfh},

{ajkfhi,bcldeg}, {bjldgh, cklegi, abjdf h, ackefi},

{bjlegi, ackdfh}, {ckldgh,abjefi}.

Table 1. Orbits under Gr;.

Given a,b and ¢, any one of the resulting PSL orbits may be unsuitable for
inclusion in an S(5, 6, 72) because it contains a repeated 5-tuple, or two of them
may be incompatible for a similar reason. It turns out that, up to equivalence,
there are just six choices for the triple (a,b,c) which do not fall foul of one
of these obstacles. One of these is given by (a,b,¢) = (13,17,44). The corre-
sponding hyperquadrilateral is Hy = (13,17, 44,66, 48,24, 68,34, 57, 50, 25, 60).
The blocks of H; lie in just five orbits under PSL(2,71). Each of these or-
bits may be characterized by a starter taken as the numerically lowest block
appearing in the orbit (with oo taken as the lowest value); these starters are
{00,0,1,2,17,39}, {00,0,1,3,11,59}, {o0,0,1,4,13,64}, {00,0,1,4,42,65} and
{00,0,1,6,41,64}. The first of these gives a full orbit, the second, third and
fourth give half orbits, and the last gives a sixth orbit.

Next, we attempt to form an S(5, 6, 72) as a union of orbits under PSL(2, 71)
that includes the five orbits generating H;. By an exhaustive computer search,
just two solutions were obtained. One of these has the starters (with oo, 0,1
suppressed for brevity) shown in Table 2.

{2,17,39}, {3,11,59}, {4,13,64}, {4,42,65}, {6,41,64},
{2,3,27}, {2,5,19}, {2,6,58}, {2,7,55}, {2,916},
{2,12,51}, {2,21,40}, {3,4,32}, {3,7,26}, {3,12,52},
{3,14,18}, {3,16,19}, {3,22,30}, {3,31,57}, {4,9,22},
{4,17,57}, {4,26,61}, {4,29,53}, {6,14,31}.

Table 2. Starters for an S(5, 6, 72).



We will refer to the above system as S; it contains an orbit of hyperquadrilaterals
under PSL(2,71). In particular, it contains H; and He = (14,18,45,67,49, 25,
69, 35,58,51,26,61). Note that H; and Hs have no blocks in common. It is
therefore possible to trade both H; for H| = (60,17, 44,66, 48,24, 68,34, 57, 50,
25,13) and H, for H) = (61,18,45,67,49, 25,69, 35,58, 51,26, 14) and obtain a
new S(5,6,72), which we will call S’. We will prove that S’ is rigid.

Every hyperquadrilateral in S lies in an orbit of hyperquadrilaterals under
PSL(2,71). Each such orbit gives rise to quadrilaterals (Pasch configurations) in
the derived S(2,3,69) through the points co,0,1. Consequently, by examining
the quadrilaterals in the derived system and determining which of these extend
to hyperquadrilaterals in .S, it is easily possible to find all the hyperquadrilaterals
in S and to determine their signatures. We find that the signatures are of
just two types: (30,0,2) and (12,0,20), and that sig(H;y,S) = sig(Hs,S) =
(30,0,2). We also find that the signatures of H; and H} in S’ are given by
sig(H{,S") = sig(H4,S") = (32,0,0). This implies that in forming S’ from S,
some hyperquadrilaterals are destroyed, but no new ones are formed.

The hyperquadrilaterals of S may be categorized as follows.

Type 1:  H; and Ho.
Type 2:  Hyperquadrilaterals other than H; and H> that have a block in
common with H; or Hs.
Type 3: Hyperquadrilaterals, other than Types 1 and 2, that have a block
in common with a Type 2 hyperquadrilateral.
Type 4:  All remaining hyperquadrilaterals.
When S’ is formed from S, Type 1 hyperquadrilaterals are replaced by Hj
and Hj, Type 2 hyperquadrilaterals are destroyed, Type 3 hyperquadrilaterals
remain but have their signatures altered, and Type 4 hyperquadrilaterals also
remain but with their signatures unaltered.

If H is any Type 3 hyperquadrilateral, then we find by computation that
sig(H,S") = (30,1,1),(30,2,0),(12,1,19) or (12,2, 18). Therefore the only hy-
perquadrilaterals in S’ that have signature (32,0,0) are H; and Hj. Conse-
quently any automorphism of S’ must either map Hj to H{ and Hj to Hj , or
H{ to Hj and vice-versa.

Now consider the general question of mapping a hyperquadrilateral, @1, to
another, @2, in a Steiner system S(5,6,v) = T. The image of the first block of
Q1 can be any one of the 32 blocks of ()2 and the mapping of the two blocks
can be done in 6! ways. However, having made one of these 32 x 6! = 23040
choices, it is not difficult to see that the images of the remaining 6 points of
are determined. There are, therefore, just 23040 possible mappings ¢ of Q1 to
@2, and each of these specifies the images of 12 points of T'. But these 12 points
generate (152) = 792 5-tuples, of which only 32 x 6 = 192 appear in the blocks
of 1. The remaining 600 5-tuples appear elsewhere amongst the blocks of T'
and may be used to try to extend the mapping ¢ to some, possibly all, of the
remaining points of 7.

For v = 72 there is a set of 60 blocks of S’, each of which contains a 5-tuple
from the foundation of Hj together with a sixth point outside this foundation,
and which are such that these 60 additional points cover all the remaining points



of §’. Thus any mapping ¢ of Hj to itself or to H) can be extended in at most
one way to the whole of S’. Of course, the mapping obtained from these 60
blocks may not map the whole of S’ to S’. In fact, it was found that the only
mapping which maps Hj to itself and preserves S’ is the identity, and there are
no mappings that map Hj to H} and preserve S’. It follows that S’ is rigid.

4 v=284

We proceed in a similar fashion to the v = 72 case. Put Gg3 = («, 3) where
« is as before, but now 3 : z — jﬂ Since —2 = 9? in GF(83), Gg3 forms
an order 4 subgroup of PSL(2,83). We counsider possible hyperquadrilaterals
of the same form as described in the previous section, and again the 32 blocks
of such a hyperquadrilateral will lie in at most ten orbits under PSL(2,83).
It turns out that, up to equivalence, there are just two choices for the triple
(a, b, ¢) which do not lead to unsuitable or incompatible orbits of 6-tuples. One
of the two is given by (a,b,¢) = (5,7,9). The corresponding hyperquadrilateral
is Hy = (5,7,9,22,29,43,27,20,49,46,71,33). The blocks of H; lie in just
five orbits under PSL(2,83). Numerically lowest starters for these orbits are
{0,0,1,2,9,32}, {00,0,1,2,12,16}, {00,0,1,3,24,69}, {c0,0,1,4,25,51} and
{00,0,1,17,18,44}. The last of these gives a sixth orbit, and the others give
half orbits.

A computer search gave 12027 S(5,6,84) systems formed from PSIL(2,83)
orbits that include the five orbits specified above. One of these systems has the
starters (with oo, 0,1 suppressed for brevity) shown in Table 3.

{2,9,32}, {2,12,16}, {3,24,69}, {4,2551}, {17,18,44},
{2,3,43}, {2,579}, {2,6,34}, {2,7,10}, {2,8,18},
{2,11,77}, {2,15,49}, {2,22,27}, {2,31,48}, {2,33,73},
{2,35,60}, {3,4,74}, {3,7,51}, {3,8,14}, {3,10,50},
{3,15,45}, {3,16,21}, {3,17,38}, {3,18,73}, {3,19,62},
{3,25,48}, {3,26,68}, {4,15,66}, {4,20,38}, {4,40,52},
{5,8,36}, {5,16,47}, {6,15,35}.

Table 3. Starters for an S(5, 6, 84).

We will refer to the above system as S; it contains H; and Hy = (6,8, 10, 23,
30,44, 28,21,50,47,72,34) which have no blocks in common. It is therefore
possible to trade both Hy for H] = (33,7,9,22,29,43,27,20,49,46,71,5) and
Hy for HY) = (34,8, 10, 23,30, 44, 28,21, 50, 47, 72, 6) and obtain a new S(5, 6, 84),
which we will call S” and which we prove is rigid.

The signature of every hyperquadrilateral in S is (20,12, 0), and sig(H7, S") =
sig(H%,S") = (32,0,0). Hence in forming S’ from S, some hyperquadrilaterals
are destroyed, but no new ones are formed. The hyperquadrilaterals of .S may
be categorized into the same four Types as in the v = 72 case. If H is any Type
3 hyperquadrilateral, then we find by computation that sig(H,S") = (21,11, 0).



Therefore the only hyperquadrilaterals in S” that have signature (32,0,0) are
H{ and H). Consequently any automorphism of S’ must either map H{ to Hj
and H) to H) , or Hj to H) and vice-versa. Arguing as in the previous case, we
find a set of 72 blocks of S/, each of which contains a 5-tuple from the foundation
of Hj together with a sixth point outside this foundation, and which are such
that these 72 additional points cover all the remaining points of S’. Thus each
of the 2 x 23040 mappings ¢ of Hj to itself or to Hj can be extended in at most
one way to the whole of S’. In fact, it was found that the only mapping which
maps Hj to itself and preserves S’ is the identity, and there are no mappings
that map Hy to Hj and preserve S’. Tt follows that S’ is rigid.

5 v =108

We proceed in a similar fashion to the previous cases. Put Gio7 = (o, 3) where
a,3 are as in the v = 84 case. Since —2 = 312 in GF(107), Gio7 forms
an order 4 subgroup of PSL(2,107). We consider possible hyperquadrilater-
als of the same form as those described in the previous sections, and again
the 32 blocks of such a hyperquadrilateral will lie in at most ten orbits un-
der PSL(2,107). Up to equivalence, there are 28 choices for the triple (a,b, c)
which do not lead to unsuitable or incompatible orbits of 6-tuples. One of
these is given by (a, b, ¢) = (21,43,46). The corresponding hyperquadrilateral is
Hy = (21,43,46,70,52,76,38,72,81,100, 102,56). The blocks of H; lie in just
five orbits under PSL(2,107). Numerically lowest starters for these orbits are
{0,0,1,2,16,49}, {c0,0,1,4,17,61}, {00,0,1,4,68,84}, {00,0,1,6,14,84} and
{00,0,1,7,31,35}. The first of these gives a full orbit, the second and third give
half orbits, and the fourth and fifth give sixth orbits.

A computer search for S(5,6,108) systems formed from PSL(2,107) orbits
that include the five orbits specified above was restricted to completions with
additional short orbits because it was anticipated that a full search would be
both unnecessary and excessively lengthy. There are 466 suitable short orbits of
6-tuples out of a total of 3242 suitable orbits of 6-tuples. This heavily restricted
search gave 65 solutions, and one of the systems obtained has the starters (with
00, 0, 1 suppressed for brevity) shown in Table 4. We will refer to this system as
S; it contains Hy and Hy = (22,44,47,71,53,77,39,73,82,101, 103, 57) which
have no blocks in common. It is therefore possible to trade both Hy for Hy =
(56, 43,46, 70,52, 76, 38,72,81,100, 102, 21) and Hy for H) = (57,44,47,71,53,
77,39,73,82,101,103,22) and obtain a new S(5,6,108), which we will call S’
and which we prove is rigid.

The signature of every hyperquadrilateral in S is (26, 0,6), and sig(H7, S’) =
sig(H%,S’) = (32,0,0). Hence in forming S’ from S, some hyperquadrilaterals
are destroyed, but no new ones are formed. The hyperquadrilaterals of S may be
categorized into the same four Types as in the v = 72 case. If H is any Type 3
hyperquadrilateral, then we find by computation that sig(H,S’) = (26,1,5)
or (26,2,4). Therefore the only hyperquadrilaterals in S’ that have signature
(32,0,0) are Hj and H). Consequently any automorphism of S’ must either



{2,16,49} {4,17,61} {4,68,84} {6,14,84} {7,31,35}
{2,3,104} {2,5,81} {2,6,36} {2,7,102} {2,8,38}
{2,9,68}  {2,10,20} {2,11,33} {2,12,83} {2,13,61}
{2,22,52} {2,25,60} {2,34,63} {2,40,91} {2,47,82}

{3,4,9}  {3,7,87} {3,8,24} {3,10,90} {3,11,76}
{3,12,75} {3,14,16} {3,17,74} {3,19,64} {3,20,70}
{3,27,61} {3,29,56} {3,31,48} {3,32,96} {3,41,80}
{3,42,105} {3,44,71} {3,45,86} {3,88,100} {4,5,92}
{4,11,35} {4,15,39} {4,20,50} {4,21,32} {4,24,94}
{4,28,83} {4,31,33} {4,38,45} {4,46,60} {4,47,57}
{5,6,25}  {5,8,31} {5,24,76} {5,26,95} {5,49,94}
{6,13,91} {6,30,70} {6,33,78} {6,39,60} {7,8,68}
{7,23,85} {9,20,73} {9,30,99}

Table 4. Starters for an S(5, 6,108).

map H{ to H{ and Hj to H) , or H{ to Hj and vice-versa. Arguing as in the
previous cases, we find a set of 96 blocks of S’, each of which contains a 5-tuple
from the foundation of Hj together with a sixth point outside this foundation,
and which are such that these 96 additional points cover all the remaining points
of S’. Thus each of the 2 x 23040 mappings ¢ of H; to itself or to H} can be
extended in at most one way to the whole of S’. It was found that the only
mapping which maps Hj to itself and preserves S’ is the identity, and there are
no mappings that map Hj to H} and preserve S’. It follows that S’ is rigid.

6 Concluding remarks

All the computations and searches described in this paper were done on an
ordinary home PC; to be precise, a 2.4GHz Pentium 4 C with 512MB RAM
and using a “Windows XP Professional” operating system. In each case, the
systems S(5, 6, v) were determined by listing each 6-block orbit with the 5-block
orbits which it contains, and each 5-block orbit with the 6-block orbits which
contain it. A backtracking procedure was then used to identify packings of all
the 5-block orbits into 6-block orbits. The longest computation, determining
the 12027 systems for v = 84, took around 200 hours.

Although we have only presented three rigid S(5,6,v) systems, it is clear
that the method is capable of producing a large number of new systems for
v = 72,84 and 108. There is also little doubt that many larger S(5, 6, v) systems
will contain hyperquadrilateral trades, and that applying such trades will often
result in systems that do not have PSL automorphism groups. We have used
a particular form for our hyperquadrilaterals and other forms may be equally
effective. Indeed, there may be other trades that can be used both for these
systems and other large systems such as t — (v, k, \) designs with k > 4.
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