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1 Introduction.

In his paper [5], Immo Diener shows that for given t and k the number
of values of v for which an S-cyclic Steiner system S(t, k, v) exists is finite
except possibly for t = 3 and k even. In this paper we show that for non-
trivial systems “finite” may be replaced by “zero” except in the case t = 3,
and indeed in the case t = 3 and k odd “finite” may be replaced by “at most
one”, this value of v being equal to k2 − 2k + 2.

A Steiner system S(t, k, v) is an ordered pair (V,B) where V is a set
of cardinality v and B is a collection of k-element subsets of V which has
the property that each t-element subset of V is contained in precisely one
member of B. The members of B are referred to as blocks or k-blocks and the
t-element subsets of V as subblocks or t-blocks. The Steiner system S(t, k, v)
is said to be cyclic if it has an automorphism of order v. Any such system S
will be isomorphic to one T in which V is the set of residue classes modulo
v and the automorphism is z → z + 1 (mod v). We will say that T is a
standard representation of S and that T is in standard form.

Suppose T is a cyclic S(t, k, v) in standard form and that B = {x1, x2, . . . ,
xk} is a block of T . Then B + i = {x1 + i, x2 + i, . . . , xk + i} is also a block
of T for each i = 1, 2, . . . , v− 1, the arithmetic being performed mod v. The
collection of blocks {B + i, i = 0, 1, . . . , v − 1} is called an orbit. If the
cardinality of the orbit is v it will be called a full orbit, otherwise it will
be referred to as a small orbit. Any orbit is uniquely characterised by its
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difference set 〈d1, d2, . . . , dk〉 which is a cyclically ordered k-tuple obtained
from any block {x1, x2, . . . , xk} of the orbit (ordered so that 0 ≤ x1 < x2 <
. . . < xk < v) by taking di = xi−xi−1 for i = 2, 3, . . . , k and d1 = x1 +v−xk.

Suppose now that B = {x1, x2, . . . , xk} is a k-element subset of the set of
residue classes modulo v. We denote by −B the set obtained by applying the
mapping z → v − z (mod v) to the elements of B. If S is a cyclic S(t, k, v)
we say that S is R-cyclic if there is a standard representation T of S such
that for each block B of T , −B is also a block of T . If, in addition the
block −B always lies in the same orbit as B then we say that S is S-cyclic.
The notion of an S-cyclic system was first introduced in connection with
Steiner quadruple systems. Interest stems from the substantial reduction
in computation required to construct such systems as opposed to general
cyclic systems (see, for example, [5], [6], [7], [8], [10]). Following the proof
of the main theorem we illustrate the computational process by giving a
construction of S(3, 5, 17).

2 General Result

THEOREM. Suppose that 1 < t < k < v. Then an S-cyclic S(t, k, v) can
only exist if t = 3. Moreover if t = 3 and k is odd, then an S-cyclic S(t, k, v)
can only exist if v = k2 − 2k + 2.

Remark: The class of S-cyclic S(3, k, k2 − 2k + 2) with k odd is non-empty
as the construction of S(3, 5, 17) given in Section 3 demonstrates. However
there is no S(3, 7, 37) as is well known. The existence of further S-cyclic
systems with these parameters appears to be an open question.

Proof: The proof breaks into eight cases corresponding to the parity of t, k
and v. In the course of the proof, the ordered parameter set (t, k, v) will
be called admissible if

(
k−i
t−i

)
|
(
v−i
t−i

)
for i = 0, 1, . . . , t− 1; this condition being

necessary for the existence of an S(t, k, v). In particular, taking i = t − 1,
the existence of an S(t, k, v) implies that (k − t+ 1)|(v − t+ 1).

We only consider non-trivial systems where 1 < t < k < v. For such
systems an elementary argument (see [1]) gives the inequality v − t + 1 ≥
(k− t+2)(k− t+1), which we refer to as (I). As was observed in [5], R-cyclic
(and therefore S-cyclic) S(2, k, v) do not exist; hence we may assume below
that t ≥ 3. Further in [5] Diener proves that if k is odd then an S-cyclic k-
block orbit will have a difference set of the form 〈d1, d2, . . . , dm, dm+1, dm, . . . ,
d2, d1〉 where k = 2m + 1, while if k is even then the difference set is either
of the form 〈d1, d2, . . . , dm, dm, . . . , d2, d1〉 or of the form 〈d1, d2, . . . , dm−1, e,
dm−1, . . . , d2, d1, f〉 where k = 2m.
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The eight cases of our proof may be arranged in order of increasing com-
plexity as follows:

(i) t even, k odd, v even,

(ii) t odd, k even, v odd,

(iii) t even, k odd, v odd,

(iv) t odd, k odd, v odd,

(v) t odd, k odd, v even,

(vi) t even, k even, v odd,

(vii) t even, k even, v even,

(viii) t odd, k even, v even (t > 3).

Cases (i) and (ii). Here the parameter sets are inadmissible since
(k − t+ 1) does not divide (v − t+ 1).

Case (iii). Suppose that an R-cyclic S(t, k.v) exists, then it must contain a
k-block of the form

{1, 2, . . . , u, α1, . . . , αk−t, v − u, . . . , v − 2, v − 1}

where u = t/2, and where the αi s (of which there is an odd number) are all
distinct and satisfy u < αi < v − u or αi = 0 for each i = 1, 2, . . . , k − t.
Consideration of the mapping z → v− z (mod v) reveals that one of the αi s
must equal 0. But then the mapping z → z+1 (mod v) applied to the above
k-block gives a different k-block in the same orbit with a t-block intersection.
It follows that in Case (iii) no R-cyclic S(t, k, v) can exist and so, therefore,
no S-cyclic S(t, k, v) can exist.

Case (iv). Put u = (t − 1)/2 and m = (k − 1)/2. We define a symmetric
t-block to be a t-block of the form {0, α1, . . . , αu, v − αu, . . . , v − α1} with
1 ≤ α1 < α2 < . . . < αu ≤ (v − 1)/2. Clearly there

(
(v−1)/2

u

)
symmet-

ric t-blocks. Each S-cyclic k-block orbit has a difference set of the form
〈d1, d2, . . . , dm, dm+1, dm, . . . , d2, d1〉 and so contains a k-block {0, x1, . . . , xm,
v− xm, . . . , v− x1} with 0 < x1 < x2 < . . . < xm < v/2. Hence each S-cyclic
k-block orbit gives rise to at least

(
m
u

)
distinct symmetric t-blocks. If an

S-cyclic S(t, k, v) does exist, composed of N k-block orbits, then it follows
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that
(
(v−1)/2

u

)
/
(
m
u

)
≥ N . However, an S(t, k, v) contains

(
v
t

)
/
(
k
t

)
k-blocks and

so N ≥
(
v
t

)
/
(
v
(
k
t

))
. It follows that(
(v − 1)/2

u

)/(m
u

)
≥
(
v

t

)/(
v

(
k

t

))
which reduces to k(k− 2) . . . (k− t+ 1) ≥ (v− 2)(v− 4) . . . (v− t+ 1), which
we call (J).

When t = 3 this gives k(k − 2) ≥ v − 2, and so v ≤ k2 − 2k + 2. But (I)
gives v− 2 ≥ (k− 1)(k− 2). Hence k2− 3k+ 4 ≤ v ≤ k2− 2k+ 2. Note that
(k−2)|(v−2), so that the only possible values of v for t = 3 are v = k2−3k+4
and v = k2−2k+2. The existence of S(3, k, k2−3k+4) implies, through the
admissibility condition, that k|(k2 − 3k + 3)(k2 − 3k + 4) and so k|12 which
is not possible. This leaves S(3, k, k2 − 2k+ 2) as an outstanding possibility.

Now suppose t ≥ 5. Put d = k− t, so that (I) gives v− t+1 ≥ d2+3d+2,
and hence v − t+ 3 ≥ d2 + 3d+ 4. Noting v − 2 ≥ k, v − 4 ≥ k − 2, etc. we
deduce from (J) that (d+ 5)(d+ 3)(d+ 1) ≥ (d2 + 3d+ 4)(d2 + 3d+ 2) but
this is plainly false when d ≥ 2.

Case (v). The argument follows closely that of the previous case. The
number of symmetric t-blocks is now

(
(v−2)/2

u

)
and in place of (J) we obtain

k(k − 2) . . . (k − t+ 1) ≥ (v − 1)(v − 3) . . . (v − t+ 2), which we call (K).
When t = 3 this gives k(k − 2) ≥ v − 1, and so v ≤ k2 − 2k + 1. Using

(I) we deduce that k2 − 3k + 4 ≤ v ≤ k2 − 2k + 1 and a similar argument to
that of Case (iv) disposes of t = 3.

Now suppose t ≥ 5. With d = k − t, using (I) and noting v − 1 ≥
k, v − 3 ≥ k − 2, etc. we deduce from (J) that (d + 5)(d + 3)(d + 1) ≥
(d2 + 3d+ 5)(d2 + 3d+ 3). But again this is false for d ≥ 2.

Case (vi). Put u = t/2 and m = k/2. Since v is odd an S-cyclic k-
block orbit cannot have a difference set of the form 〈d1, d2, . . . , dm, dm, . . . ,
d2, d1〉. Consequently all S-cyclic k-block orbits have a difference set of the
form 〈d1, d2, . . . , dm−1, e, dm−1, . . . , d2, d1, f〉 where precisely one of e and f
is even; without loss of generality we can assume that it is e. It follows that
any S-cyclic k-block orbit contains a block of the form

{0, x1, . . . , xm−1, xm−1 + e, 2xm−1 + e− xm−2, . . . , 2xm−1 + e− x1, 2xm−1 + e}

and putting g = 2xm−1 + e, so that g is even, this is of the form

{0, x1, . . . , xm−1, g − xm−1, g − xm−2, . . . , g − x1, g},

(with elements in ascending order). With h = g/2, the mapping z → z − h
(mod v) transforms this block to

{v − h, v − h+ x1, . . . , v − h+ xm−1, h− xm−1, . . . , h− x1, h}
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which may be re-arranged with elements in ascending order into the form

{y1, y2, . . . , ym, v − ym, . . . , v − y2, v − y1}

with 1 ≤ y1 < y2 < . . . < ym ≤ (v − 1)/2. Every S-cyclic k-block orbit
contains such a block.

We define a symmetric t-block to be one of the form

{α1, α2, . . . , αu, v − αu, . . . , v − α2, v − α1}

where 1 ≤ α1 < α2 < . . . < αu ≤ (v − 1)/2.
Clearly there are

(
(v−1)/2

u

)
symmetric t-blocks. Each S-cyclic k-block orbit

contains a block of the type described in the previous paragraph and so gives
rise to at least

(
m
u

)
symmetric t-blocks. As in Case (iv) it follows that(
(v − 1)/2

u

)/(m
u

)
≥
(
v

t

)/(
v

(
k

t

))
which now reduces to (k−1)(k−3) . . . (k−t+1) ≥ (v−2)(v−4) . . . (v−t+2)
which we call (L).

When t = 4 this gives (k − 1)(k − 3) ≥ v − 2 and so v ≤ k2 − 4k + 5.
But (I) gives v − 3 ≥ (k − 2)(k − 3). Hence k2 − 5k + 9 ≤ v ≤ k2 − 4k + 5.
Note also that (k− 3)|(v− 3), so that the only possible value of v for t = 4 is
v = k2− 5k+ 9. This, in turn, is impossible since the admissibility condition
gives (k−1)|(k2−5k+8)(k2−5k+7) and so (k−1)|12 which has no solutions
for k even and greater than 4.

Now suppose t ≥ 6. Put d = k− t, so that (I) gives v− t+2 ≥ d2 +3d+3
and hence v− t+ 4 ≥ d2 + 3d+ 5. Noting v− 2 ≥ k− 1, v− 4 ≥ k− 3, etc.
we deduce from (L) that (d+ 5)(d+ 3)(d+ 1) ≥ (d2 + 3d+ 5)(d2 + 3d+ 3),
but this is plainly false when d ≥ 2.

Case (vii). Put u = t/2 and m = k/2. S-cyclic k-block orbits have difference
set of one of the following types:

type 1 〈d1, d2, . . . , dm, dm, . . . , d2, d1〉,

type 2(a) 〈d1, d2, . . . , dm−1, e, dm−1, . . . , d2, d1, f〉, e and f both even,

type 2(b) 〈d1, d2, . . . , dm−1, e, dm−1, . . . , d2, d1, f〉, e and f both odd.

It is easily shown (in the manner of Case (vi)), that each type 1 orbit therefore
contains a block of the form

{0, x1, x2, . . . , xm−1, v/2, v − xm−1, . . . , v − x2, v − x1}
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where 1 ≤ x1 < x2 < . . . < xm−1 ≤ (v − 2)/2. Each type 2(a) orbit contains
a block of the form

{x1, x2, . . . , xm, v − xm, . . . , v − x2, v − x1}

where 1 ≤ x1 < x2 < . . . < xm ≤ (v − 2)/2. Each type 2(b) orbit contains a
block of the form

{x1, x2, . . . , xm, v + 1− xm, . . . , v + 1− x2, v + 1− x1}

where 1 ≤ x1 < x2 < . . . < xm ≤ (v − 2)/2. Note that a full orbit of type 1
contains at least two blocks of the type quoted above (this may be seen by
applying the mapping z → z + v/2 (mod v)). A similar observation applies
to types 2(a) and 2(b).

We define symmetric t-blocks of types A and B as follows:

type A: {0, α1, α2, . . . , αu−1, v/2, v − αu−1, . . . , v − α2, v − α1},
where 1 ≤ α1 < α2 < . . . < αu−1 ≤ (v − 2)/2.

or: {α1, α2, . . . , αu, v − αu, . . . , v − α2, v − α1},
where 1 ≤ α1 < α2 < . . . < αu ≤ (v − 2)/2.

type B: {α1, α2, . . . , αu, v + 1− αu, . . . , v + 1− α2, v + 1− α1},
where 1 ≤ α1 < α2 < . . . < αu ≤ v/2.

There are
(
v/2
u

)
symmetric t-blocks of type A and the same number of type

B. A full S-cyclic k-block orbit of types 1 or 2(a) will contain at least 2
(
m
u

)
symmetric t-blocks of type A. Likewise a full orbit of type 2(b) will contain
2
(
m
u

)
sub-blocks of type B. Smaller k-block orbits will contain at least

(
m
u

)
of

the respective types. It follows that the number of S-cyclic orbits which can
be used to form an S(t, k, v) expressed in equivalent full orbits (i.e. an orbit
of cardinality v/n contributing 1/n towards the total) is at most(

v/2

u

)/
2

(
m

u

)
+

(
v/2

u

)/
2

(
m

u

)
=

(
v/2

u

)/(m
u

)
.

Hence

(
v/2

u

)/(m
u

)
≥
(
v

t

)/(
v

(
k

t

))
.

This reduces to (k− 1)(k− 3) . . . (k− t+ 1) ≥ (v− 1)(v− 3) . . . (v− t+ 1)/v
which we call (M).

When t = 4 this gives (k−1)(k−3) ≥ (v−1)(v−3)/v. Noting v > k gives
(v−1)/v = 1−1/v > 1−1/k and so k(k−3) > v−3, hence v < k2−3k+ 3,
From this and (I) we deduce that k2 − 5k + 9 ≤ v ≤ k2 − 3k + 2. But k and
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v are even and (k − 3)|(v − 3), so that the possible values of v are reduced
simply to v = k2 − 4k + 6, The existence of S(4, k, k2 − 4k + 6) implies that
k|(k2 − 4k + 6)(k2 − 4k + 5)(k − 2) so that k|60. But k is even and k ≥ 6,
so the possible values of k are k = 6, 10, 12, 20, 30 and 60. However, these
systems are all extendable inversive planes, the last four being ruled out by
a theorem of Dembowski [2], [3]. It is well-known that no system S(4, 6, 18)
exists (Witt [12]), and the non-existence of S(4, 10, 66) can be deduced from
work by Kantor [9], (see also [1] and [4]).

Now suppose t ≥ 6. Put d = k− t, so that (I) gives v− t+1 ≥ d2+3d+2.
Noting v−3 ≥ k−1, v−5 ≥ k−3 etc., we deduce from (M) that (d+5)(d+
3)(d+1) ≥ (d2+3d+4)(d2+3d+2)(v−1)/v. But v−1

v
≥ 1− 1

k+2
≥ 1− 1

10
= 9

10
.

Hence 10(d+ 5)(d+ 3)(d+ 1) ≥ 9(d2 + 3d+ 4)(d2 + 3d+ 2). This is plainly
false for d ≥ 2.

Case (viii). Put u = (t−1)/2 and m = k/2. The S-cyclic k-block orbits are
as in Case (vii) and the observations concerning them which we made there
still apply. We define symmetric t-blocks of types A and B as follows:

type A: {0, α1, α2, . . . , αu−1, v/2, v − αu−1, . . . , v − α2, v − α1, γ},
where 1 ≤ α1 < α2 < . . . < αu−1 ≤ (v − 2)/2,
1 ≤ γ ≤ (v − 2)/2.

or: {α1, α2, . . . , αu, v − αu, . . . , v − α2, v − α1, γ},
where 1 ≤ α1 < α2 < . . . < αu ≤ (v − 2)/2,
0 ≤ γ ≤ (v − 2)/2.

type B: {α1, α2, . . . , αu, v + 1− αu, . . . , v + 1− α2, v + 1− α1, γ},
where 1 ≤ α1 < α2 < . . . < αu ≤ v/2, 1 ≤ γ ≤ v/2.

There are v
2

(
(v−2)/2

u

)
symmetric t-blocks of type A and the same number

of type B. A full S-cyclic k-block orbit of types 1 or 2(a) will contain at least
2m
(
m−1
u

)
symmetric t-blocks of type A. Likewise a full orbit of type 2(b)

will contain at least 2m
(
m−1
u

)
sub-blocks of type B. Smaller k-block orbits

will contribute at least m
(
m−1
u

)
of the respective types. It follows that the

number of S-cyclic orbits which can be used to form an S(t, k, v), expressed
in equivalent full orbits is at most

v
2

(
(v−2)/2

u

)
2m
(
m−1
u

) +
v
2

(
(v−2)/2

u

)
2m
(
m−1
u

) =
v

2m
·
(
(v−2)/2

u

)(
m−1
u

) .

Hence the existence of an S-cyclic system implies that
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v

2m
·
(
(v−2)/2

u

)(
m−1
u

) ≥ (
v
t

)
v
(
k
t

) .
This reduces to

(k−1)(k−3) . . . (k− t+2) ≥ (v−1)(v−3)...(v− t+2)/v, which we call (N).

When t = 5 this gives (k−1)(k−3) ≥ (v−1)(v−3)/v. Arguing as in Case
(vii) and using (I) gives k2− 7k+ 16 ≤ v ≤ k2− 3k+ 2. Since (k− 4)|(v− 4)
this gives the possible values of v as v = k2 − 7k + 16, v = k2 − 6k + 12,
v = k2−5k+8, v = k2−4k+4, v = k2−3k, and if k = 6, v = k2−2k−4 = 20.
We examine each of these possibilities below using the admissibility condition
and bearing in mind that k is even and k ≥ 6.

(a) v = k2 − 7k + 16. We require (k − 2)|(k2 − 7k + 13)(k2 − 7k + 14) and
so (k − 2)|12. Also (k − 1)|(k2 − 7k + 13)(k2 − 7k + 14)(k2 − 7k + 15)
and so (k − 1)|7 × 8 × 9. The only solution to these two divisibility
conditions is k = 8 which gives v = 24. However, the system S(5, 8, 24)
is not cyclic.

(b) v = k2−6k+12. We require (k−1)|(k−3)(k2−6k+10)(k2−6k+11) so
that (k− 1)|60, and k|(k− 3)(k2− 6k+ 10)(k2− 6k+ 11)(k2− 6k+ 12)
so that k|3 × 10 × 11 × 12. The only solution is k = 6 which gives
v = 12. The system S(5, 6, 12) is not cyclic.

(c) v = k2−5k+8. We require (k−3)|(k−1)(k2−5k+5) so that (k−3)|2,
which is not possible.

(d) v = k2 − 4k + 4. We require (k − 3)|k(k2 − 4k + 1) so that (k − 3)|6.
The only solution is k = 6 which gives v = 16, but there is no Steiner
system S(5, 6, 16), [11].

(e) v = k2− 3k. We require (k− 3)|(k+ 1)(k2− 3k− 3) so that (k− 3)|12.
The only solution is k = 6 which gives v = 18. If an S-cyclic S(5, 6, 18)
did exist, then by taking the blocks containing 0 and deleting this
element we should obtain a derived S(4, 5, 17) fixed by z → 18 − z
(mod 18). However, Denniston has shown [4], that any S(4, 5, 17) must
have the trivial automorphism group. Consequently there is no S-cyclic
S(5, 6, 18).

(f) k = 6, v = k2 − 2k − 4 = 20. The parameters (5, 6, 20) are not
admissible.
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Next we consider the situation when 7 ≤ t ≤ 13. We put d = k − t and
use (I) and (N) together with the inequalities v − 3 ≥ k − 1 etc. to obtain

(d+ 6)(d+ 4)(d+ 2) ≥
(
v − 1

v

)
(d2 + 3d+ 5)(d2 + 3d+ 3).

But (v − 1)/v ≥ 9/10 and so this gives

10(d+ 6)(d+ 4)(d+ 2) ≥ 9(d2 + 3d+ 5)(d2 + 3d+ 3).

Noting d is odd, this can only hold for d = 1. Hence the possibilities are:
t = 7, k = 8; t = 9, k = 10; t = 11, k = 12; t = 13, k = 14. We examine
each in turn.

(a) If t = 7 and k = 8, then (N) gives 7×5×3 ≥ (v−1)(v−3)(v−5)/v while
(I) gives v ≥ 12. Since 2|v the only solutions possible are v = 12 and
v = 14. But neither (7, 8, 12) nor (7, 8, 14) are admissible parameter
sets.

(b) If t = 9 and k = 10 then (N) and (I) give v = 14 and (9, 10, 14) is
inadmissible.

(c) If t = 11 and k = 12 then (N) and (I) give v = 16, again inadmissible.

(d) If t = 13 and k = 14 then (N) and (I) give v = 18, again inadmissible.

Finally we consider the situation when t ≥ 15. Then (N) and (1) together
with the inequalities v − 1 ≥ k − 3 etc., give

(d+14)(d+12) . . . (d+2) ≥
(
v − 1

v

)
(d2+3d+13)(d2+3d+11) . . . (d2+3d+3)

but (v − 1)/v ≥ 17/18 and so

18(d+ 14)(d+ 12) . . . (d+ 2) ≥ 17(d2 + 3d+ 13)(d2 + 3d+ 11) . . . (d2 + 3d+ 3)

and this is false for d ≥ 1.

3 Construction of S(3, 5, 17)

It is well known that a Steiner system with parameters t = 3, k = 5, v = 17
is unique up to isomorphism, [12]. It is also S-cyclic [5] and the use of this
fact provides a simple construction of the system. We first observe that every
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cyclic orbit is full in this case and that 4 cyclic 5-block orbits are required.
Each of the cyclic 5-block orbits will contain all of the blocks in 10 cyclic
3-block orbits. In standard form an S-cyclic 5-block orbit has a difference
set of the form 〈a, b, c, b, a〉 with 2a + 2b + c = 17. The cyclic 3-block orbits
which it contains then have the following difference sets:

1 : 〈a, b, a+ b+ c〉 2. 〈b, a, a+ b+ c〉 3. 〈b, c, 2a+ b〉
4. 〈c, b, 2a+ b〉 5. 〈a, b+ c, a+ b〉 6. 〈a, a+ b, b+ c〉
7. 〈b, b+ c, 2a〉 8. 〈b, 2a, b+ c〉 9. 〈a, a, 2b+ c〉

10. 〈a+ b, a+ b, c〉.

For any S-cyclic 5-block orbit which can be used as part of S(3, 5, 17),these
10 difference sets must be distinct, and so a number of inequalities immedi-
ately follow for such a 5-block orbit.

From 1 and 2, a 6= b.

From 3 and 4, b 6= c, 2a+ b 6= c.

From 5 and 6, a 6= c, a 6= b+ c.

From 7 and 8, 2a 6= b+ c, b 6= 2a.

Next we list all S-cyclic 5-block orbits indicating those which can be used to
construct S(3, 5, 17) by an upper case letter and those which can not by the
condition which renders them unsuitable.

〈1, 1, 13, 1, 1〉 a = b 〈3, 2, 7, 2, 3〉 H
〈1, 2, 11, 2, 1〉 b = 2a 〈3, 3, 5, 3, 3〉 a = b
〈1, 3, 9, 3, 1〉 A 〈3, 4, 3, 4, 3〉 a = c
〈1, 4, 7, 4, 1〉 B 〈3, 5, 1, 5, 3〉 2a = b+ c
〈1, 5, 5, 5, 1〉 b = c 〈4, 1, 7, 1, 4〉 2a = b+ c
〈1, 6, 3, 6, 1〉 C 〈4, 2, 5, 2, 4〉 I
〈1, 7, 1, 7, 1〉 a = c 〈4, 3, 3, 3, 4〉 b = c
〈2, 1, 11, 1, 2〉 D 〈4, 4, 1, 4, 4〉 a = b
〈2, 2, 9, 2, 2〉 a = b 〈5, 1, 5, 1, 5〉 a = c
〈2, 3, 7, 3, 2〉 2a+ b = c 〈5, 2, 3, 2, 5〉 a = b+ c
〈2, 4, 5, 4, 2〉 b = 2a 〈5, 3, 1, 3, 5〉 J
〈2, 5, 3, 5, 2〉 E 〈6, 1, 3, 1, 6〉 K
〈2, 6, 1, 6, 2〉 F 〈6, 2, 1, 2, 6〉 L
〈3, 1, 9, 1, 3〉 G 〈7, 1, 1, 1, 7〉 b = c

For the 12 5-block orbits A to L, we list the two values of x, namely a and
a+b, for which they contain 3-block orbits with a difference set 〈x, x, 17−x〉.
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A 1 and 4 G 3 and 4
B 1 and 5 H 3 and 5
C 1 and 7 I 4 and 6
D 2 and 3 J 5 and 8
E 2 and 7 K 6 and 7
F 2 and 8 L 6 and 8

It is then immediate that the only possible combinations of orbits to form
an S(3, 5, 17) are as follows:

1. A D J K
2. A E H L
3. A F H K
4. B E G L
5. B F G K
6. C D I J
7. C F H I

However, orbit A with difference set 〈1, 3, 9, 3, 1〉 includes inter alia the
3-block orbits with difference sets 〈1, 3, 13〉 and 〈3, 9, 5〉. But orbit H with
difference set 〈3, 2, 7, 2, 3〉 also includes the 3-block orbit with difference set
〈3, 9, 5〉 and orbit K with difference set 〈6, 1, 3, 1, 6〉 includes the 3-block or-
bit with difference set 〈1, 3, 13〉. Hence possibilities 1., 2., and 3. are not
solutions. Similarly orbit F with difference set 〈2, 6, 1, 6, 2〉 includes 3-block
orbits with difference sets 〈1, 6, 10〉 and 〈2, 7, 8〉, these also being included in
orbits K and H respectively. Hence neither possibility 5. nor 7. is a solution.

We are left with just two possibilities and a listing of all the 3-block orbits
which each contains verifies that each is indeed an S(3, 5, 17). That the two
systems are isomorphic is shown by the fact that the function z → 3z (3 is a
primitive of 17) maps the orbits of one system to the orbits of the other. A
listing of the difference sets of the orbits of the two systems and the effect of
the function is given below:

〈2, 1, 11, 1, 2〉 D 〈1, 6, 3, 6, 1〉 C 〈5, 3, 1, 3, 5〉 J 〈4, 2, 5, 2, 4〉 I

〈1, 4, 7, 4, 1〉 B 〈6, 2, 1, 2, 6〉 L 〈3, 1, 9, 1, 3〉 G 〈2, 5, 3, 5, 2〉 E

12
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