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Abstract. Bloch electrons in a magnetic field can be modelled by a one-dimensional 
Hamiltonian H = H(f, J?), which is periodic in f and J?. When j3, the ratio of Planck’s 
constant h to the area of a unit cell is a rational number p / q ,  the spectrum is a set of q 
Bloch bands. I f  p is perturbed away from this rational value, the spectrum becomes a 
Cantor set, but it is still possible to define a set of generalised Bloch waves which form a 
complete basis set for a given band. Projecting these states into the band, and taking 
matrix elements of the Hamiltonian leads to a new effective Hamiltonian H L ( $  $1 and 
Planck constant h l  describing the spectrum of the vth band. Since degrees of freedom 
have been eliminated by projecting into a band, this is a renormalisation group (RG)  
transformation. The RG transformation can be iterated indefinitely if  the measure of the 
spectrum is zero or if j3 is a Liouville number. The measure of the spectrum vanishes if 
H ( x , p )  has centres of threefold or fourfold symmetry in the phase plane, and the RG 

transformation explains the hierarchical structure of the spectrum observed in these cases. 

1. Introduction 

This paper considers the spectrum of a Hamiltonian operator fi = H ( 2 ,  e )  which is 
periodic in both 2 and p^; an example is 

I4=2(cos$+cY c o s i ) .  (1.1) 

Hamiltonians of this type arise as single band effective Hamiltonians for the problem 
of Bloch electrons in a magnetic field in two dimensions. If the cyclotron energy is 
large compared to the periodic potential, the splitting of the degeneracy of the Landau 
levels by the potential is described by an effective Hamiltonian of this type (Rauh 
1974, 1975), and H ( 2 , p ^ )  has the same rotational symmetry in phase space as the 
potential V(x, y )  has in coordinate space (Wilkinson 1987). The ratio p of the effective 
Planck constant to the area of a unit cell in phase space is the same as that of the area 
of a flux quantum to the unit cell in coordinate space. Effective Hamiltonians of the 
same type also arise when the magnetic field is a perturbation on the band spectrum 
due to the potential (Peierls 1933), but in this case p is equal to the inverse ratio of 
the area of the flux quantum to that of a unit cell (Hofstadter 1976). 

The Schrodinger equation corresponding to this type of Hamiltonian can be written 
as a difference equation with periodic coefficients; for instance in the x representation 
equation ( 1.1 ) gives 

(1.2) $(x + h )  + $(x - h )  + 2cY cos x$(x) = E$(x) 
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where h = 2 ~ / 3 ,  or equivalently 

$ ,+,+$,- ,+2a cos(2?rpn+A)$, = E$, (1.3) 

which i s  called Harper’s equation (Harper 1955). When p is a rational number p / q ,  
Bloch’s theorem applies to equation (1.3), and the spectrum consists of a set of q 
bands with dispersion relation E = E,(k, A ) ,  where k is the Bloch wavevector and v 
an index labelling the band. When p is irrational, the spectrum is a Cantor set (Simon 
1982). Numerical calculations by Hofstadter (1976) suggest that when CY = 1 this 
spectrum has a hierarchical structure, which corresponds to the critical point of a 
renormalisation group ( RG) transformation. This paper describes the construction of 
an exact renormalisation group transformation suitable for analysing the spectrum of 
Bloch electrons in a magnetic field. It extends earlier work, in which the RG transforma- 
tion was described for a special case (Wilkinson 1986). Several other authors, notably 
Suslov (1982), and Ostlund and Pandit (1984), have made contributions to the analysis 
of Harper’s equation using renormalisation group methods different from those intro- 
duced in this paper. The advantages of the method described here will be discussed 
in the conclusion ( 9  7). 

The first step in obtaining this RG transformation is to consider the effect of 
perturbing p away from a rational value: write 

P = p l q + A P  ( 1.4) 

where Ap is a small parameter. For each band it is possible to define a set of generalised 
Bloch waves, which locally resemble the Bloch states of the unperturbed, rational 
system, but on a larger scale have a slowly varying phase parameter A. These generalised 
Bloch states tend towards the Bloch waves of the rational system as AB + 0, and 
provided Ap is sufficiently small they can be shown to form a complete basis for the 
band. Section 2 will describe the Bloch states of the rational system; this material is 
included in order to establish notation. The generalised Bloch waves for the case 
where p is irrational are constructed in 0 3. 

The generalised Bloch waves for the vth band can be made orthogonal to all states 
outside this band by means of a projection operator. The projection operator acts as 
a small perturbation on these generalised Bloch waves, provided that Ap is sufficiently 
small. This is discussed in 0 4, which also estimates how large Ap can be before the 
projection operator ceases to be a small perturbation. These estimates are important 
because they help to determine the class of irrational numbers for which the RG 

transformation can be iterated. 
Section 5 contains the equations defining the RG transformation. Taking matrix 

elements of the Hamiltonian in the basis of the projected generalised Bloch waves 
leads to a new Schrodinger equation, which gives an exact description of only one 
band of the spectrum (see figure 1). This Schrodinger equation is in the form of a 
difference equation with periodic coefficients, and can be expressed as a Hamiltonian 
periodic in x and p (by reversing the calculation which leads from (1.1) to (1.3)). This 
Hamiltonian HI is related to the Bloch dispersion relation of the band by replacing 
the parameters A, k by operators i, p* 

A:= EY(P*/q,  x * / q ) + O ( A P ) .  (1.5) 

This is reminiscent of the Peierls substitution method for obtaining an effective Hamil- 
tonian for Bloch electrons in a magnetic field (Peierls 1933). The Planck constant for 
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Figure 1. ( a )  When p is a rational number p / q ,  the spectrum consists of q bands. ( b )  
When p is perturbed away from this rational value, the spectrum becomes much more 
complicated, and is a Cantor set if p is irrational. The gaps between bands persist under 
this perturbation. ( c )  The RG transformation produces a new Hamiltonian which has the 
same spectrum as one band of the original Hamiltonian. 

this renormalised Hamiltonian, defined by [a, p^] = ih: = 27riP:, is given by 

(1.6) 4P -P 
[(I  - W ” ) / P I P  + M“ 

P :  = 

where M ,  is the quantised Hall conductance integer of the vth band. (The quantised 
Hall effect in a periodic potential has been analysed by Thouless er a1 (1982).) 
Equations (1.5) and (1.6) are the principal results of this paper. 

This procedure maps H ( a , p ^ )  and h into a new Hamiltonian and Planck constant 
H : ( i , $ )  and h l ,  describing the spectrum of the vth band. Since this mapping 
eliminates degrees of freedom (by projecting into a band), it is a renormalisation group 
(RG)  transformation. This RG transformation can be iterated, provided that A P  is 
sufficiently small at every stage. This iteration is discussed in 9 6. There are two 
situations where this is possible. 

( a )  Usually, as the RG transformation is iterated, the gaps in the spectrum get 
smaller, and the results of § 4 show that the smaller the gaps between bands, the smaller 
A@, the deviation from rationality, must be. This implies that P must usually be a 
Liouville number. 

( 6 )  If, for any reason, the gaps between bands do not occupy a decreasing fraction 
of the range of the spectrum as the RG transformation is iterated, then the iteration 
can be continued indefinitely for almost all values of p. This happens if the Hamiltonian 
has axes of threefold or fourfold symmmetry in phase space, and the RG transformation 
explains the hierarchical structures observed in the spectrum in these cases. 

Finally, § 7 is a conclusion, and sets the results of this paper in context with earlier 
work on this problem. 

2. The spectrum when f l  is rational 

In this section, the case of rational p will be discussed, mainly in order to introduce 
notation. It may be helpful to think of Harper’s equation (1.3) as a specific example, 
but the results are applicable to any Hamiltonian periodic in x and p .  Most of the 
results described in this section are well known: Hofstadter (1976) gives a useful list 
of references. 
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When p = po = p /  q, where p and q are coprime integers, the cosine term in ( 1 . 3 )  
is periodic in n with period q, so that Bloch's theorem applies. The spectrum consists 
of q bands, labelled by an integer v = 1,. . . , q. The eigenfunctions are Bloch waves 

*,,=(CIL',"'(k,A)=eiknU',"'(k,A) ( 2 . 1 )  

( 2 . 2 )  

O ~ k < 2 r / q  0 s  A < 2 n p / q .  ( 2 . 3 )  

where the U,, are periodic with period q 

k,  A )  = U!,'"( k, A )  

and the Bloch wavevector k and phase parameter A vary over the following ranges: 

The following properties of these Bloch waves will be important in defining the 
generalised Bloch waves for irrational values of p. 

( a )  As well as being periodic in A with period 2.rrplq 

U',"'(k, A + 2 r p / q )  = U!,'"(k, A )  ( 2 . 4 )  

The U,, also satisfy (apart from an irrelevant overall phase) 

U?)( k, A+:) = U r ) F ( k ,  A )  sp = 1 mod q. ( 2 . 5 )  

This implies that there is a p-fold degeneracy in the spectrum and that the Bloch 
dispersion relation E = EY(k,  A )  is periodic with period 2 r / q  in A 

( 2 . 6 )  
( b )  When k = 0, 2 n / q  or when k = 2 r / 2 q ,  the (CI,, are real (or all have the same 

complex phase). This is because at these values of k the 4, can be obtained as an 
eigenvector of a real symmetric matrix. 

(c )  Now we consider a collective property of the Bloch waves, for which we shall 
use the Dirac notation l k , A ;  v). Provided the bands do not touch, the state l k , A ;  v) 
can be chosen to be an analytic function of k and A (this need not be the case, since 
although k and A fix the ratios of the (CI,,, every 4, can be multiplied by the same 
arbitrary phase factor, e''). Suppose that Ik, A ;  v )  is an analytic function of k,  A .  We 
can choose the phase so that 

( 2 . 7 )  
but it is not always possible for ( k ,  A ;  v) to be periodic in k as well as A ;  in general 
we have 

( 2 . 8 )  
The integer M ,  is a topological invariant called the Chern character (Thouless 1983) ,  
and is the quantised Hall conductance integer associated with the vth band (Thouless 
et a1 1982) .  

This concludes our discussion of the properties of the Bloch states. In 0 3, a set 
of generalised Bloch states will be constructed, in which the phase parameter A is a 
slowly varying function of n. As a preliminary, the results above will be expressed in 
a new notation which will prove convenient for defining the generalised Bloch states. 
Write 

Ey(k ,  A + 2 . r r / q )  = E,(k,  A )  = ~ ~ ( k + 2 r / q ,  A).  

Ik, A + 2 r p / q ;  v)= lk, A ;  v) 

I k + 2 r / q , A ;  v ) = e  'Mu'q'plk, A ;  v). 

( 2 . 9 )  
(2.10) 
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where $,( k, x )  is an analytic function of k and x. Consider the construction of the 
function (CIY(k, x) .  Fix k, and vary the phase parameter A: we have 

$ , (k  % ( A ) )  = $(nY)(k, A ) Z ( A )  (2.11) 

where Z(A) is a complex number of modulus unity. We can increase A from 0 without 
any difficulty until A = 27$, where we have to choose Z(A) in such a way that $, (k ,  x )  
is an analytic function of x, without any phase discontinuity. Similarly, we can construct 
$” as an analytic function of k. The $ , ( k ,  x )  is not unique, because of the arbitrary 
overall phase of the Bloch waves. 

The properties of the Bloch waves described above all imply corresponding proper- 
ties of the function $,( k, x) .  The Bloch condition is 

(2.12) 

and the p-fold degeneracy expressed by equation (2.5) is represented by the relation 

$,(IC, x+27r) =eie$L,(k, x )  (2.13) 

where 8 is an arbitrary phase. The requirement that the Bloch waves be real (apart 
from the overall phase) when k = 0, 277/2q, 27r/q can be satisfied by writing, at these 
values of k 

$”( k, x + 27rp) = eik4$”( k, x)  

$,(k, x) = e i m X ’ 2 P A ( x )  (2.14) 

with A(x)  real and periodic or antiperiodic with period 277. The integers m in (2.14) 
depend on the value of k and on the band. Comparing (2.14) with (2.8), we find that 
the Chern character is related to these integers: 

M ,  = 4 [ m ( k  = 27r/ q )  - m ( k  = o)]. (2.15) 

3. Generalised Bloch waves 

The object of this section is to define a set of states which have the following properties. 
( a )  They correspond to the Bloch states discussed in § 2 when p is rational, and 

when p is perturbed away from a rational value these states tend toward the Bloch 
states as A@ + 0. 

( b )  They are periodic in k and A (apart from a phase discontinuity if the Chern 
character is non-zero), and because of ( a )  they must have the same Chern character 
as the Bloch waves of the unperturbed band. 

( c )  They span all of the states in the vth band of the spectrum. 
( d )  They are orthogonal to all states outside the vth band. 
These states will be termed generalised Bloch waves. Requirements (c )  and ( d )  

imply that the generalised Bloch waves can be used as a complete basis set for the vth 
band of the spectrum, which is assumed to be separated from other bands by a pair 
of gaps. 

Using the notation introduced in § 2, we will write the amplitudes $, defining the 
generalised Bloch wave in the form 

$” = $: (k  xn) (3.1) 
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where +I( k, x)  is an analytic function of k and x, closely related to the function +"( k, x) 
introduced in ( 2 . 9 ) ,  and is in the form of a Bloch wave 

( 3 . 2 )  

and 

x, = 2rrPn + A ( 3 . 3 )  

P = P / q + A P .  ( 3 . 4 )  

Thus the Bloch function $ : ( k ,  x) is sampled irrationally, so that the $, are a 
quasiperiodic sequence (figure 2 ) .  Taking $ : ( k ,  x )  = (CIy(k, x)  is not correct, for the 
following reason. Requirement ( b )  states that the generalised Bloch states are to be 
periodic in k and A (apart from an overall phase). If  the values of the integers m 
introduced in (2 .14)  are different for the k = 0 and k = 27r/q band edges, this require- 
ment will not be satisfied unless k, x )  is modified. If we take, at the edges of the band, 

( 3 . 5 )  

where A ( x )  is the real valued function introduced in ( 2 . 1 4 ) ,  then the $, remain real 
at the band edges, apart from an overall phase, and the states at opposite edges of the 
band correspond. This has the effect of changing the Bloch wavevector at the edges 
of the band: we have 

$:( k, x )  = e1mX'2PA(x) 

$:( k, x + 27rp) = e2rr1pm'2P *L,(k, x) 

*l(k x) ( 3 . 6 )  

so that the Bloch wavevector of states at the edge of the band has been shifted by an 

- - e 1A kP / P 

" t  

- 4 X 

2 X P  2ir 

U t  lbl 

X 

Figure 2. ( a )  When p is rational, the amplitudes of the Bloch states are of the form 
CL, = e"" U,,, and the periodic sequence {Un} can be obtained by sampling a periodic 
function. ( b )  The sequence {U,,} for the generalised Bloch waves is obtained by sampling 
the same periodic function irrationally, giving a quasiperiodic sequence. 
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amount 

A k = 2 ~ " ( 1 - ? )  2 (3.7)  

which tends to zero as A p  + 0. 
Equations (3 .4)-(3.6)  specify +: (k ,  x) at the edges of the band, and show that if 

m # 0, the Bloch wavevector at the band edges must be shifted. Now $:( k, x)  will be 
specified in terms of JIY(k,  x)  for all values of k. Since the range of values of k, the 
Bloch wavevector, is different it is necessary to set up a correspondence between the 
new k' and old values k. The new value of the Bloch wavevector k' must correspond 
to the old value of k in the limit AP + 0: the simplest choice is 

(3 .8)  

where Ako is the value of A k  at the k = 0 edge of the band, and A k l  is the value of Ak 
at the k = 27r/q edge. Now we can write our final expression for + : ( k ,  x)  

+"(k x). (3.9) + ; ( k f ,  x) = e [ i ( k ' - k ) x l / 2 4  

If the Chern character M ,  is not equal to zero, the number of states per unit area 
in the band changes, since this is proportional to the range of Bloch wavevector k. 
The ratio of the number of states in the vth band to the total number of states when 
AP = O  is 

p,, =-+ P M"( 1 -:). 
P 

(3.10) 

This result should be compared with the Strgda formula (Strgda 1982),  which relates 
the number of states N,, per unit area to the quantised Hall conductance integer, M , :  

e' a Nv u , = - M M , = e -  
h aB 

(3.11) 

( B  is the magnetic field, and e the electronic charge.) For a Landau level, the total 
density of states is eB/  h, and the parameter P is inversely proportional to B (Wilkinson 
1987), so that (3.11) can be written 

h a N ,  B dN,  B d ( N p , )  M =--=--=-- 
" e aB N dB N dB 

(3.12) 

This shows that (3 .10)  is in agreement with the Strgda formula (3.1 l ) ,  and that provided 
they are linearly independent there is exactly the correct number of generalised Bloch 
states to form a complete basis for the vth band. 

To summarise: this section has shown how to construct a set of generalised Bloch 
states by sampling the Bloch function +L(k, x)  irrationally (equations (3 .1)-(3.4)) .  I f  
M ,  is non-zero +,(k, x)  must be modified if the generalised Bloch states are to be 
periodic (apart from a phase) in k and A (equations (3.5)-(3.9)).  This modification 
alters the number of states in the band, in agreement with the Strgda formula (equations 
(3.10)- (3 .12)) .  



4344 M Wilkinson 

In order to complete the construction of the generalised Bloch states, it is necessary 
to apply a projection operator to project into the vth band (to satisfy requirement ( d )  
above), and then to show that the states are linearly independent (and therefore satisfy 
requirement (c)). Both of these steps require further calculations, and they will be 
discussed in $0 4 and 5 respectively. 

4. Projection into a band 

The generalised Bloch states can be made orthogonal to all states outside the vth band 
by applying a projection operator, l? It will be shown that provided A P  is sufficiently 
small, the projection operator acts as a small perturbation, in the sense that the 
amplitudes I): of the projected states are close to those of the unprojected states Qln. 

The projection operator for the vth band can be written as a function of the 
Hamiltonian 

I;, =fy(fi) (4.1) 

where f Y ( E )  is unity if E is inside the vth band, zero throughout the rest of the 
spectrum, and undefined elsewhere. Because the vth band is assumed to be separated 
from the rest of the spectrum by a pair of gaps, f ( E )  can be a smooth function with 
an arbitrarily high number of continuous derivatives (figure 3). Since is a function 
of fi, it too is a difference operator with periodic coefficients. 

Figure 3. Because the spectrum has gaps ( a ) ,  the projection operator for a band can be 
defined using a smooth function f(E) ( b ) .  This implies that the projection operator is 
localised, so that the projection into a band is well defined. 

When AB = 0, the projected states kvlk, A; v) are the same as the unprojected states, 
since these are all eigenfunctions in the vth band. When AB is sufficiently small, the 
projected states are close to the unprojected ones. The reason for this is that the 
projection operator is localised over a range I ,  in  x. For small AB, the generalised 
Bloch waves resemble the rational ones on short length scales, less than some coherence 
length I,. Provided 1, << l,, the difference between the generalised Bloch state and the 
original rational one is small, and the action of the projection operator alters the state 
by a small amount. 

To demonstrate this, it is first necessary to show that k is localised, and to estimate 
the localisation length, I,. This will be compared with the coherence length, l,, and 
the limiting value of AB estimated. Both 1, and 1, depend on the form of the dispersion 
relation ~ , ( k ,  A ) .  
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4.1. Localisation length 

The projection operator can be written 

$ =f(fi) = d t f (  t )  e-iA' J 
= I d t f (  t )  6( t )  (4.2) 

where f( t )  is the Fourier transform off( E )  and fi( 1 )  is the evolution operator. Because 
of the gaps in the spectrum, f( E )  can be C" so that f( t )  Pecays faster than any power 
of It1 as / t I+co.  For finite times, the evolution operator U ( t )  is localised over a length 
scale bounded above by 

I (  t )  c Pt. (4.3) 

(If the eigenstates are localised, I (  t )  tends toward the localisation length as t -* co, but 
if the spectrum is continuous, I (  t )  continues to increase as t . )  The function f( t )  decays 
faster than any power of It[ for times greater than t* = l/AE, where AE is the smaller 
of the two gaps flanking the band. From (4.2) and (4.3), it follows that @,, is localised, 
decaying faster than any power, with a localisation length 

(4.4) 

There are two limiting cases which should be considered (see figure 4). Firstly, 
if the gaps in the spectrum are large compared to the width of the bands, then $,. is 

I,, - I (  t * )  s PAE. 

0 2nlq 
k 

- 
0 2 n/q 

k 

Figure 4. The RG equations are only shown to be valid if  A p  is sufficiently small. I f  the 
separation of the bands is large ( a ) ,  AB should satisfy the condition q 2 A p  << 1. I f  the bands 
are separated by a narrow gap of size A E  ( b ) ,  then Ap must satisfy the more stringent 
condition qAp/AE << 1. 
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localised over one unit cell: 

A E  = O( l/q) lP = O( P). (4.5) 

The other limit is when the gaps are much smaller than the bands; in this case 

(4.6) 

4.2. Coherence length 

The coherence length 1, is the length scale over which the generalised Bloch states 
become noticeably different from the rational case. The effective value of the phase 
A changes slowly with n: the change in this phase is 

25rApn = ( A P / P ) x , , .  (4.7) 

The Bloch waves vary as a function of A over a range A*, so that 1,  is given by 

P I , = - - *  
AP 

(4.8) 

Two limiting cases should be considered. First if the dispersion relation E " (  k, A )  
is a weak function of A,  then clearly 

A* = O( l/q) (4.9) 

so that 

L = o( &). (4.10) 

If E " (  k, A )  is strongly dependent on A, in the sense that by varying A two bands can 
be made to nearly touch with a small gap AE, then the wavefunction changes very 
rapidly in the region of this near degeneracy. In this case. 

A* = O ( A E )  (4.11) 

so that the coherence length is much shorter 

(4.12) 

5. Matrix elements in a basis of generalised Bloch states 

In this section the matrix elements of the Hamiltonian are evaluated in a basis of 
generalised Bloch waves. Since these states are not an orthogonal set, the normalisation 
operator must also be calculated. 

If the generalised Bloch states are projected into a band, as described in § 4, the 
Hamiltonian is block diagonal in this representation with respect to the band index v. 
Also, states with different values of the phase parameter A mod h are clearly orthogonal, 
and since the Hamiltonian is a sum of translation operators which shift states through 
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integer multiples of h, the Hamiltonian is also block diagonal in A. With suitable box 
normalisation (necessary because A is a continuous variable) we can write 

(5 .1 )  ( k ,  A, v l A ( k ’ ,  A’, v ‘ ) =  6 . . ~ 6 ( A - A ’ ) a . ( k ,  k ’ ,  A )  

where 6(x )  is a Dirac 6 function. 
Because the generalised Bloch waves are formed by sampling a Bloch function 

irrationally to give a quasiperiodic sequence of amplitudes (equation (3 .1 ) ) ,  the matrix 
elements are independent of the phase parameter A in (5.1). Also, because the 
generalised Bloch waves are quasiperiodic, only states with wavevectors k separated 
by certain increments are coupled. The states have two periodicities in x: one of period 
27rp corresponding to the periodicity in A, and one of period 27r corresponding to 
that of the Bloch function $,( k, x) .  The Hamiltonian also has the same periodicities. 
A pair of generalised Bloch waves is therefore only coupled by the Hamiltonian if the 
difference between their Bloch wavevectors is 

(5.2) 

where n and m are integers. The generalised Bloch states are periodic in k with period 

A k = k ’ - k = 2 7r ( np + mp ) 

K ,  =27~[:+ M u (  1 --:)I. ( 5 . 3 )  

Using the gap labelling theorem (Johnson and Moser 1982, Simon 1982), and the 
Streda formula (StrEda 1982), it can be shown that (1 - q M , )  is an integer multiple of 
p. This implies that A k  can be written in the form 

(5.4) A k  = n ’ K  -k m ’ K ,  

where n‘, m’ are integers and 

K =27r(qP - p ) .  (5 .5)  

Since the generalised Bloch states are periodic in k with period K,, (5.4) reduces to 

( 5 . 6 )  A k  = n ’ K  mod K,. 

The matrix elements (5 .1)  can therefore be written in the form 

( k ,  A ;  V I  AI k’ ,  A’; v ’ )  = 6 .,,,S( A - A‘)6  ( k  - k‘ - n K ) H  n , y  ( “ : ” ’ )  - (5.7) 

where H , , , ( k )  is periodic in k with period K,. The normalisation matrix elements 
have the same form 

( k , A ;  ~ / k ‘ ,  A‘; ~ ’ ) = 6 . . . 6 ( A - A ’ ) S ( k - k l - n K ) N , , ,  - (“:”’) ( 5 . 8 )  

where N , , , ( k )  has the same periodicity as H , , ( k ) .  In  this basis, the Hamiltonian and 
normalisation operators are sums of translation operators in k, with periodic coefficients. 
The splitting of each band is therefore described by a new difference equation with 
periodic coefficients, analogous to (1.2), but with a different ratio of periodicities p’,,, 
given by 

( 5 . 9 )  
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This renormalised value of P tends to zero as /3 + p / q .  An interesting special case is 
when p = 1 and the quantised Hall conductance M ,  is zero, when 

1 
P 

@:=-mod 1 .  (5.10) 

In this case the renormalisation of P is related to its continued fraction expansion 
(Wilkinson 1986). 

The matrix elements are described by the functions kfn,”( k )  and N,,”( k )  introduced 
in (5 .7)  and (5 .8) .  These functions can be calculated easily in the limit A P  +. 0. First 
consider the normalisation operator. In the rational case the Bloch waves are mutually 
orthogonal, and  when AB is small, the generalised Bloch waves locally resemble the 
rational ones. It follows that the generalised Bloch waves are orthogonal in the limit 
Ap +. 0: 

N n , v ( k ) =  Sno+O(77)  (5.11) 

where the error parameter 7 is the ratio of K to the range Ak* over which & , ( k , A )  
varies as a function of k, 

77 = K / A k * .  (5.12) 

When the gaps A E  obtained by varying k are small, this range is Ak* = AE,  so that 

77 = O ( q A P / A E )  (5 .13)  

and when the gaps are not small, 

77 = 0 ( q 2 A P ) .  (5.14) 

Now consider the Hamiltonian. Using the fact that the generalised Bloch waves tend 
toward the rational case as A P  + 0, with a slowly varying phase 

A n  = 2 7 ~ A p n  + A (5.15)  

we see that 
A 

H+n=Eu(k,  An)+n+O(77) (5.16) 

where the I / Jn  are the amplitudes of the generalised Bloch state lk, A; v) and E,(k,  A )  
is the Bloch dispersion relation for the rational case. Now write 

& , ( k ,  A )  =c ~ , , , ( k )  e imAq 
m 

so that 

= c e m , ” (  k )  eZniAbmnq +n + O ( T )  
m 

=I Em,v(k) eiKmn+n +0(7) 
m 

(since K = 27r(qP - p )  = 2 7 ~ q A p ) .  This implies that 

(5 .17)  

(5.18) 

(5.19) 

i.e. the terms in (5 .7)  corresponding to shifting k by nK are equal to the nth Fourier 
coefficient of E ” (  k, A) as a function of A. 
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The coefficients H , , , ( k )  and N , , , ( k )  decay as [nl+oo. If the gaps between bands 
close to within a small quantity AE as A is varied, then E , ( / ( ,  A )  changes rapidly in 
the small range A *  = AE, and the number of Fourier coefficients which are significant 
is 

n, =O(l/qA*) = O ( l / q A E ) .  (5.20) 

If the gap AE is not small, then the Fourier coefficients decay over a short range, 

nl = O( 1 ) .  (5.21) 

The generalised Bloch states are a complete set only if the normalisation operator is 
not singular. The normalisation operator cannot be singular if the product of the 
number of diagonal elements and their magnitude is small, i.e. if 

qnp K 1 .  (5.22) 

If this condition is satisfied, the normalisation operaLor fi can be eliminated from the 
Schrodinger equation by multiplying each side by N-"2 .  The resulting Hamiltonian 

A,= f l - l J 2 j + j f i - l / 2  (5.23) 

is also a difference operator with periodic coefficients. 
To summarise these results: taking matrix elements of the Hamiltonian in a basis 

of generalised Bloch waves leads to a new Schrodinger equation for the vth band, 
which is also in the form of a difference equation with periodic coefficients. The new 
ratio of periodicities, PL, is given by (5.9). The matrix element H , , , ( k )  for 'hopping' 
by n steps is given by the nth Fourier coefficient of ~ , ( k ,  A )  as a function of A, plus 
correction terms (equations (5.16) and (5.14)). The condition for the generalised Bloch 
waves to form a complete set is (5.19). 

The difference equation representing the vth band can be obtained by quantising 
a Hamiltonian H : ( x , p )  given by 

~ l ( x ,  p )  = C ~ k r A  ei 'np+mx) 
nm 

where H',f;l, is the mth Fourier coefficient of H , , ( k )  

(5.24) 

Quantising (5.21) in the x representation using the Weyl quantisation rule gives the 
difference equation 

( 5 . 2 6 )  

which is equivalent to (5.7), (5.8) and (5.20) provided 

[2, j ? ]  = ih L = 2.rrip L . (5.27) 

Taking matrix elements in a basis of generalised Bloch states therefore leads to a new 
effective Hamiltonian and Planck constant describing the band. Combining (5.16), 
(5.21) and (5.22), we find 

H X 2 , j ? )  = & u ( a / q , j ? / q ) + O ( r l )  (5.28) 

where ~ , ( k ,  A )  is the Bloch dispersion relation of the band. Equations (5 .9 ) ,  (5.27) 
and (5.28) are the principal results of this paper. 
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6. Iteration of the RG transformations 

This section will consider the iteration of the renormalisation group transformation 
introduced in 0 5. The construction of the effective Hamiltonian for the vth band 
depends on the assumptions that the projection operator acts as a small perturbation 
of the generalised Bloch states, and that the normalisation operator is not singular. 
Both of these conditions are satisfied if A P  is sufficiently small, but probably cannot 
be satisfied in every case. The estimates of how large A P  can be are discussed below 
for three different cases: first, where the bands are narrower than the gaps between 
them, second when the gaps AEA between bands obtained by varying A are narrow, 
and third when the gaps AEk obtained by varying k are narrow. 

( a )  Wide gaps. The condition that the projection operator act as a small perturba- 
tion of the generalised Bloch states is 

E = I,/ 1, << 1 (6.1) 

where lp is the localisation length of the projection operator and lc the coherence 
length. These length scales are given by (4.5) and (4.10) 

so that 

The condition for the normalisation operator to be non-singular is given by (5.19) 

Using (5.18) and (6.2) this becomes 

which is the same as the condition for the projection operator. 

be a small perturbation is given by (4.5) and (4.12), 
( b )  A E A  is small. When AEA is small, the condition for the projection operator to 

l p = O ( P )  L = O(PAEA/AP) (6.6) 

so that 

E =O(qAP/AEJ<< 1. (6.7) 

The condition on the normalisation operation again has the same form as for the 

( c )  AEk is small. In this case the localisation length is long instead of the coherence 
projection generator. 

length being short: from (4.6) and (4.10) 
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The expression for E is of the same form as (6.7): 

Again, the condition on A/3 from the requirement that the normalisation operator be 
non-singular has the same form as for the projection operator. 

The condition on AB is much more restrictive in cases (6)  and ( c )  than in case 
( a ) :  when the gaps are wide, the condition (6.3) is not a serious restriction on the 
applicability of the theory, but when A E  is small, it may not be possible to find a 
suitable rational approximant p / q  to the irrational number P. This suggests a connec- 
tion between the class of numbers P for which the RG transformation can be iterated 
indefinitely, and the measure of the spectrum. Since the conditions on A/3 when the 
gaps are small, (6.7) and (6.9), are identical, only two cases must be considered. 

6.1. Wide gaps 

For any irrational number 

(6.10) 

the rational approximants P k  = [ n , ,  n 2 , .  . . , f l k ]  = p k / q k  satisfy 

E k = q Z k l A P k I = q Z k l P - P k / q k I ~  c (6.11) 

for some constant C (Khinchin 1964). This expression should be compared with (6.3). 
For any irrational number, it is therefore possible to find rational approximants such 
that &k = O(1). For a typical irrational number, many of the continued fraction 
coefficients n k  are very large, and the corresponding value of Ek is very small, so that 
(6.3) is satisfied. 

Provided the gaps in the spectrum remain large at every iteration of the RG 

transformation, it should therefore be possible to iterate this transformation indefinitely 
for almost all irrational numbers P. This would imply that the measure of the spectrum 
is zero, since as the RG transformation is iterated, the measure of the energies which 
have not been shown to lie in a gap decreases geometrically. 

Usually, the gaps do not remain large as the RG transformation is iterated, so that 
the RG transformation cannot be iterated indefinitely. The exceptional case is when 
the renormalised Hamiltonians H l ( x ,  p )  have no open phase trajectories in the phase 
plane apart from a separatrix (Wilkinson 1984). In this case, semiclassical analysis 
shows that the bands have total measure of size O(hl) ,  so that the gaps are not small. 

This situation, where H l ( x ,  p )  has no open phase trajectories at every iteration of 
the RG transformation, occurs when H ( x ,  p )  has certain symmetries. If H ( x ,  p )  has 
threefold or fourfold symmetry in the phase plane, there cannot be any open phase 
trajectories, apart from an isolated separatrix. The Bloch dispersion relations E ” (  k, A) 
have the same rotational symmetry in k, A space as H ( x , p )  in x, p space, provided 
the Weyl-Wigner quantisation scheme is used to quantise H ( x ,  p ) .  Then the equation 
(5 .25)  shows that the renormalised Hamiltonian H l ( x ,  p )  has the same rotational 
symmetry in phase space as H ( x ,  p ) ,  apart from the correction term proportional to AB. 
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It has been demonstrated in a special case that the correction term in (3.25) also 
preserves the phase space symmetry of the Hamiltonian (Wilkinson 1986), and it is 
likely that this is true in general for the following reason. If p is a typical irrational 
number, some of its continued fraction coefficients are arbitrarily large, and there exist 
rational approximants p / q  for which the correction term in (5.25) is arbitrarily small. 
As the RG transformation is iterated, there occur Hamiltonians H:(x,p) which must 
therefore be arbitrarily close to having the exact phase space symmetry of H ( x , p ) .  
This suggests that the correction term in (5.25) always has the same symmetry as E ” (  k, A) .  

To summarise these conclusions: if the RG transformation can be iterated indefinitely 
for typical values of p, then the measure of the spectrum is zero. This occurs if the 
Hamiltonian has centres of threefold or fourfold rotational symmetry in the phase 
plane, because the spectra of these Hamiltonians have wide gaps, and because these 
symmetries are preserved by the RG transformation. The RG transformation explains 
the hierarchically clustered structure of the spectrum of these systems. 

6.2. Narrow gaps 

If the spectrum has a finite measure, and if the RG transformation can be iterated 
indefinitely, then the size of the gaps must decrease as the iteration proceeds: if the 
gaps occupy a fraction E,  of the width of the band at the nth iteration, then E ,  must 
decrease faster than 1/ n as n + W. When the gaps become small, the estimate for the 
allowable size of Ap is given by (6.7) or (6.9), which is much more restrictive than 
(6.3).  It is not expected, therefore, that the RG transformation can be iterated indefinitely 
for all irrational p if the measure of the spectrum is not equal to zero. 

In fact, the size of the gaps is expected to decrease much faster than l / n :  for 
example, consider the case of Harper’s equation when a << 1 .  The size of a given gap 
scales as 

AE-a’ (6.12) 
where p is one of the gap labelling integers. Results of Bellissard and Simon (1982) 
show that when p = p / q ,  the Bloch dispersion functions E , , ( k ,  6 )  are given by the 
implicit equation 

(6.13) 
wheref,(E) is a qth degree polynomial. This result shows that as the RC transformation 
is iterated the Hamiltonian maps into a similar form with a replaced by a ’ = a 9 .  
Expressed as a fraction of the width of this band, the gaps in the spectrum of the 
renormalised Hamiltonian are of size 

(6.14) 
where C > 1. Combining (6.14) with (6.7) or (6.9) shows that the RG transformation 
can only be iterated indefinitely if the rational approximants p / q  of p all satisfy 

(6.15) 
where C‘, C are constants. Irrational numbers satisfying a condition of this type are 
termed Liouville numbers. It has been shown that when p is a Liouville number, the 
spectrum is of the singular continuous type (Simon 1982), whereas when a # 1 and p 
is a typical irrational number the eigenfunctions of Harper’s equation are either all 
localised or all extended (for a > 1 and CY < 1 respectively). The RG transformation 
described in this paper should also enable the nature of the eigenfunctions in the 
singular continuous spectrum to be understood. 

f a (  E )  = cos(kq) + a q  cos(Aq) 

AE - q a ”  - qC-‘ 

A B  = Ip - p / q / S  C’C-‘ 
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7. Conclusion and discussion 

Bloch electrons in a magnetic field can be modelled by a one-dimensional effective 
Hamiltonian H ( 2 ,  p * ) ,  periodic in x and p .  The ratio p of the area of a flux quantum 
to the unit cell is equal to 2 d 1  divided by the area of the unit cell in phase space. 
When p is rational, p = p / q ,  Floquet theory shows that there is a band spectrum with 
q bands. The energy depends on the Bloch wavevector k and a phase parameter A :  
E = E,,( k, A ) .  

Generalised Bloch states have been defined for the case in which p is perturbed 
away from the rational case: p = p / q + A p .  Provided Ap is sufficiently small, these 
states form a complete basis for a given band of the spectrum. The construction of 
these states depends on the value of the quantised Hall conductance integer, M u .  

Taking matrix elements of the Hamiltonian as a basis of generalised Bloch states 
leads to a new effective Hamiltonian, HI( ; ,$ ) ,  describing the vth band, and a new 
value of p, p : .  In the limit A p + O ,  H : ( ; , $ )  is obtained from the Bloch dispersion 
relation E, (  k, A )  by substituting k -* a / q ,  A + $ / q .  The transformation /3 + ,By, given 
by equation (5.9), depends on the value of the Hall conductance integer M,. Although 
the analytical results have only been calculated to lowest order in Ap, the RG transforma- 
tion could be computed numerically to arbitrary precision, because the gaps in the 
spectrum ensure that the projection operator is well defined. 

The condition on Ap is that the ratio of the localisation length I ,  to the coherence 
length I ,  is small (see § 4). If the measure of the spectrum is zero, it is possible to find 
a series of rational approximants such that this RG transformation can be iterated 
indefinitely, implying that the eigenfunctions have a hierarchical structure, with no 
characteristic length scale. This occurs if the Hamiltonian has centres of threefold or 
fourfold symmetry in the phase plane (Claro and Wannier 1979, Wilkinson 1984), but 
for most other cases the spectrum has finite measure, and the eigenfunctions are either 
localised, or are simple quasiperiodic functions. 

The other situation in which the RG transformation can be iterated indefinitely is 
when the spectrum does not have measure zero, but when p is a Liouville number. 
In  this case the size of the gaps AE in the spectrum decrease as the RG transformation 
is iterated, and this implies that A p q 2  must get smaller at every iteration. 

The results of this paper explain the surprising observations of Hofstadter ( 1976) 
about the spectrum of Harper’s equation (1.3) when CY = 1. The corresponding Hamil- 
tonian (1.1) has fourfold symmetry in phase space when CY = 1, so that the spectrum 
is expected to have zero measure for all irrational values of p. Hofstadter describes 
the hierarchical structure of the spectrum by an empirical set of rules: if l / ( q  + 1) < p < 
l /q ,  the spectrum can be divided into q bands if q is even, q + 1 bands if q is odd, 
and  the splitting of each band is described by a new value of p. The new value of p 
is different for the central band. Given that the quantised Hall conductance integer 
M ,  is unity for the central band and zero for all the rest, it can be seen that Hofstadter’s 
rules are in agreement with equations (5.9) (with p = 1). 

The strange properties of the spectrum and eigenfunctions which occur when 
H ( x ,  p )  has centres of threefold or fourfold symmetry in the phase plane are not just 
a mathematical curiosity, since H ( x ,  p )  has the same rotational symmetry as the 
potential V( x, y ), and these are natural crystallographic symmetries in coordinate space 
(Wilkinson 1987). 

None of the earlier proposed RG methods applicable to Bloch electrons in a magnetic 
field are capable of giving a full description of the spectrum. Various methods have 
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been proposed which use localised states as a basis for a band, see e.g. Suslov (1982), 
Wilkinson (1984). These methods can be developed into an exact RG transformation 
if the Hall conductance, M ,  is zero, but if M ,  # 0 it is not possible to use a localised 
basis set (Wilkinson 1986). Another approach is based on the use of transfer matrices: 
a renormalisation group transformation is set up to calculate successively longer strings 
of transfer matrices (Ostlund and Pandit 1984). Using the transfer matrix method it 
is easy to write down an exact RG transformation when /3 is a quadratic irrational 
number, but the results only apply to one energy, and give no information about the 
spectrum as a whole. 

An unusual feature of the results described in this paper is that fixed points of the 
RG transformation are not of very great interest. The ‘critical’ behaviour of the spectrum 
observed when H ( x , p )  has threefold or fourfold symmetry is due to the fact that the 
RG transformation preserves the symmetry of H ( x ,  p ) ,  and is not related to any single 
unstable fixed point. When the Hamiltonian does not have this critical symmetry, the 
eigenstates are usually either localised or quasiperiodic, and it might be expected that 
this corresponds to attractive fixed points of the RC transformation. In  these cases the 
RG transformation breaks down unless the number p is a Liouville number, because 
the gaps in the spectrum become smaller with every iteration. 
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