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Previous Track Record
Robert Brignall (PI) has been a Lecturer in

Combinatorics at The Open University since
2010. He received his PhD in 2007 from the Uni-
versity of St Andrews, and from 2007–2010 he
was a Heilbronn Research Fellow at The Univer-
sity of Bristol. In Bristol, he spent 50% of his time
on classified research directed by the Heilbronn
Institute, and 50% on his own research agenda.
He supervises one PhD student who is on track
to finish in the first half of 2015 (within three
years of the start of his PhD), and he supervised
a Research Assistant from 2012–14, part-funded
by EPSRC grant EP/J006130/1, who now holds a
permanent academic position in the UK. He has
written 17 peer-reviewed papers, with a further
2 currently under review.

His career began in the structural study of per-
mutation classes, and he continues to make last-
ing contributions to this area [10, 12, 13, 16, 18],
and its consequences for the enumeration of per-
mutation classes [1–4].

Following his PhD, his work expanded in two
directions: first, he looked at the question of
well-quasi-ordering for permutations, and this
resulted in a single-author paper which repre-
sents the state-of-the-art in infinite antichain con-
struction [11]. Second, he applied his structural
expertise to the wider study of combinatorial
structures [17], with a particular emphasis on
the cross-fertilisation of results between permu-
tations and graphs.

His research in these two directions were com-
bined when in 2012 he became PI on grant
EP/J006130/1. Through new collaborations with
researchers in Warwick (including the named RA
on this proposal), this grant catalysed the process
of translating structural results from permuta-
tions to graphs [15], most especially with regards
to well-quasi-ordering and infinite antichains [7].

The importance to the study of structure and
well-quasi-ordering in graphs of the second sub-
ject of this proposal, clique-width, was brought
to the attention of the PI during the course
of this grant. Consequently, the PI under-

took to enhance his intuition of this area, par-
ticularly in identifying the interface between
graph classes where clique-width is bounded,
and graph classes where clique-width is un-
bounded [6]. He also considered similar ques-
tions for a restricted version of this parameter
called linear clique-width [14], which is impor-
tant both to extend our understanding of the
more general problem, and because it has di-
rect relevance to the construction of infinite an-
tichains.

Aistis Atminas (proposed RA) completed his
PhD thesis [5], entitled ‘Well-quasi-ordering of
Combinatorial Structures’, at the University of
Warwick in November 2014. He already has 9
papers published or submitted for publication,
and these include some of the results that under-
pin the methodology of this proposal, most no-
tably [8] and [9]. He has an existing and effective
working relationship with PI, through collabora-
tion on two projects [6, 7].

Collaborators

Vadim Lozin is an Associate Professor
(Reader) at DIMAP, University of Warwick. With
well over 100 publications, he has direct expertise
in both well-quasi-ordering and clique-width for
graphs, which complements the PI’s own knowl-
edge well. He has been PI on two EPSRC grants
since 2011 totalling over £500k. One of these
grants concerned clique-width of graph classes,
and the other, which is ongoing until 2017, seeks
to lay theoretical foundations for a number of
graph algorithms, including the ‘maximum in-
dependent set’ problem. In the past 2 years, the
PI and Lozin have already collaborated success-
fully on three projects [6, 7, 15]

Vincent Vatter is an Associate Professor at the
University of Florida, USA. His research interests
relate very strongly to the PI’s – he has over 40
papers in combinatorics, and 8 joint works with
the PI [4, 7, 12–14, 16–18]. This ongoing collabo-
ration, which has touched on many of the topics
of this proposal, makes him a natural addition to
this project.
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Host institution

The Open University has a long-standing his-
tory in combinatorial research, made highly vis-
ible through the Winter Combinatorics Meeting
which has run at the university for the past 15
years. Since 2011, the PI has been involved in the
organisation of this ongoing meeting, and for the
duration of this proposal he intends to use this
meeting to invite key academics from overseas to
speak, and to stay for a few days in order to have
in-depth discussions.

The combinatorics research group, counting 11
members from postgraduates to emeritus pro-
fessors, provides an ideal environment for this
project. Individuals have a diverse range of in-
terests, including (pertinent to this proposal) var-
ious aspects of graph theory, and the connections
between model theory and infinite designs.
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Description of Proposed Research
Background
Well-quasi-ordering and infinite antichains

Robertson and Seymour’s celebrated Graph
Minor Theorem [35] proves that in any infinite
collection of graphs there exists one which is a
minor of another. An infinite antichain in an or-
dered collection is an infinite set for which no
pair of elements is comparable. Thus, the Graph
Minor Theorem states that there are no infinite
antichains of graphs when they are ordered by
the minor relation. Consequently, graphs un-
der the minor ordering are said to be well-quasi-
ordered. The consequences of both the statement
of the Graph Minor Theorem and the structure
theory developed for its proof are extensive, par-
ticularly in the study of computational complex-
ity and fixed parameter tractability (see, for ex-
ample, [21, 27]). For example, one corollary is
that the question “is a graph H a minor of G?”
can be answered in polynomial time in |G| [34].

Often, collections of graphs that satisfy speci-
fied properties form downsets within some order-
ing. That is, whenever a graph is in a downset,
then so too are all the graphs that are ‘less than’
it in the ordering. A convenient way to describe
such downsets is by the unique set of minimal
forbidden graphs. For example, Wagner’s Theo-
rem tells us that in the minor ordering the planar
graphs are a downset defined by forbidding two
graphs: no planar graph contains either the com-
plete graph K5 or the complete bipartite graph
K3,3, and every graph which is not planar must
contain at least one of these two graphs as a mi-
nor.

For orderings other than the graph minor or-
dering, infinite antichains do exist. Two notable
examples are the subgraph and induced sub-
graph orderings – Figure 1 illustrates two sets
of graphs which form infinite antichains in both
of these orderings. However, this does not mean
that every downset in these orderings must con-
tain an infinite antichain. In fact, Ding [25]
showed that if a downset in the subgraph order
does not have infinite intersection with either of
the two antichains illustrated in Figure 1, then
that downset is well-quasi-ordered.

The situation for the induced subgraph order-
ing is much less straightforward, as there are a
wide variety of antichains that may need to be
considered. Nevertheless, gaining a better un-

· · ·

· · ·

Figure 1: The first four graphs in two infinite an-
tichains of graphs: in each case, no vertices or edges
can be deleted from a larger graph to form a smaller
one.

derstanding of this ordering is important: as
well as being a natural one to consider math-
ematically, the induced subgraph ordering is
the one best equipped to handle collections of
graphs with a high edge density. Moreover,
the ‘clique-width’ graph parameter respects the
induced subgraph ordering, and on downsets
where this parameter is bounded there are some
far-reaching algorithmic implications (see later).
A downset in this ordering is often called a hered-
itary property, though here, as elsewhere, we will
use the term (graph) class.

As with other orderings, the set of minimal
forbidden elements is a common way to de-
fine graph classes, particularly as input for al-
gorithms. Whereas in the minor ordering such
minimal forbidden sets must be finite (an impor-
tant consequence of the Graph Minor Theorem),
in the induced subgraph ordering this is not al-
ways the case. However, for the purpose of algo-
rithmic development, we will where necessary
restrict our attention to classes that are finitely
defined – i.e. that have a finite set of minimal for-
bidden elements. On such classes, the following
decision problem is of crucial importance.
Question 1. Given a finitely defined graph class, is
it well-quasi-ordered?

Specific instances or approaches to answer this
question have been considered by multiple au-
thors over the years (see, e.g., [23, 24, 26, 30, 32]),
but one of our two major objectives is to give
a complete decision procedure to answer this
question.

To prove a class is well-quasi-ordered, classi-
cal tools such as Higman’s Theorem [28] and the
‘minimal bad sequence’ argument pioneered by
Nash-Williams [31] can be applied, if a suitable
structural description of the graphs in the class is
known. This structural characterisation itself can
enable the development of effective algorithms.

On the other hand, an increased understand-
ing of the infinite antichains that cause a class
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to fail to be well-quasi-ordered can also indi-
cate structurally how well-behaved the class is.
For example, some classes contain a canonical an-
tichain [26], whereby a subclass is well-quasi-
ordered if and only if it has only finite intersec-
tion with that antichain.

The clique-width graph parameter

Formally, a graph parameter is any function that
takes as input a graph, and outputs some num-
ber. The parameters of interest here are those
that give some measurement of structure, such
as ‘tree-width’ (made famous through its role in
the proof of the Graph Minor Theorem). Specif-
ically, Robertson and Seymour distinguish be-
tween the case where all the graphs in a downset
in the minor ordering have tree-width bounded
by some k, and the case where the tree-width
is unbounded. Much of the whole proof of the
Graph Minor Theorem is devoted to a structure
theorem to handle the latter case.

A more recent parameter is clique-width, which
measures the structural complexity of a graph
when it is constructed by means of four elemen-
tary operations on the vertices. Clique-width
is a generalisation of tree-width, in the sense
that a graph with bounded tree-width also has
bounded clique-width. In the study of algo-
rithms, Courcelle, Makowsky and Rotics [22]
showed that a large number of graph algorithms
which are NP-hard in general can be solved in
linear time for classes where all the graphs have
clique-width at most some fixed k – this is an in-
stance of fixed parameter tractability. For a survey
of clique-width, see [29].

The connection between clique-width and
well-quasi-ordering is very recent. Daligault,
Rao and Thomassé [23] suggested that clique-
width may be used as a tool towards resolving
a long-standing conjecture due to Pouzet [33],
which concerns the following strengthening of
well-quasi-ordering. For n ∈ N, a graph class
is n-well-quasi ordered if it contains no n-coloured
infinite antichain: that is, an infinite set of graphs
where the vertices are coloured using n colours,
and the ordering refined so that in embedding
one graph as an induced subgraph of another,
the colours of the vertices must match (some-
times called the labelled induced subgraph order-
ing). Pouzet’s conjecture predicts that 2-well-
quasi-ordering and n-well-quasi-ordering for ev-
ery n ≥ 2 are the same. Seeking an approach to

prove this, Daligault, Rao and Thomassé conjec-
ture that every 2-well-quasi-ordered graph class
must have bounded clique-width. In fact, they
ask whether the following stronger statement,
which we give as a conjecture, is true.
Conjecture 2. Every well-quasi-ordered graph class
has bounded clique-width.

Our second major objective is to prove this
conjecture, which by the algorithmic results
of [22] would add considerable motivation to
finding a complete answer to Question 1.

The rest of this background section describes
some of the tools available for us to use, and
will focus-in on the specific problems needing
resolved to answer Question 1 and prove Con-
jecture 2.

Infinite antichains of permutations and words

Informing our study of well-quasi-ordering
for graphs are insights and results from two
other combinatorial structures, which we now
describe.

In the combinatorial study of permutations,
the analogue of the ‘induced subgraph’ ordering
is called permutation containment, and downsets
in this ordering are correspondingly called per-
mutation classes. By means of a direct transla-
tion, permutation classes correspond to certain
types of graph class, and this translation pre-
serves the property of being well-quasi-ordered.
Conversely, an infinite antichain of permutations
does not always give an infinite graph antichain,
but in the important cases it does [7].

By taking a graphical perspective of permu-
tations, it has been possible to construct large
numbers of infinite antichains of permutations –
three examples are shown in Figure 2. Although
these antichains can be arbitrarily complex, they
all exhibit a striking ‘periodicity’ in their con-
struction. An earlier EPSRC grant (number
EP/J006130/1) managed by the PI established
the process of translating the state-of-the-art for
permutations [11] to the induced subgraph or-
dering.

We also mention here words over a finite al-
phabet, equipped with the factor order (i.e. con-
tiguous substrings). Unlike the subword or-
der (which Higman’s Theorem [28] proves is al-
ways a wqo), the factor order admits infinite an-
tichains. However, a recent result due to the
RA with Lozin and Moshkov [9], gives a de-
cision procedure that answers the analogue of
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Figure 2: Three typical elements from three different
infinite permutation antichains. The grey lines con-
necting the points indicate the periodic process by
which the permutations are constructed in each case.

Question 1 for downsets in factor order. In fact,
their procedure only needs to consider infinite
antichains which possess a periodic construc-
tion. This, perhaps, provides the first solid ev-
idence that well-quasi-ordering in combinatorial
structures is better behaved than in arbitrary par-
tial orders, particularly as the known infinite an-
tichain constructions of graphs typically embed
a factor order into the vertices.

The speed of a graph class

As well as directly influencing clique-width
and well-quasi-orderability, the level of structure
of a graph class also naturally determines the
number of graphs it contains. If Cn denotes the
set of graphs in the class C on the vertex set
{1, 2, . . . , n}, then the speed of C is the function
|Cn|, recording the number of graphs of each
size. In their seminal paper, Scheinerman and
Zito [36] identified that the asymptotic behaviour
of the speed of a graph class is severely con-
strained, and falls into one of five different lay-
ers: from ‘slowest’ to ‘fastest’, these are constant,
polynomial, exponential, factorial and superfac-
torial.

For a class C in the superfactorial layer, Allan,
Lozin and Rao [19] demonstrated that C cannot
have bounded clique-width, purely because of
the sheer number of graphs that C must contain.
Little is known about structure or well-quasi-
ordering of superfactorial classes, although if
true Conjecture 2 must imply every class in this
layer is not well-quasi-ordered.

Balogh, Bollobàs and Morris [20] showed that
the factorial layer can further be divided into
two, namely classes whose speeds are dominated
by (which we call below) or dominate (called
above) the sequence of Bell numbers, which count
the number of partitions of a set. More recently it
was shown to be decidable whether a finitely de-
fined class is above or below the Bell numbers
by the RA, together with Collins, Foniok and

Lozin [8], although the computational complex-
ity of this procedure is unknown.

Below the Bell number (including the con-
stant, polynomial and exponential layers), any
class C has bounded clique-width (see [19]) and
a structural characterisation from [30] enabled
the RA to show that C must also be well-quasi-
ordered [5].

Above the Bell number, the authors of [20]
introduced a parameter called the distinguishing
number of a graph class. Roughly speaking, this
gives a measure of the number and sizes of dif-
ferent neighbourhoods that vertices from a graph
in the class can possess, and they separate the
cases where the distinguishing number of C is
bounded (whence we say dn(C) < ∞), from the
cases where there is no bound on this number
(which we call dn(C) = ∞).

Infinite distinguishing number
For a class C above the Bell number with

dn(C) = ∞, Balogh, Bollobàs and Morris [20]
established that C must contain one or more of
13 minimal classes. By means of various com-
plementation operations, these classes can be di-
vided into essentially three categories which we
will call Types A, B and C – see Figure 3.

· · ·
Type A: Unions of cliques
& complements (2 classes)

· · ·
Type B: Unions of stars &

complements (8 classes)

· · · Type C: ‘Chain graphs’ &
complements (3 classes)

Figure 3: The 3 types of minimal classes with infinite
distinguishing number.

Since these 13 minimal classes are easily de-
scribed, it can readily be decided whether a
finitely defined graph class C has dn(C) < ∞ or
dn(C) = ∞.

Finite distinguishing number
The minimal classes with finite distinguishing

number and which lie above the Bell number
were recently classified by the RA, together with
Collins, Foniok and Lozin [8]. All such classes
belong to one infinite family (described later).
This classification enabled the authors of [8] to
give a decision procedure to determine whether
a finitely defined class is above or below the Bell
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number, although there is no guarantee on how
long the algorithm will take as a function of the
size of the input.

In his thesis [5], the RA further demonstrated
that none of this family of minimal classes
is well-quasi-ordered, by exhibiting infinite an-
tichains with periodic constructions in every
case. It is also readily checked that each class in
this minimal family has bounded clique-width,
so for any class with finite distinguishing num-
ber (which includes all classes below the Bell
number), Conjecture 2 is true, and Question 1
is effectively answerable, albeit with unknown
computational complexity.

Figure 4 summarises the current state of
knowledge, and the focus for this proposal.

Superfactorial speed
dn(C) = ∞, cw(C) = ∞, wqo: unknown

Bell no.

dn(C) < ∞

wqo: no
dn(C) = ∞

cw(C) and wqo: variable

Speed below Bell number
dn(C) < ∞, cw(C) < ∞, wqo: yes

Figure 4: The relationship between the distinguish-
ing number (dn), clique-width (cw) and well-quasi-
ordering (wqo) of a graph class C of given speed. The
shaded regions, where dn(C) = ∞, are the focus for
this proposal.

National Importance and academic impact
This proposal comprises fundamental research

in discrete mathematics, with clear connections
to computer science. This interdisciplinary re-
gion has been identified by EPSRC as a ‘priority’
area, due to the leading role that the UK plays
here, and the potential for impact arising from
the application of mathematical theory to com-
putational complexity. The need to enhance the
foundations upon which algorithms for data sets
are developed is growing increasingly important,
especially with the forthcoming opening of the
UK’s Alan Turing Institute on the horizon.

Furthermore, this proposal involves collabora-
tion with Vadim Lozin, who until recently was
funded by grant EP/I01795X/1 specifically look-
ing at clique-width. By building on this earlier
EPSRC-funded research, the UK’s reputation in

this important field will be reinforced.
The transformative impact of the celebrated

Graph Minor Theorem clearly illustrates the
importance of concepts such as well-quasi-
ordering, structural graph theory and graph pa-
rameters. Question 1 has been much-studied for
many years, so the outcomes of this project are
likely to attract interest from the international
communities both in mathematics and in com-
puter science. The simultaneous resolution of
Conjecture 2 adds significance to the resolution
of Question 1, particularly for those working in
computational complexity.

To ensure researchers benefit from this pro-
posal, significant funds have been requested in
order to present results at conferences. It is also
planned to invite senior researchers in the area
to speak at the Open University’s Winter Combi-
natorics Meeting, which will provide a platform
to highlight this area of research, and to engage
in discussions.

Two specific collaborators are identified:
Vadim Lozin is a world-leader in the study of
clique-width and of well-quasi-ordering, and so
will bring a wealth of directly relevant graph-
theoretic expertise to all aspects of the project.
Vincent Vatter has a successful history of collab-
oration with the PI, and the intersection of re-
search interests makes him a valuable addition
to this proposal, through a small number of in-
tensive research visits.

Research Hypothesis and Objectives
This proposal has two goals: to provide an ef-

fective decision procedure to answer Question 1,
and to establish a connection between clique-
width and well-quasi-ordering by resolving Con-
jecture 2. Underpinning both of these is a need to
characterise the minimal non-well-quasi-ordered
graph classes:
Objective 1. Develop a structure theory to classify
all the minimal graph classes which have infinite dis-
tinguishing number, and are not well-quasi-ordered.

Building on this first objective, the two re-
maining objectives will complete the resolution
of Conjecture 2 and Question 1, respectively.
Objective 2. Establish Conjecture 2. That is, prove
that every class with unbounded clique-width is not
well-quasi-ordered.
Objective 3. Develop a decision procedure for deter-
mining whether a finitely defined graph class is well-
quasi-ordered or not.
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The timeliness of this proposal follows from
the recent resolution of the question of well-
quasi-orderability for finite distinguishing num-
ber by the RA [5, 8]: the major steps in this pro-
posal are only now feasible because of the tech-
niques developed in pursuit of that result. How-
ever, we must emphasise that the work (detailed
below) towards the three objectives is not merely
an extension of [5, 8], and novel ideas and tech-
niques will be needed at every stage.

Programme and Methodology
This project is divided into three work pack-

ages, one for each of the three primary objectives.
Building on existing collaboration between the PI
and RA, we expect both researchers to work on
most parts of the project, but we have identified
who will take the lead in each activity within the
work packages. The overall management of the
project will be overseen by the PI.

Work Package 1: Well-quasi-ordering

The starting point towards the resolution of
Objective 1 is the classification of the minimal
non-well-quasi-ordered graph classes with finite
distinguishing number given by the RA in [5].
All such minimal classes belong to the same
family, namely they are all so-called ‘P(w, H)
classes’: here, H is a finite graph, w is an infinite
periodic word on the alphabet made up from the
vertices of H, and, roughly speaking, graphs in
the class P(w, H) correspond to finite subwords
of w, with the adjacency of vertices in the graphs
being determined by the structure of H.

Our first step is to investigate a generalisa-
tion of P(w, H) classes, where we replace the fi-
nite graph H with a finite directed graph D, and
modify the construction of graphs in the class.
Activity 1.1 (RA-led). Initiate the study of P(w, D)
classes, and show that they are not well-quasi-ordered.

Crucially, the P(w, D) classes can contain min-
imal classes of type C (that is, chain graphs and
their relatives). For a class C that does not contain
any P(w, D) class or type C class (but can con-
tain classes of types A or B), we believe C must
be well-quasi-ordered.
Activity 1.2 (PI-led). Prove that any class contain-
ing no P(w, D) subclass or class of type C is well-
quasi-ordered.

The prior belief underlying this activity comes
from the study of permutations: the analogous
result here is immediately true, arising as a con-

sequence of a stronger property guaranteed by
the PI’s work on ‘simple permutations’ [12, 16].
Moreover, the family of P(w, D) classes is be-
lieved to contain all existing infinite antichain
constructions, so a counterexample would also
be an extremely interesting new discovery.

The final activity in this work package, which
will complete the description of the boundary of
well-quasi-ordering, presents the greatest chal-
lenge in this proposal.
Activity 1.3 (PI-led). Prove that if a class contains
a type C subclass but no class of the form P(w, D),
then it is well-quasi-ordered.

In order to achieve this, we plan to estab-
lish a structural characterisation of the classes in
question. Existing concepts and techniques from
graph theory, such as ‘k-uniform graphs’ (used
to prove the well-quasi-orderability of all classes
below the Bell number), modular decomposi-
tion and lettericity, will need to be extended and
combined. There are also several notions (such
as those in [11]) from the study of well-quasi-
ordering of permutations which can be trans-
lated into the language of graphs. This process
of translation was initiated by the PI as part of
EPSRC grant EP/J006130/1, see, for example [7].

Work Package 2: Boundedness of clique-width

This work package, whose ultimate aim is to
resolve Conjecture 2, builds on the results from
Work Package 1. If the P(w, D) classes do in-
deed characterise the boundary of well-quasi-
ordering, then the interface between bounded
and unbounded clique-width likely lies strictly
above this. We expect P(w, D) classes to have
bounded clique-width because of the way in
which they are formed. Confirming this is our
first task:
Activity 2.1 (RA-led). Show that every P(w, D)
class has bounded clique-width.

If the minimal non-well-quasi-ordered classes
are indeed contained in P(w, D) as we believe a
priori, then there remains one area where there
are well-quasi-ordered classes which could have
unbounded clique-width. Using the structural
characterisation from Activity 1.2, we seek to
prove the following.
Activity 2.2 (RA-led). Prove that a class of graphs
which is not contained in nor contains any class of the
form P(w, D), and which does not contain a class of
type C, has bounded clique-width.
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Work Package 3: Algorithms

In parallel to the structural work in Work pack-
age 1 which is expected to characterise the min-
imal non-well-quasi-ordered classes, some fur-
ther work is required to establish an effective de-
cision procedure.

The first task builds on the existing algorithm
in [8] to check whether a class contains some
P(w, H), where w is a periodic word and H is
a finite graph. To limit the number of cases we
check (and thus find the run time of the algo-
rithm), we need a bound on the size of the pe-
riod of w as a function of the minimal forbidden
graphs in a class.
Activity 3.1 (RA-led). Establish an upper bound on
the computational complexity of the algorithm to de-
cide whether finitely defined classes with finite distin-
guishing number are well-quasi-ordered.

The next task is to combine the outcome of
this first task with the exploration of the classes
P(w, D) in Activity 1.1.
Activity 3.2 (RA-led). Establish a decision proce-
dure with known complexity to determine whether a
class contains some P(w, D).

If P(w, D) does indeed define the minimal
non-well-quasi-ordered classes, then Activity 3.2
should essentially complete the answer to Ques-
tion 1. Taking into account the possibility that
the procedure developed in Activity 3.2 leaves
some aspects still unresolved or that the picture
is more complicated than we believe a priori, we
reserve the final period of this work package to
‘wrap-up’ and write-up.
Activity 3.3 (PI-led). Complete and write up the de-
cision procedure for well-quasi-ordering.
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[29] Kamiński, M., Lozin, V. V., and Milanič,
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