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A BSTRA CT

The simple relational structures form the units, or atoms, upon which all other relational

structures are constructed by means of the substitution decomposition. This decomposi-

tion appears to have �rst been intr oduced in 1953in a talk by Fra�̈ssé, though it did not

appear in an article until a paper by Gallai in 1967. It has subsequently been frequently

rediscovered from a wide variety of perspectives, ranging from game theory to combina-

torial optimization.

Of all the relational structures — a set which also includes graphs, tournaments and

posets — permutations are receiving ever increasing amounts of attention. A simpleper-

mutation is one that maps every nontrivial contiguous set of indices to a set of indices that

is never contiguous. Simple permutations and intervals of permutations are important in

biomathematics, while permutation classes— downsets under the pattern containment

order — arise naturally in settings ranging from sorting to algebraic geometry.

We begin by studying simple permutations themselves, though always aim to estab-

lish this theory within the broader context of relational structures. We �rst develop the

technology of “pin sequences”,and prove that every suf�ciently long simple permutation

must contain either a long horizontal or parallel alternation, or a long pin sequence.This

gives rise to a simpler unavoidable substructures result, namely that every suf�ciently

long simple permutation contains a long alternation or oscillation.

Erd �os, Fried, Hajnal and Milner showed in 1972that every tournament could be ex-

tended to a simple tournament by adding at most two additional points. We prove analo-

gous results for permutations, graphs, and posets,noting that in thesethreecaseswe may

need to extend a structure by adding d(n + 1)=2e points in the caseof permutations and

v



vi A BSTRA CT

posets,and log2(n + 1) points in the graph case.

The importance of simple permutations in permutation classeshas been well estab-

lished in recent years. We extend this knowledge in a variety of ways, �rst by showing

that, in a permutation classcontaining only �nitely many simple permutations, every sub-

set de�ned by properties belonging to a �nite “query-complete set” is enumerated by an

algebraic generating function. Such properties include being an even or alternating per-

mutation, or avoiding generalised (blocked or barred) permutations. We further indicate

that membership of a permutation class containing only �nitely many simple permuta-

tions can be computed in linear time.

Using the decomposition of simple permutations, we establish,by representing pin se-

quencesas a language over an eight-letter alphabet, that it is decidable if a permutation

classgiven by a �nite basiscontains only �nitely many simple permutations. We also dis-

cusspossible approachesto the samequestion for other relational structures,in particular

the dif �culties that arise for graphs. The pin sequencetechnology provides a further result

relating to the wr eath product of two permutation classes,namely that CoD is �nitely based

whenever D does not admit arbitrarily long pin sequences.As a partial converse,we also

exhibit a number of explicit examples of wr eath products that are not �nitely based.
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IN TRODUCTION

This thesis consists of two parts: In Part I we study the structure of simple permutations

in the context of relational structures,while in Part II we apply this structural knowledge

of simplicity to permutation classes. This division re�ects the fact that the study of per-

mutations — and particularly simple permutations — lies in an areaof research extending

beyond the subjectof permutation classes.However , that thesetwo topics are covered un-

der the single title of this thesisre�ects the importance in studying simple permutations for

the further understanding of permutation classes.Many of the major permutation-based

results in this thesis may be found published or available aspreprints [28, 29, 30, 31].

In Chapter 1 we begin by intr oducing permutations and the containment partial or-

der. We then take a more broad view by de�ning the general construction of relational

structures,and demonstrate how permutations, graphs, tournaments and posets may all

be described in this language. We then commenceour discussion in Sections1.4and 1.5of

intervals, simplicity and the substitution decomposition in the context of relational struc-

tur es,at eachstagealso translating back to the permutation case.

In Chapter 2 we intr oduce the new technology of pin sequencesand show how suf-

�ciently long simple permutations must contain either a long proper pin sequence,or a

long wedge or parallel alternation. We also intr oduce the language of pins, a necessary

prerequisite for the decidability result of Chapter 7. We close the chapter with a specula-

tive discussion on possible analoguesof this decomposition theory for graphs.

Motivated by a result of Erd �os, Fried, Hajnal and Milner in 1972 for tournaments,

Chapter 3 considers the problem of embedding a given relational structure inside a larger

simple structure. Wedemonstrate that a general approachmay beused relying on the sub-

xi



xii IN TRODUCTION

stitution decomposition, but that the outcome for eachtype of relational structure may be

somewhat unique. To demonstrate this, we look at the simple extensionsof permutations,

graphs, tournaments and posets.

Much emphasis has been placed in recent years in developing optimal algorithms for

computing intervals and the substitution decomposition. In Chapter 4 we review a recent

paper by Bergeron, Chauve, Montgol�er and Raf�not who give a linear-time algorithm to

compute the intervals in a given permutation. It follows dir ectly from this work that the

permutation substitution decomposition may be computed in linear time. We also review

somealgorithmic results in the caseof graphs.

Permutation classeshave been intensively studied in recent years, and in Chapter 5

we review some of the results in this area,manifested primarily in constructions between

permutation classes,their enumeration and special properties including partial well order

and atomicity. Permutation classescontaining only �nitely many simple permutations

have received particular attention, and we cover the most important results concerning

these.

One particular property of permutation classescontaining only �nitely many simple

permutations is that they are enumerated by algebraic generating functions. By meansof

“�nite query-complete setsof properties”, we show in Chapter 6 that many dif ferent sub-

sets of such permutation classesare also enumerated by algebraic generating functions.

We closethe chapter with some further enumerative results coming from the decomposi-

tion of simple permutations in Chapter 2, and note how, using the linear-time substitution

decomposition algorithm of Chapter 4, we may establish in linear time whether a given

permutation lies in a speci�ed classknown to contain only �nitely many simple permuta-

tions.

Chapter 7 answers af�rmatively the natural question arising from the studies of Chap-

ters 5 and 6: is it decidable if a permutation classgiven by a �nite basiscontains in�nitely

many simple permutations? This is done using the decomposition results of Chapter 2, in

particular showing that the language of pins lying within a speci�ed classforms a regular
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language, and henceits in�nitude is decidable.

Finally, in Chapter 8, using the technology of pin sequencesin a slightly dif ferent con-

text we derive a general suf�cient result concerning the basiselementsof the wr eath prod-

uct between two �nitely based permutation classes,relying on whether one of the per-

mutation classescontains arbitrarily long pin sequencesor not. In the casewhere a given

classcontains arbitrarily long pin sequences,we demonstrate in a number of caseswr eath

products which are not �nitely based. This suggeststhat the �nite basis result is, to some

extent, necessary, though we also presentsomeevidence to the contrary.
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CH A PTER 1

PRELIM IN A RIES

EXPRESSIN G an object in terms of smaller, indecomposable objects,is a goal aimed at in

a wide variety of subjectareas.The �rst example one �nds in mathematics is the Fun-

damental Theorem of Arithmetic, which demonstrates how any positive integer greater

than 1 may be written uniquely (up to ordering) as a product of prime factors. It is a

property that is not true for elements of an arbitrary collection, however; take for exam-

ple the elements of a ring, which in general are not uniquely factorisable (unless the ring

is speci�cally shown to be a Unique Factorisation Domain). When a given collection of

objectscan be uniquely factorised, emphasis is often placed on the study of the prime or

indecomposable elements,asit is thesewhich form the “building blocks” of the collection.

One such family of objects is the family of relational structures– objectsgoverned by

a given set of relations – whose most notable members include graphs, tournaments, per-

mutations and posets. Their “factorisation” is relatively straightforwar d, and will be re-

ferred to as the “substitution decomposition”, though is known also as the modular de-

composition, disjunctive decomposition and X -join. The elemental building blocks of this

decomposition are the “simple” structures. This term is used primarily in the context of

permutations, while in other contexts thesestructuresare called prime or indecomposable

(note in particular that “simple” usually has a dif ferent meaning in the context of graphs).

The notion of substitution decomposition dates back at least to a 1953talk of Fra�̈ssé,

but only the abstract of this talk [55] survives. The �rst article using the substitution de-

composition seemsto beGallai [58] (for an English translation, see[59]), who applied them

3



4 1 PRELIM IN A RIES

particularly to the study of transitive orientations of graphs. Somework on the substitu-

tion decomposition in the general context can be found in Möhring [92]. It has proved to

be a useful technique in a wide variety of settings, ranging from game theory to combi-

natorial optimisation (seeMöhring [94] or Möhring and Radermacher [95] for extensive

references).

Our relational structure of choice is the permutation. It has suf�cient complexity to

be worthy of extended study, but also is easily represented graphically. In this setting,

much of the motivation for studying the substitution decomposition is for the purposes

of enumeration, particularly of permutation classes,and Part II is primarily dedicated to

demonstrating the enumerative consequencesof this study.

Adapting the permutation-speci�c theory we will develop to other relational struc-

tur esis not necessarilyobvious; much of the theory depends, aswe have indicated, on the

graphical representation of permutations, and so, for example, �nding a graph-theoretic

analogue will not follow immediately . Thus throughout Part I we will discuss the success

(or otherwise) of existing attempts in this avenue.

1.1 Permutations, Containment and Order Isomorphism

We begin by intr oducing the terms we need to study permutations; the de�nition of a

general relational structure will follow after this is established. For n 2 N denote by [n]

the set f 1; 2; : : : ; ng, and for i � j let [i; j ] correspond to the set f i; i + 1; : : : ; j g. We may

sometimes also refer to open or half-open segments,for example (i; j ] denotes the set f i +

1; i + 2; : : : ; j g.

In our context, a permutation� of length n is an ordering of the elements of [n]. For

example, � = 918572364is a permutation of length 9. Two particular families of permu-

tations to which we will refer relatively often are the increasingpermutationsdenoted by

�n = 12� � � n, and the decreasingpermutations� n = n(n � 1) � � � 1.

For i 2 [n] denote by � (i ) the image of the number i under � , and, by extension, � ([i; j ])

corresponds to the image of the segment [i; j ]. The pair (i; � (i )) representsa point of � ,
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and in this pair i is the position and � (i ) the value of the point. Viewing � as a set of

points immediately indicates the graphical interpr etation which will prove invaluable in

our forthcoming study. We will, however, postpone this viewpoint momentarily while we

intr oduce some further de�nitions.

Two �nite sequencesof the same length, � = a1a2 � � � an and � = b1b2 � � � bn , are said

to be orderisomorphicif, for all i; j , we have ai < aj if and only if bi < bj . As such, each

sequenceof distinct real numbers is order isomorphic to a unique permutation. For a

sequence� and set of permutations C, with a slight abuseof notation we will sometimes

write statementslike “ � 2 C”, meaning “the permutation order isomorphic to � lies in C.”.

Similarly , any given subsequence(or pattern) of a permutation � is order isomorphic to a

smaller permutation, � say, and such a subsequenceis called a copyof � in � . We may

also say that � contains� (or, in some texts, � involves� ) and write � � � . If, on the other

hand, � doesnot contain a copy of somegiven � , then � is said to avoid� . For example, � =

918572346contains � = 51342becauseof the subsequence91572(= � (1)� (2)� (4)� (5)� (6)),

but avoids � = 3142.

The pattern containment order forms a partial order on the setof all permutations, and

in Part II we will be looking at setsof permutations closed under taking subpermutations.

A book intr oducing the study of thesepermutation patterns hasbeenwritten by Bóna [22].

1.2 Graphical Representation and Symmetries

As mentioned above, we may think of a permutation � as a set of points (i; � (i )) , and

immediately we can form a graphical representation. We can go further , however, and

give a pictorial description of order isomorphism. Two setsS and T of points in the plane

are said to be order isomorphic if the axescan be stretched and shrunk in somemanner to

map one of the setsonto the other, i.e., if there are strictly increasingfunctions f ; g : R ! R

such that f (f (s1); g(s2)) : (s1; s2) 2 Sg = T. (As the inverse of a strictly increasingfunction

is also strictly increasing, this is an equivalence relation.)

The plot of the permutation � is the point set f (i; � (i ))g, and every �nite point set in the
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Figure1.1: The plot of the permutation � = 934826715.

plane in which no two points share a coordinate (often called a genericor noncorectilinear

set) is order isomorphic to the plot of a unique permutation; in practice we will simply say

that a point set is order isomorphic to a permutation. SeeFigure 1.1for an example. Steve

Waton's PhD thesis [118] extends this graphical interpr etation of containment to consider

the setsof permutations that can be drawn by taking points lying on a given geometrical

shape.

This geometric viewpoint indicates several of the symmetries of pattern containment.

The maps (x; y) 7! (� x; y), (x; y) 7! (x; � y) and (x; y) 7! (y; x), when applied to generic

point sets,correspond to “r eversing”, “complementing” and “inverting” permutations re-

spectively. Formally, the reverseof a permutation � of length n is the permutation obtained

by reading the sequenceof symbols of � in reverseorder, i.e. from right to left. For each

i 2 [n], the i th component of the complementof � is assignedvalue n + 1 � � (i ), while the

inverseof � is denoted � � 1 and is de�ned by � � 1(j ) = i , where j = � (i ). For example, the

reverseof � = 934826715is 517628439, its complement is 176284395and � � 1 = 852396741.

Of thesethreesymmetries, one of the reverseor complement mappings, together with

the inverse mapping generatethe dihedral group with eight elements. It is clear to check,

either graphically or otherwise, that eachof these symmetries preservespattern contain-

ment (for example, � � � if and only if � � 1 � � � 1). That these are the only symmetries

is less immediate but follows dir ectly from the work on permutation reconstruction by

Smith [111].
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1.3 Relational Structures

The most general objects we will consider are the relational structures, which we now

intr oduce as a precursor to handling simplicity and the substitution decomposition. For

any set A, a k-ary relationR is a subset of A k . An ordered sequenceof relations over A is

then called a relationalstructure.

Mor e speci�cally , de�ne a relationallanguage, L , to be a set of relationalsymbolsR to-

gether with positive integers nR denoting the arity of the symbols R. A relational structure

A whose relational symbols are those of L is then de�ned by its groundsetdom(A) and a

set of subsetsRA � dom(A)nR for each R 2 L . Such a structure will also be called an

L -structure. If, for example, (a1; : : : ; anR ) 2 RA then we write RA (a1; : : : ; anR ), and RA is

an nR-ary relation.

We will be working primarily with relational structures whose ground setsare �nite,

though many of theseprinciples may be applied to in�nite relational structures. In partic-

ular, the substitution decomposition is readily extended to include in�nite structures, as

shown in [95].

We now brie�y review how some well-known objects may be viewed as relational

structures.

Permutations. A permutation � on n points may be viewed as the relational structure

A � with ground set dom(A � ) = [n], on a language containing two binary linear relations,

L = f <; � ; n< = 2; n� = 2g. The �rst relation, < A � , is the normal ordering on [n], while

i � A � j if and only if � (i ) < � (j ). For example, � = 934826715correspondsto the relational

structure A � on [9] with

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9

and

8 � 5 � 2 � 3 � 9 � 6 � 7 � 4 � 1:
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Graphs. A graph G is a relational structure A G on the language L = f E ; nE = 2g, where

E is a binary symmetric relation, dom(A G) = V (G), and E A G (x; y) if and only if x � y

in G. The analogue to containment in graphs is the notion of the inducedsubgraph:1 an

induced subgraph of G is a graph formed on any subsetof vertices from G, with x � y in

the subgraph if and only if x � y in G.

Tournaments. A tournament is a complete oriented graph. A tournament T therefore

corresponds to the relational structure A T on the language L = f! ; n ! = 2g, but where

! is now a trichotomous binary relation, i.e. for eachx; y 2 dom(A T ) = V (T), precisely

one of x = y, x ! A T y or y ! A T x is true. The name “tournament” derives from its use

to denote a competition where every pair of players x; y must meet eachother in a match,

the outcome being either that x wins, denoted y ! x, or that x loses, denoted x ! y.

The containment order on tournaments is not surprisingly the sameasgraphs; an induced

subtournamentof a tournament T is a tournament formed on any subset of vertices of T

with x ! y in the subtournament if and only if x ! y in T.

Posets. By de�nition, a poset is a relational structure on the language containing a single

binary relation, < , which is re�exive, antisymmetric and transitive. The comparabilitygraph

G(P; < ) of a poset (P; < ) is a graph with vertex set P, and edge p � q if and only if either

p < q or q < p. Conversely, if G is a comparability graph for some poset (P; < ), then the

order < is called a transitiveorientationof (the edgesof) G. This connection between posets

and graphs arisesin a number of combinatorial problems – seeMöhring [93] for a survey.

1.4 Intervals and Simplicity

Before we can discuss the substitution decomposition, we must �rst de�ne how we can

�nd “factors” of a given relational structure, and hence de�ne the elemental relational

structures– those structureswith no nontrivial factors.

1This is sometimes called the “vertex induced subgraph”, to distinguish from edge induced subgraphs.
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Following Földes [54], we say that a set X � dom(A) is an interval if for every R 2 L

and nR-tuple (x1; : : : ; xnR ) 2 dom(A)nR n X nR , with at least one x i 2 X , then

RA (x1; : : : ; xnR ) ( ) RA (x1; : : : ; x i � 1; y; x i +1 ; : : : ; xnR ) for all y 2 X :

Informally , an interval correspondsto asubsetX of the ground setdom(A) for which every

pair of elements of X have exactly the same relations with the elements of dom(A) n X .

Accordingly , every singleton set f xg � dom(A) is an interval, as is all of dom(A). Every

other interval is said to be a properinterval, and a structure is simpleif it has no proper

intervals.

Simplicity has, to someextent, beenstudied for relational structuresin general, for ex-

ample, by Földes [54] and Schmerl and Trotter [107]. Much greaterattention has,however,

beendiverted to particular structures,the most pertinent of which we will now review.

Permutations. In the permutation case,an interval of � correspondsto a setof contiguous

indices I = [a;b] such that the set of values � (I ) = f � (i ) : i 2 I g is also contiguous.

Intervals are clearly identi�ed in the plot of a permutation as a set of points enclosed in

an axis-parallel rectangle,with no points lying in the regions above,below, to the left or to

the right (seeFigure 1.2 for an example). Intervals of permutations are interesting in their

own right and have applications to biomathematics, particularly to genetic algorithms for

sequencing problems, and modelling the genomesof prokaryotes aspermutations allows

the matching of gene sequences.2 SeeCorteel, Louchard, and Pemantle [37] for extensive

references.

It then follows that a simplepermutation is one whose only intervals are of length 0, 1

and n. Figure 1.3shows threesimple permutations of length 12. Note that the eight order-

isomorphism preserving symmetries also preserve intervals, and hence simplicity . The

number of simple permutations of length n = 1; 2; : : : is 1; 2; 0; 2; 6; 46; 338; 2926; 28146; : : :

(sequenceA111111of [110]), the �rst few being 1, 12, 21, 2413and 3142. We will look at

the asymptotics of this sequencein Subsection1.4.2.
2In these contexts, the term “common interval” is used, indicating a segment upon which two or more

permutations agree;we will encounter this de�nition again in Chapter 4.
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Figure1.2: An interval in a permutation.

Figure1.3: The plots of threesimple permutations of length 12.

Graphs. An interval in a graph3 is a set of vertices X � V (G) such that N (v) n X =

N (w) nX for all v; w 2 X , where N (v) denotes the neighbourhood of v in G. A graph on n

vertices thereforehasseveral trivial intervals (; , V (G), and the singletons); a graph with no

nontrivial intervals is then often called primeor indecomposable(the wor d simple meaning

something completely dif ferent in this context). These graphs have been the subject of

considerable study, seefor example Ehrenfeucht, Harju, and Rozenberg [47], Ille [71], and

Sabidussi [105]. A survey of indecomposability and the substitution decomposition in

graphs can be found in Brandstädt, Le, and Spinrad [27].

Tournaments. An interval in a tournament T is a set A � V (T) such that for all v =2 A,

either v ! A or v  A. Clearly the empty set, all singletons, and the entire vertex set are

all intervals of T, and T is said to be simple if it has no others. Crvenkovi ć, Dolinka, and

Markovi ć [40] survey the algebraic and combinatorial results concerning simple tourna-

3Theseare also called autonomous sets,blocks, bound sets, clans, closed sets, clumps, committees, con-
gruences,convex sets,externally related sets,factors, modules, parties solidair es,partive sets,stable sets,and
strong intervals.
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ments.

Posets. An interval of a poset (P; < ) correspondsto a setA � P which for every p 2 P nA

satis�es one of p < A, p > A or p is incomparable to every point of A. Intervals in a poset

correspond to “convex” intervals in its related comparability graph. A subsetof B � P is

called (P; < )-convexif the set f r 2 P : there exist p;q 2 B such that p < r < qg is a subset

of B . The following lemma is then easily deduced:

Lemma 1.1(Buer and Möhring [32]). Givenaposet(P; < ), thesetof intervalsof (P; < ) is equal

to thesetof (P; < )-convexintervalsof G(P; < ).

1.4.1 Interacting Intervals

In the general context of relational structures,intervals interact with eachother in a pleas-

ing way. Two intervals are said to overlapif neither interval is contained in the other and

their intersection is nontrivial.

Proposition 1.2. Forany two overlappingintervalsI andJ of theL -structureA ,

(a) I \ J is an interval ofA (Földes[54, Proposition1]),

(b) I [ J is an interval ofA (Földes[54, Proposition2]), and

(c) I n J is an interval ofA .

Proof. We will prove only Case(c) in the casewhere L consistssolely of a k-ary relation R

(k � 2); the result for a general language L follows immediately . If I and J are overlapping

intervals of A , we must show that if RA (x1; x2; : : : ; xk ) with x1 2 I n J and not all of

x2; : : : ; xk lie in I n J , then RA (y; x2; : : : ; xk ) for any y 2 I n J .

Since I is an interval and x1; y 2 I , we are �nished if, for some i 2 [2; k], x i lies in

dom(A) nI , sosupposethat every x i 2 I \ J . SinceI and J overlap, thereexistsat leastone

z 2 J nI , and soRA (x1; x2; x3; : : : ; xk ) implies RA (x1; z; x3; : : : ; xk ) becauseJ is an interval.

We can now obtain RA (y; z; x3; : : : ; xk ), and thus RA (y; x2; x3; : : : ; xk ) asrequired.
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Figure1.4: Two intervals and their intersection.

For two sets X and Y , let X 4 Y denote the symmetricdifferenceof X and Y , namely

(X [ Y ) n (X \ Y ). Providing a relational structure A is de�ned by a language consisting

only of binary symmetric relations and relations with arity at least 3, then the symmetric

dif ferenceof two intersecting intervals is also an interval.

Proposition 1.3 (Möhring and Radermacher [95, Theorem 4.1.1]). Let A bean L -structure

for which nR � 2 for everyR 2 L . Thenif I and J are overlappingintervals, I 4 J is alsoan

interval if everybinary relationR 2 L is symmetric.

In the permutation case,Proposition 1.3 clearly does not apply. However , Proposi-

tion 1.2 is easily seenby considering the graphical representation,as in Figure 1.4.

1.4.2 Asymptotics

The asymptotic enumeration of simple structures has been studied variously for permu-

tations, tournaments, graphs, and indeed in a more general setting. We will presently

review the problem for permutations and graphs, with a view to showing that although

both thesestructuresfall within the category of relational structures,the solutions are sig-

ni�cantly dif ferent (although the approach is essentially identical). One the one hand, the

dominant term in the asymptotic enumeration of simple permutations is n!=e2 (a fraction

1=e2 of the total number of permutations of length n), while on the other hand almost all

graphs are indecomposable.

This dif ferenceindicates the caveatthat must be added when attempting to study rela-

tional structuresin their full generality: that certain results do hold for every structure (e.g.
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the substitution decomposition), but many other results are only true in certain cases.We

will encounter further dif ferencesas we progressthrough this study of simplicity – �rst

in the dif �culties of adapting the permutation-speci�c simple decomposition to the graph

casein Chapter 2, and then again in the widely varying bounds on simple extensions in

Chapter 3.

Graphs. Let us begin with the graph case,which turns out to be fairly straightforwar d.

Let the random variable X k denote the number of intervals of size k in a random graph G

on n vertices. The probability that a given setof k vertices is an interval is
2n� k

2(n
2)

, sinceeach

of the n � k vertices outside the interval must look at every vertex inside the interval in the

sameway. As there are
� n

k

�
ways of choosing the setof k vertices, we have

E[X k ] =

� n
k

�
2n� k

2(n
2)

:

Thus the probability that G is decomposable may be bounded above by the sum of the

expected number of proper intervals, i.e. it is bounded by E[X 2 + X 3 + � � � + X n� 1]. By

linearity of expectation, this yields

Pr(G is decomposable) �
2n

2(n
2)

n� 1X

k=2

� n
k

�

2k :

Observing that the sum is the binomial expansion of (1 + 1
2)n less the �rst two and �nal

terms, we obtain

Pr(G is decomposable) �
2n

2(n
2)

��
3
2

� n

� 1 �
n
2

�
1
2n

�
! 0 asn ! 1 ;

and hencealmost all graphs are indecomposable. Möhring [91] shows this is also true for

several other cases,including tournaments, posetsand structuresde�ned on single asym-

metric relations. For the tournament version, seealso Erd �os,Fried, Hajnal and Milner [51].

Permutations. Proceeding aswe did with graphs, let the random variable X k denote the

number of intervals of size k in a random permutation � of length n. An interval of length

k may be viewed as a mapping from a contiguous set of positions to a contiguous set of
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values. The setof positions must begin at one of the �rst n � k + 1 positions of � , and at the

sametime the lowest point in the setof values must be one of the lowest n � k + 1 values of

� . Of the
� n

k

�
setsof values to which the contiguous set of positions may be mapped, only

one maps to the chosencontiguous set of values. Thus we have

E[X k ] =
(n � k + 1)2

� n
k

� =
(n � k + 1)(n � k + 1)!k!

n!
:

Alr eady we can see some dif �culties may arise; whereas in the graph caseit was clear

that the denominator (being an exponential in n2) would always dominate the numerator,

here we see that this will not always hold. In particular , E[X 2] = 2(n� 1)
n ! 2 as n !

1 , implying in fact that, asymptotically , we expect to �nd two intervals of size two in a

random permutation. Seekingthe asymptotics of the other terms in
n� 1X

k=2

E[X k ], we consider

the casesk = 3, k = 4, k = n � 2 (assuming n � 4) and k = n � 1 separately:

E[X 3] =
6(n � 2)
n(n � 1)

�
6
n

! 0

E[X 4] =
4!(n � 3)

n(n � 1)(n � 2)
�

24
n2 ! 0

E[X n� 2] =
3 � 3!

n(n � 1)
�

24
n2 ! 0

E[X n� 1] =
4
n

! 0:

The remaining terms form a partial sum, which converges providing
E[X k+1 ]
E[X k ]

< 1. Sim-

plifying this equation gives 2k2 � (3n + 1)k + n2 + n + 1 > 0, a quadratic in k, which yields

two roots. The smaller of thesesatis�es 0 < k � � n, the larger k+ > n. Thus for k � k � ,

E[X k ] is decreasing, while for k � < k < n, E[X k ] is increasing, and henceE[X k ] � 24=n2

for 4 � k � n � 2. Thus
n� 2X

k=4

E[X k ] � (n � 5)
24
n2 �

24
n

! 0:

Subsequently, the only term of
n� 1X

k=2

E[X k ] which is non-zero in the limit n ! 1 is k = 2.

Ignoring larger intervals, occurrencesof intervals of size 2 in a random permutation � can

roughly be regarded as independent events, and as we know the expectation of X 2 is 2,
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the occurrence of any speci�c interval is relatively rare. Heuristically , this suggests that

X 2 is asymptotically Poisson distributed with parameter 2. Using this heuristic, we have

Pr(X 2 = 0) ! e� 2 as n ! 1 , and so there are approximately n!
e2 simple permutations of

length n.

A formal argument for this is implicitly given in Uno and Yagiura [116], and was made

explicit by Corteel, Louchard, and Pemantle [37]. The method, however, essentially dates

back to the 1940swith Kaplansky [74] and Wolfowitz [121], who considered “r uns” within

permutations – a run is a set of points with contiguous positions whose values are i; i +

1; : : : ; i + r or i + r; i + r � 1; : : : ; i , in that order.4

A non-probabilistic approach (but one still relying on the work of Kaplansky) produc-

ing more preciseasymptotics is given by Albert, Atkinson, and Klazar [3]. They obtain

the following theorem, and note that higher order terms are obtainable given suf�cient

computation:

Theorem 1.4 (Albert, Atkinson and Klazar [3]). Thenumberof simplepermutationsof length

n is asymptoticallygivenby

n!
e2

�
1 �

4
n

+
2

n(n � 1)
+ O(n� 3)

�
:

1.5 In�ations and the Substitution Decomposition

With the notion of simplicity established, we may now describe how all relational struc-

tur es can be decomposed and written in terms of these simple objects. This is easier to

establish by �rst de�ning the reverse process. Given an L -structure S, an in�ation of S

by the L -structures A s for each s 2 dom(S) — denoted S[A s : s 2 dom(S)] — is the L -

structure obtained by replacing eachelement s of dom(S) with a set of elements dom(A s)

that form an interval in the L -structure A = S[A s : s 2 dom(S)], i.e. for every R 2 L :

RA (a1; : : : ; anR ) ( )
�

RA s (a1; : : : ; anR ) and a1; : : : ; anR 2 dom(A s), s 2 dom(S), or
RS(s1; : : : ; snR ) where eachsi 2 dom(S) and ai 2 A si :

4Atkinson and Stitt [12] called permutations containing no runs strongly irr educible. Note that this is equiv-
alent to a permutation containing no intervals of size two.
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A de�ation (or decomposition) of an L -structureA is the reverse.Wewrite A = S[A s : s 2

dom(S)] to mean any de�ation of A by disjoint intervals A s. We are primarily interested

in the casewhere S is simple – the following theorem gives the uniqueness of such an S,

which will be called the skeleton.

Theorem 1.5(The Substitution Decomposition) . LetA beanL -structurefor somelanguageL .

Thenthere existsa uniquesimpleL -structureS suchthat A = S[A s : s 2 dom(S)]. Moreover,

whenj dom(S)j > 2, everyA s is de�neduniquely.

Proof. Let M denote the setof all intervals, exceptdom(A), which are contained in no other

proper intervals.

If two intervals I ; J 2 M intersect, then Proposition 1.2.(b) shows that I [ J is also

an interval, which, unless I [ J = dom(A), contradicts the de�nition of M . If I [ J =

dom(A), then Proposition 1.2.(c) shows that J n I is an interval, so A can be written as

the in�ation of a two-element L -structure, all of which are simple. If A = S[A s1 ; A s2 ] and

A = T [A t1 ; A t2 ] are two dif ferent two-element decompositions, then we may assumethat

in A we have A s1 \ A t1 6= ; and A s2 \ A t2 6= ; . Thus relations in S between s1 and s2 must

agreewith the relations in A between elementsof the disjoint intervals A s1 and A s2 . Since

A s1 \ A t1 � A s1 and A s2 \ A t2 � A s2 are intervals, the relations between elements of A s1

and A s2 correspond to the relations between the elementsof A s1 \ A t1 and A s2 \ A t2 , which,

by a similar argument must correspond to the relations between the elements of A t1 and

A t2 , and these are none other than the relations between t 1 and t2 of dom(T ). Similarly ,

relations involving just s1 (respectively, s2) correspond to relations involving just t1 (t2),

and so S and T are isomorphic.

Otherwise, the sets in M partition dom(A). For each I 2 M choosea representative

x I 2 I , and de�ne the L -structure S on f x I g by Aj f x I g = S. Clearly A is the in�ation

of S by the structures Aj I for I 2 M . The simplicity of S follows from the observation

that if S contained a proper interval K , then
S

x I 2 K I would be a proper interval of A

contradicting the de�nition of M . Furthermor e, if A = T [A t : t 2 dom(T )] for any other

simple L -structure T , then each dom(A t ) is an interval of A and so is contained in an
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interval in M .

The non-unique caseswhich occur when j dom(S)j = 2 may be dealt with in a number

of ways, someof which are speci�c to particular types of structure, aswe will seelater. In

the general setting, however, we canstill �nd a unique substructure of A that is essentially

from one of threegroups.

Proposition 1.6 (Möhring and Radermacher [95, Theorems 3.4.3,4.1.2and 4.1.3]). If A is

an L -structure whoseskeletonS satis�esj dom(S)j = 2, then there existsa uniquemaximalL -

structureT for whichA = T [A t : t 2 dom(T )] and,for everyR 2 L , RT is linear, completeor

empty.

Once we have established the substitution decomposition A = S[A s : s 2 dom(S)],

we may repeat the processon the substructures A s for each s 2 dom(S). Iterating this

decomposition, we may continue until we are left only with substructures on singleton

ground sets. We may represent this iterated substitution decomposition as a rooted tree

– the substitution decompositiontree. Each node corresponds to a substructure of A whose

ground setis an interval, with the root of the treebeing A and the leavesbeing the singleton

ground sets.For a given node with corresponding non-singleton structure A 0, the childr en

of A 0 are the substructures A 0
s in the decomposition A 0 = S0[A 0

s : s 2 dom(S)]. If S is a

unique simple with j dom(S)j � 4, label the node corresponding to A 0 with the symbol P

(short for “pr oper”); if the (binary) relations in the language of S are linear and all other

relations are complete or empty, label the node with the symbol L ; if all the relations in the

language of S are complete or empty, label the node D (short for “degenerate”).

1.5.1 The Permutation Case

Restricting our attention to the permutation case,the substitution decomposition is some-

what easier to describe. Given a permutation � of length m and nonempty permutations

� 1; : : : ; � m , the in�ation of � by � 1; : : : ; � m – denoted � [� 1; : : : ; � m ] – is the permutation

obtained by replacing each entry � (i ) by an interval that is order isomorphic to � i . For

example, 2413[1; 132; 321; 12] = 479832156(seeFigure 1.5). Conversely, a de�ation of � is
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Figure1.5: The plot of 479832156, an in�ation of 2413.

any expressionof � as an in�ation � = � [� 1; � 2; : : : ; � m ], and we will call � a skeletonof � .

Theorem 1.5then specialisesto become:

Proposition 1.7 (Albert and Atkinson [2]). Everypermutationmaybewritten asthe in�ation

of a uniquesimplepermutation.Moreover, if � canbewritten as� [� 1; : : : ; � m ] where � is simple

andm � 4, thenthe� i sareunique.

The degeneratecasesoccur when a permutation can be written asan in�ation of either

12 or 21, and we may choosea unique decomposition in thesecasesin a variety of ways.

The principal decomposition that we will usefor the substitution decomposition, however,

is asdescribed in Proposition 1.6.

The direct sum of two permutations � and � is the in�ation 12[�; � ], and is usually

denoted � � � . Similarly , the skewsumis the in�ation 21[�; � ], and is denoted � 	 � . The

dir ect sum operation acts as a dichotomy on the set of all permutations – dividing them

into those that are sum decomposable(i.e. they can be represented as a dir ect sum), and

those that are sum indecomposable. Similarly , the skew sum operation leads to the skew

decomposablepermutations, while those that cannot be representedasa skew sum are skew

indecomposable.

With thesede�nitions, if � can be written asa dir ect sum (i.e. an in�ation of the simple

permutation 12), then we may write � = � m [� 1; : : : ; � m ] uniquely where m is maximal,

and each � i is sum indecomposable. Similarly , if � is an in�ation of 21, we may write

� = � m [� 1; : : : ; � m ] where each� i is skew indecomposable.

Alternatively , we may prefer to express� as the in�ation of 12 or 21, in which casewe

will specify which de�ation we want; the one that follows will be the decomposition we
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452398167

4523

45

4 5

23

2 3

98

9 8

1 67

6 7

Figure1.6: The substitution decomposition treeof � = 452398167.

mostly use.

Proposition 1.8(Albert and Atkinson [2]). If � is an in�ation of12, thenthereis auniquesum

indecomposable� 1 suchthat � = 12[� 1; � 2] for some� 2, which is itself unique. Thesameholds

with 12 replacedby 21 and“sum” replacedby “skew”.

The substitution decomposition tree for a permutation then follows immediately . For

example, consider the permutation � = 452398167. This is decomposedas

452398167 = 2413[3412; 21; 1; 12]

= 2413[21[12; 12]; 21[1; 1]; 1; 12[1; 1]]

= 2413[21[12[1; 1]; 12[1; 1]]; 21[1; 1]; 1; 12[1; 1]]

and its substitution decomposition treeis given in Figure 1.6.





CH A PTER 2

DECOM POSITION

2.1 Background

SIN CE simple permutations may be used to construct all other permutations via the

substitution decomposition, it would be useful to know how simple permutations are

themselves constructed. In particular , our aim is to �nd smaller “fundamental” simple

permutations of somespeci�ed size within a given simple permutation. Someapproaches

to this question canbe found in Schmerl and Trotter [107], in which the following is proved

for all irr e�exive binary relational structures.1 Here, however, we will state only the per-

mutation case,for which there is another proof by Murphy [97].

Theorem 2.1(Schmerl and Trotter [107]). Everysimplepermutationof lengthn � 2 containsa

simplepermutationof lengthn � 1 or n � 2.

We will prove that long simple permutations must contain two long almost disjoint

simple subsequences.Formally:

Theorem 2.2. Thereis a function f (k) suchthat everysimplepermutationof lengthat leastf (k)

containstwo simplesubsequences,eachof lengthat leastk, sharingat mosttwo entries.

(The proof of Theorem 2.2 follows after establishing Theorem 2.14, found on Page34.)

The second “two” in the statement of Theorem 2.2 is best possible, as is demonstrated by

1A version of this theorem for k-structures– structures de�ned on a single k-ary relation in which every
relation (a1 ; : : : ; ak ) has ai 6= aj for some i 6= j – can be found in Ehrenfeucht and McConnell [48].

21
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Figure2.1:The plots of a wedge simple permutation. Note that every simple subsequenceof length
at least 4 must contain its �rst two entries.

the family of simple permutations of the form

m(2m)(m � 1)(m + 1)(m � 2)(m + 2) � � � 1(2m � 1);

the permutation in Figure 2.1is of this form. On the other hand, no attempt hasbeenmade

to optimise the function f ; our proof gives an f of order about kk .

This result alone, however, gives no real indication as to the underlying structure

within the simple permutation; rather it is the method by which we arrive at Theorem 2.2.

We give a Ramsey-type description of simple permutations in terms of someunavoidable

substructures,similar to the Erd �os-SzekeresTheorem asapplied to arbitrary permutations:

Theorem 2.3 (Erd �os and Szekeres [53]). Every permutationof length n containsa monotone

increasingor monotonedecreasingsubsequenceof lengthat least
p

n.

In particular , we will demonstrate how a suf�ciently long simple permutation contains,

in the �rst instance,a “parallel alternation” of length k, a “wedge alternation” of length k

or a “pin sequence” of length k. By studying the decomposition of pin sequences,we can

go further to provide a more straightforwar d result, namely every suf�ciently long simple

permutation contains either an “alternation” or an “oscillation”.

A major motivation of this study is the enumeration of particular permutation classes.

Although we will delay an in-depth discussion of this until Part II , it is worth noting that

establishing a method of classifying the simple permutations brings us much closer to

establishing what simple permutations lie in a given class.
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Figure2.2: A pin sequence.

2.2 Pin Sequences

The coreof the simple permutation decomposition is in understanding pin sequences.Em-

pirically , they encapsulate precisely what it means to be simple: in the plot of a simple

permutation, any set of points enclosed by an axis-parallel rectangle must be separated

by at least one point lying outside the box above, below, to the left or to the right, and

formalising the method of �nding such a point is the motivation for de�ning pins, and

subsequently sequencesof pins.

While the viewpoint above will regard pins in their motivational setting as points

within the plot of a permutation, when we come to discussing our �nal “unavoidable sub-

structures” result, we are going to need to decompose these pin sequences. To do this,

we will shift our viewpoint to building pin sequencesfrom scratch by placing points in a

plane, eachof which will correspond to a pin. We will also need to consider subsequences

of a given pin sequence,for which we will need to intr oduce “pin wor ds”.

Let us begin, however, with a more detailed motivational de�nition of pin sequences
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in our original setting. Recall the graphical representationof a permutation asdescribed in

Section1.2. Given points p1; : : : ; pm in the plane, we denote by rect(p1; : : : ; pm ) the smallest

axes-parallel rectanglecontaining them.

Choose two points p1 and p2 in the plot of a permutation � . If these two points do

not form an interval then there is at least one point which lies outside rect(p1; p2) and

slices rect(p1; p2) either horizontally or vertically . (This discussion is accompanied by the

sequenceof diagrams shown in Figure 2.2.) We call such a point a pin. Choose a pin

and label it p3. Now consider the larger rectangle rect(p1; p2; p3). If this also does not

form an interval in � then we can �nd another pin, p4, which slices rect(p1; p2; p3) either

horizontally or vertically . Again, if rect(p1; p2; p3; p4) is not an interval then we can �nd

another pin p5. We refer to a sequenceof pins constructed in this manner asa pin sequence.

Formally, a pin sequenceis a sequenceof points p1, p2, : : : in the plot of � such that for

eachi � 3,

� pi 62rect(p1; : : : ; pi � 1), and

� if rect(p1; : : : ; pi � 1) = [a;b] � [c;d] and pi = (x; y), we have either a < x < b or c <

y < d, or, in other wor ds, pi slicesrect(p1; : : : ; pi � 1) either horizontally or vertically .

We describe pins as either left, right, up, or down based on their position relative to the

rectanglethat they slice. Thus in the pin sequencefrom Figure 2.2, p3 and p7 are right pins,

p4 and p5 are up pins, p6 is a left pin, and p8 is a down pin (p1 and p2 lack dir ection).

A properpin sequenceis one that satis�es two additional conditions:

� Maximality condition: each pin must be maximal in its dir ection. For example, if

rect(p1; : : : ; pi � 1) = [a;b] � [c;d] and pi = (x; y) is a right pin, then it is the right-most

of all possible right pins for this rectangle,or, in other wor ds, the region (x; n] � [c;d]

is devoid of points.

� Separationcondition: pi +1 must separatepi from f p1; : : : ; pi � 1g. That is, pi +1 must lie

horizontally or vertically between rect(p1; : : : ; pi � 1) and pi .
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rect(p1; : : : ; pi � 2)

pi � 1

pi
pi +1

rect(p1; : : : ; pi � 2)

pi � 1

pi
pi +1

Figure2.3: The two casesin the proof of Lemma 2.6.

For example, in the pin sequenceshown in Figure 2.2, the choice of p4 violates the maxi-

mality condition, while the choicesof p5, p7, and p8 violate the separation condition. The

ultimate goal of the following successionof lemmas is to show (in Theorem 2.7) that all or

all but one of the pins in a proper pin sequencethemselvesform a simple permutation. We

begin by observing that proper pin sequencestravel by 90� turns only.

Lemma 2.4. In a properpin sequence,pi +1 cannotlie in thesameor oppositedirectionaspi (for

all i � 3).

Proof. By the maximality condition, pi +1 cannot lie in the samedir ection aspi . It cannot lie

in the opposite dir ection by the separation condition.

Lemma 2.5. In aproperpin sequence,pi doesnot separateany two membersof f p1; : : : ; pi � 2g.

Proof. If pi did separaterect(p1; : : : ; pi � 2) into two parts then pi � 1 would lie on one side of

this divide, violating the separation condition.

Lemma 2.6. In a properpin sequence,pi and pi +1 are separatedeither by pi � 1 or by eachof

p1; : : : ; pi � 2.

Proof. The lemma is vacuously true for i = 1 and i = 2, so let us assumethat i � 3. Without

loss we may assumethat pi � 1 is a right pin and pi is an up pin. By Lemma 2.4, pi +1 must

be either a right pin or a left pin. The remainder of the proof is evident from Figure 2.3.
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We are now ready to prove our main result about proper pin sequences.

Theorem 2.7. If p1; : : : ; pm is a properpin sequenceof length m � 5 then oneof the setsof

pointsf p1; : : : ; pm g, f p1; : : : ; pm g n f p1g, or f p1; : : : ; pmg n f p2g is orderisomorphicto a simple

permutation.

Proof. We are interested in the possible intervals in the subsequencegiven by the pins

p1; : : : ; pm ; we shall call theseintervalsofpins. The bulk of our proof is devoted to establish-

ing the following claim: for any m, the only possible proper minimal nonsingleton inter-

vals of pins in the proper pin sequencef p1; : : : ; pmg are f p1; pm g, f p2; pm g, f p1; p3; : : : ; pm g

or f p2; : : : ; pmg.

Take M � f p1; : : : ; pm g to be a minimal non-singleton interval of pins. Note that M is

therefore order isomorphic to a simple permutation. If M contains a pair of pins pi and pj

with i < j < m then by the separation condition pj +1 ; : : : ; pm 2 M . Furthermor e, because

j < m, Lemma 2.6shows that M contains either pj � 1 or p1; p2; : : : ; pj � 2. In the latter case,

if j � 4 then separation gives pj � 1 2 M , asdesired, while if j � 3, we have already found a

minimal non-singleton interval of pins of the desired form. In the former case,the proof is

completed by iterating this process.Only the caseM = f pi ; pm g remains. If 3 � i � m � 1

then by the separation condition pi separatesf p1; : : : ; pi � 1g, while Lemma 2.5 shows that

pm does not separatethesepoints; thus at least one of them must lie in M , a contradiction

which completes the proof of the claim.

Returning to the proof of the theorem, suppose that f p1; : : : ; pm g is not itself order

isomorphic to a simple permutation and that m � 5. Thus, by the claim, at least one of

f p1; pmg, f p2; pmg, f p1; p3; : : : ; pm g or f p2; : : : ; pm g forms a minimal nonsingleton interval

of pins. The latter two casesgive us a simple of the desired form, so now assumeeither

f p1; pmg or f p2; pm g is an interval of pins. (Note that we cannot have both intervals since

p3 separatesp1 from p2.) We assumethe former asthe latter is analogous. Consider the pin

sequencef p2; : : : ; pm g. By the claim, the only possible minimal nonsingleton intervals of

pins in this sequenceare f p2; pm g, f p3; pm g, f p2; p4; : : : ; pm g or f p3; : : : ; pmg. The latter two

casesmay be ignored since the only interval of pins in the original sequencef p1; : : : ; pm g
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was f p1; pmg, and hence the points that p1 separated are the same as those separated by

pm . Thus it remains to eliminate the casesf p2; pmg and f p3; pmg. Since p3 separatesp1

from p2 and f p1; pm g is an interval, p3 also separatesp2 from pm , so f p2; pmg cannot form

an interval of pins for the sequencef p2; : : : ; pm g. Similarly , f p3; pm g cannot be an interval

of pins for f p2; : : : ; pm g becausep4 separatesp3 from p1 and thus also from pm becausewe

have assumed that f p1; pmg forms an interval. Thus f p2; : : : ; pm g contains no nontrivial

intervals of pins and is therefore order isomorphic to a simple permutation, completing

the proof.

As a corollary of this theorem, we seethat Theorem 2.2(in fact, a stronger result) is true

for simple permutations with long pin sequences.

Corollary 2.8. If � containsa properpin sequenceof lengthat least2k + 2 (with k � 4) then �

containstwo disjoint simplesubsequences,eachof lengthat leastk.

Proof. Apply Theorem 2.7to the two pin sequencesp1; : : : ; pk+1 and pk+2 ; : : : ; p2k+2 .

We say that the pin sequencep1; : : : ; pm for the permutation � of length n is saturatedif

rect(p1; : : : ; pm ) = [n] � [n]. For example, the pin sequencein Figure 2.2 is saturated. Any

two points p1 6= p2 in the plot of a simple permutation can be extended to a saturated pin

sequence,aswe are forced to stop extending a pin sequenceonly upon �nding an interval

or when the rectanglecontains every point in � .

It is important to note that two points in a simple permutation need not be extendable

to a proper saturated pin sequence. For example, the permutation in Figure 2.2 does not

have a proper saturated pin sequencebeginning with p1 and p2. For this reasonwe work

with a weaker requirement: the pin sequencep1; : : : ; pm is said to be right-reachingif pm is

the right-most point of � .

Lemma 2.9. For everysimplepermutation� andpair of pointsp1 andp2 (unless,trivially , p1 is

theright-mostpoint of � ), thereis aproperright-reachingpin sequencebeginningwith p1 andp2.
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Figure2.4: A horizontal alternation (left) and its inverse, a vertical alternation (right).

Proof. Clearly we can �nd a saturated pin sequencep1; p2; : : : in � that satis�es the maxi-

mality condition. Sincethis pin sequenceis saturated, it includes the right-most point; la-

bel it pi 1 . Now take i 2 assmall aspossible so that p1; p2; : : : ; pi 2 ; pi 1 is a valid pin sequence.

Note �rst that i 2 < i1 becausep1; : : : ; pi 1 is a valid pin sequence. Now observe that pi 1

separatespi 2 from rect(p1; : : : ; pi 2 � 1), becausep1; : : : ; pi 2 � 1; pi 1 is not a valid pin sequence.

Continuing in this manner, we �nd pins pi 3 , pi 4 , and so on, until we reachthe stagewhere

pi m +1 = p2. Then p1; p2; pi m ; pi m � 1 ; : : : ; pi 1 is a proper right-r eaching pin sequence.

2.3 Simple Permutations without Long Proper Pin Sequences

It remains only to consider those simple permutations without long proper pin sequences.

Lemma 2.9 shows that in such a permutation, any two points p1; p2 can be extended to

a short proper right-r eaching pin sequence. Our goal in this section is to use several of

theseshort right-r eaching sequencesto prove that such permutations contain long “alter -

nations”.

We use the term horizontal alternation to refer to a permutation in which every odd

entry lies to the left of every even entry, or the reverseof such a permutation. A vertical

alternationis the group-theoretic inverse of a horizontal alternation. Examples are shown

in Figure 2.4. Every suf�ciently long vertical alternation contains either a long parallel

alternationor a long wedgealternation(seeFigure 2.5for de�nitions):
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Figure2.5:The two permutations on the left arewedge alternations, the two on the right areparallel
alternations.

Proposition 2.10. Every alternation of length at least2k4 containseither a parallel or wedge

alternationof lengthat least2k.

Proof. Let � be a vertical alternation of length 2n � 2k4. By the Erd �os-Szekeres Theo-

rem 2.3, the sequence� (1); � (3); : : : ; � (2n � 1) contains a monotone subsequenceof length

at least k2, say � (i 1); � (i 2); : : : ; � (i k2 ). Applying the Erd �os-SzekeresTheorem to the subse-

quence� (i 1 + 1); � (i 2 + 1); : : : ; � (i k2 + 1) completes the proof.

Note that every parallel alternation of length 2k + 2 � 10 contains two disjoint simple

permutations of length at least k. Thus Theorem 2.2 follows in the casewhere our simple

permutation contains a long parallel alternation.

Returning to pin sequences,the pin sequencesp1; p2; : : : and q1; q2; : : : are said to

� be initially-nonoverlappingif rect(p1; p2) and rect(q1; q2) are disjoint,

� convergeat thepoint x if thereexist i and j such that pi = qj = x but f p1; : : : ; pi � 1g and

f q1; : : : ; qj � 1g are disjoint.

A collection of pin sequencesconverges or is initially-nonoverlapping if they pairwise

converge or are pairwise initially-nonoverlapping. Note that it is always possible to �nd

a collection of bn=2c initially-nonoverlapping proper pin sequencesin a permutation � of

length n by taking proper pin sequencesbeginning with the �rst and second points, the

thir d and fourth points, and so on, reading left to right.

Lemma 2.11. If 16k initially-nonoverlappingproperpin sequencesof� convergeat thesamepoint,

then� containsanalternationof lengthat least2k.
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Proof. Suppose that 16k initially-nonoverlapping proper pin sequencesconverge at the

point x. Note that x canbethe �rst or secondpin for at most oneof thesesequencesbecause

they are initially-nonoverlapping. Thus one of the following two possibilities must occur:

� at least 8k of the sequenceshave x astheir thir d pin, or

� at least 8k of the sequenceshave x astheir fourth or later pin.

Supposethat at least 8k of the sequenceshave x as their thir d pin. This point could be

variously functioning as a left, right, down, or up pin for eachof these8k sequences,but

x plays the same role for at least 2k sequences. Suppose, by symmetry, that x is a right

pin for at least 2k sequences.Sincex is the thir d pin for thesesequences,one of their �rst

two pins lies above x while the other lies below and becausethesesequencesare initially-

nonoverlapping, an alternation of length at least2k can be obtained by choosing one point

from eachsequence.

Now supposethat at least8k of the sequenceshave x astheir fourth or later pin. Again

we may assumewithout loss that x is a right pin for at least 2k of thesesequences.Now

consider the immediate predecessorsto x in these sequences. These pins are either up

pins or down pins (by Lemma 2.4). By symmetry we may assume that for at least k of

these sequencesthe immediate predecessorto x is an up pin. Reading left to right, label

these immediate predecessorpins p(1) , p(2) ; : : : ; p(k) and let R(i ) denote the rectangle for

which p(i ) is a pin. Note that eachR(i ) lies completely below x, asotherwise the separation

condition would prevent x from following p(i ) in the corresponding pin sequence.Wenow

have the situation depicted in Figure 2.6.

It suf�ces to show, for eachi , that � contains a point lying horizontally between p(i ) and

p(i +1) and below x sincethesepoints, together with the p(i ) 's and x, will give an alternation

of length 2k. However , if there is no such point then p(i ) and p(i +1) could each function

as up pins for both R(i ) and R(i +1) , and thus one of these choices would contradict the

maximality condition, completing the proof.
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Figure2.6: The situation that arisesin the proof of Lemma 2.11.

Lemma 2.12. Everysimplepermutationof lengthat least2(16k4)2k containseithera properpin

sequenceof lengthat least2k or a parallelor wedgealternationof lengthat least2k.

Proof. Suppose that a simple permutation � of length n contains neither a proper pin se-

quence of length at least 2k nor a parallel or wedge alternation of length at least 2k. In

particular , � does not contain a proper right-r eaching pin sequenceof length 2k, and it

follows from Proposition 2.10that � has no alternations of length 2k4.

It follows from our earlier observations that � contains a collection of bn=2c initially-

nonoverlapping proper right-r eaching pin sequences.As thesesequencesare right-r each-

ing, they all have the same�nal (right-most) pin which we denote by p. By Lemma 2.11,

fewer than 16k4 of these pin sequencesconverge at p; equivalently , there are fewer than

16k4 distinct immediate predecessorsto p, and we label theseasp(1) ; p(2) ; : : : ; p(m) . Again,

fewer than 16k4 pin sequencesconverge at eachof the p(i ) 's, so thereare fewer than (16k4)2

immediate predecessorsto thesepins. Continue this processuntil we reachthe sequences

of length 2k, of which we have assumedthere are none. We have thus counted all bn=2c of

our sequences,and have obtained the bound

bn=2c < 1 + 16k4 + (16k4)2 + (16k4)3 + � � � + (16k4)(2k� 1) ;
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Figure2.7: The two types of wedge simple permutations, type 1 (left) and type 2 (right).

so, simplifying,

n < 2(16k4)2k :

We are left to deal with simple permutations which do not have long proper pin se-

quencesbut do have long wedge alternations. We prove that thesepermutations contain

long wedgesimplepermutations, of which there are two types (up to symmetry). Examples

of thesetwo types are shown in Figure 2.7.

Lemma 2.13. If a simplepermutationcontainsa wedgealternationof length4k2 thenit contains

eitherapin sequenceof lengthat least2k or awedgesimplepermutationof lengthat least2k.

Proof. Let � be a simple permutation containing a wedge alternation of length at least

4k2. By symmetry we may assume that this wedge alternation opens to the right (i.e.

it is oriented as < ). We call these the wedgepoints of � . Label the two left-most wedge

points p1 and p2 and by Lemma 2.9extend this into a proper right-r eaching pin sequence

p1; p2; : : : ; pm .

Let Ri denote the smallest rectangle in the plot of � containing p1, p2, and pi that is not

sliced by a wedge point outside the rectangle. De�ne the wedgesumof the pin pi , ws(pi ),

to be the number of wedge points in R i . For i � 2 de�ne the wedgecontribution of pi by

wc(pi ) = ws(pi ) � ws(pi � 1) and set wc(p1) = 1. Regarding thesequantities we make four

observations:

(W1) the wedge sum of pm is equal to the total number of wedge points and also to
mX

i =1

wc(pi ),
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pi � 1

pi

pi � 1

pi

pi � 1

pi

Figure2.8: The threecasesin the proof of Lemma 2.13; the solid points form simple permutations.

(W2) it is not hard to construct examples in which pins have negative wedge contribu-

tions; indeed,

(W3) left pins cannot have positive wedge contributions, and �nally ,

(W4) if pi is an up pin, then the right-most wedge point in R i is an upper wedge point.

Wenow claim that eachpi lies in a wedge simple permutation of length at leastwc(pi )+

2. This claim implies the theorem, becauseif no pin lies in a wedge simple permutation of

length at least 2k then wc(pi ) � 2k � 3, so by (W1),

4k2 �
mX

i =1

wc(pi ) � m(2k � 3);

and thus m � 2k, giving the long pin sequencedesired.

The claim is easily observed for i = 1 and, by (W3), vacuously true if pi is a left pin.

Thus by symmetry there are only three casesto consider: an up pin followed by a right

pin, a right pin followed by an up pin, and a left pin followed by an up pin. Thesethree

casesare depicted in Figure 2.8.

Let us consider in detail the caseof an up pin followed by a right pin. By (W4), the

left-most wedge point in R i nRi � 1 lies below p1. By separation, pi � 1 lies above pi , which is

itself the right-most point in R i . Therefore the wedge points in R i n Ri � 1 together with pi

and pi � 1 constitute a type 1 wedge simple permutation. The other casesfollow by similar

analysis; in the right-up casethe wedge points in R i n Ri � 1 together with p1 and pi give a
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wedge simple permutation of type 2, while in the left-up casea wedge simple permutation

of type 2 can be formed from the wedge points in R i n Ri � 1, pi � 1, and pi .

We have therefore established the following theorem.

Theorem 2.14. Every simplepermutationof length at least2(256k8)2k containsa properpin

sequenceof length2k, a parallelalternationof length2k, or a wedgesimplepermutationof length

2k.

The proof of Theorem 2.2 now follows by analysing each of these casesin turn. A

parallel alternation of length 2k + 2 � 10 contains two disjoint simple permutations of

length k. A type 1 wedge simple permutation of length 2k contains two type 1 wedge

simple permutations of length k with only one entry in common, and a type 2 wedge

simple permutation of length 2k contains two type 2 wedge simple permutations of length

k which share two entries. Finally, Corollary 2.8 shows that a permutation with a proper

pin sequenceof length 2k + 2 contains two disjoint simple permutations of length k.

2.4 Pin Words

To explain how to expatiate Theorem 2.14into a simpler “unavoidable substructures” re-

sult, we must �rst changeour viewpoint sowe canconsider arbitrary proper pin sequences

and their subsets,rather than pin sequenceswithin a given simple permutation. This treat-

ment will also be of use in Part II . To this end we extend the pin sequencede�nition to

allow us to place points in the plane asthey are required. While the precisecoordinates of

eachpin will be far from unique, we do not encounter any dif �culties astwo setsof points

in the plane constructed by the samepin sequencewill be order isomorphic.

The changing viewpoint requires that we replace the maximality condition with the

“externality” condition. Formally, a properpin sequenceis a sequenceof points in the plane

satisfying:

� Separationcondition: pi +1 must separatepi from f p1; : : : ; pi � 1g. That is, pi +1 must lie

horizontally or vertically between rect(p1; : : : ; pi � 1) and pi .
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� Externality condition: pi +1 must lie outside rect(p1; : : : ; pi ).

Note that, as we are now building proper pin sequencesfrom scratch, the externality and

separation conditions together imply the maximality condition.

Proper pin sequencescanessentially be described naturally by wor ds over a four -letter

alphabet consisting of the directionsf L; R; U;Dg (standing for left, right, up and down).

This does not, of course,precisely de�ne how the pin sequencebegins, a detail which we

will deal with shortly.

A subsequenceof a proper pin sequence,viewed in the sameorder as the original pin

sequence,consists of some points which still satisfy the separation condition and some

that do not. (Note that externality is always satis�ed.) The points that do still separate

can be described by one of the letters L , R, U or D as before, since they are still proper

pins. Each point p not satisfying separation arose becauseits immediate predecessorpin

in the proper pin sequencewas not included in the subsequence.By externality, however,

p must lie in one of the four quadrantsasde�ned by the axis-parallel rectangleenclosing all

points of the subsequencecoming before p (seeFigure 2.9). We may now representp with

a numeral corresponding to the quadrantin which it lies, and so to encode subsequences

of proper pin sequences,we append to the alphabet f L; R; U;Dg the set of four numerals

f 1; 2; 3; 4g, indicating a point is to be placed in the appropriate quadrant.

Before our formal de�nition of a pin wor d, it remains to give an informal description

of how to represent the start of a pin sequence. This may be done in a variety of ways,

but the most effective method for our purposes will be to �x the placement of the origin,

and regard it as a pin coming before the �rst pin of the original sequence. We can then

represent the �rst pin with a numeral denoting its quadrant in relation to the origin, and

thereafter proceedasalready described.

Formally, the wor d w = w1 � � � wm 2 f 1; 2; 3; 4; L; R; U;Dg� is a pin word if it satis�es:

(W1) w begins with a numeral,

(W2) if wi � 1 2 f L; Rg then wi 2 f 1; 2; 3; 4; U;Dg, and
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p

3 4

2 1

Figure2.9: The point p lies in quadrant 2.

p1
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p3 p4

p5
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p8

p9
p10

p11

p12

p13

p14

p15

Figure 2.10: The proper pin sequencep1; : : : ; p15 shown corresponds to the strict pin wor d w =
3RDRDLU LU RDLD RD. The �lled points correspond to the pin wor d u = 4RDL21DL, the
permutation corresponding to this wor d, i.e., the permutation order isomorphic to the �lled points,
is 27453618.
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(W3) if wi � 1 2 f U;Dg then wi 2 f 1; 2; 3; 4; L; Rg.

Pin wor ds with precisely one numeral, which we term strict pin words, correspond to

proper pin sequencesand it is this correspondencewe formalise �rst. Let w = w1 � � � wm

denote a strict pin wor d and begin by placing a point p1 in quadrant w1. Next take p2 to

be a pin in the dir ection w2 that separatesp1 from the origin, denoted 0. Continue in this

manner, taking pi +1 to be a pin in the dir ection wi +1 that satis�es the externality condi-

tion and separatespi from 0; p1; : : : ; pi � 1. Upon completion, 0; p1; : : : ; pm is a proper pin

sequence,and more importantly , p1; : : : ; pm is aswell; it is the latter pin sequencethat we

say correspondsto w. Note that not only is this sequenceunique up to order isomorphism, 2

but also the quadrant that point pi lies in is determined by w (indeed, for i � 2, this quad-

rant is determined by wi � 1 and wi ). We say that the permutationcorrespondingto w is the

permutation that is order isomorphic to the set of points p1; : : : ; pm . SeeFigure 2.10for an

example. Conversely, we have the following result.

Lemma 2.15. Everyproperpin sequencecorrespondsto astrict pin word.

Proof. Let p1; : : : ; pm be a proper pin sequencein the plane. It suf�ces to place a point

p0 (corresponding to the origin) so that p0; p1; : : : ; pm form a proper pin sequence. By

symmetry, let us assume that p1 lies below and to the right of p2 and that p3 is a left or

right pin. Hence p3 lies vertically between p1 and p2, and by the separation condition, p3

is the only such pin. We place p0 vertically between p1 and p3 and minimally to the left of

p2, i.e., so that no pin lies horizontally between p2 and p0. Clearly p2 separatesp1 from p0

while p3 separatesp2 from f p0; p1g. Mor eover, our placement of p0 guaranteesthat no later

pins separatef p0; p1; p2g, so sincepi +1 separatespi from f p1; : : : ; pi � 1g, it will also separate

pi from f p0; p1; : : : ; pi � 1g.

It remains to construct the permutations that correspond to nonstrict pin wor ds. Let-

ting w = w1 � � � wm denote sucha wor d, we begin asbefore. Upon reachinga later numeral,

say wi , we essentially collapse p1; : : : ; pi � 1 into the origin and begin anew. Mor e precisely,

2It is for this reasonthat we refer to it as theproper pin sequencecorresponding to w.
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we place pi in quadrant wi so that it does not separateany of 0; p1; : : : ; pi � 1. If wi +1 is a

dir ection, we take pi +1 to be a pin in the dir ection wi +1 that satis�es the externality con-

dition and separatespi from 0; p1; : : : ; pi � 1; if wi +1 is a numeral then we again place pi +1

in quadrant wi +1 so that it does not separateany of the former points. In this processwe

build the sequenceof pointscorrespondingto w: p1; : : : ; pm . The permutationcorrespondingto

w is again the permutation order isomorphic to this setof points. Again, Figure 2.10gives

an example of a nonstrict pin wor d.

We can now de�ne an order, � , on pin wor ds. Let u and w be two pin wor ds. De�ne

a strongnumeral-ledfactorto be a sequenceof contiguous letters beginning with a numeral

and followed by any number of dir ections (but no numerals) and begin by writing u in

terms of its strong numeral-led factors asu = u(1) � � � u(j ) . We then write u � w if w can be

chopped into a sequenceof factors w = v(1) w(1) � � � v(j )w(j )v(j +1) such that for all i 2 [j ]:

(O1) if w(i ) begins with a numeral then w(i ) = u(i ) , and

(O2) if w(i ) beginswith adir ection, then v(i ) is nonempty, the �rst letter of w(i ) corresponds

(in the manner described above) to a point lying in the quadrant speci�ed by the �rst

letter of u(i ) , and all other letters (which must be dir ections) in u(i ) and w(i ) agree.

(It is trivial to checkthat � is re�exive and antisymmetric; transitivity requiresonly slightly

moreeffort.) Returning a �nal time to Figure 2.10, the division of u into strong numeral-led

factors is (4RDL)(2)(1DL), while w can be written (3R)(DRDL)(U)(L )(U)(RDL)(DRD).

We now match factors. Sincew3 corresponds to p3 which lies in quadrant 4, (4RDL) can

embed as (DRDL); becausep8 lies in quadrant 2, the (2) factor in u can embed as (L );

lastly, p10 lies in quadrant 1, so the (1DL) factor in u can embed as (RDL) in w. This

veri�es that u � w.

This order is not merely a translation of the pattern-containment order on permutations

(consider the wor ds 11; 13; 1L; 1D ; 21; 23; 2R; 2U; : : : , which are incomparable under � yet

correspond to the samepermutation), but � and � are closely related:
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Lemma 2.16. If thepin word w correspondsto thepermutation� and � � � thenthere is a pin

wordu correspondingto � with u � w. Conversely, if u � w thenthepermutationcorresponding

to u is containedin thepermutationcorrespondingto w.

Proof. If w = w1 � � � wm correspondsto the sequenceof points p1; : : : ; pm then the sequence

p1; : : : ; p` � 1; p`+1 ; : : : ; pm corresponds to the pin wor d w1 � � � w` � 1w0
`+1 w`+2 � � � wm � w,

where w0
`+1 is the numeral corresponding to the quadrant containing p`+1 . Iterating this

observation proves the �rst half of the lemma.

The other dir ection follows similarly . Write u in terms of its strong numeral-led factors

as u = u(1) � � � u(j ) and suppose that the expression w = v(1) w(1) � � � v(j )w(j )v(j +1) satis�es

(O1) and (O2). Now delete every point in the sequenceof points corresponding to w that

comesfrom a letter in a v(i ) factor. By conditions (O1) and (O2) and the remarks in the pre-

vious paragraph, it follows that the resulting sequenceof points corresponds to u. There-

fore the permutation corresponding to u is contained in the permutation corresponding to

w.

2.5 Unavoidable Substructures in Simple Permutations

With the representation of pin sequencesand their subsets in terms of pin wor ds estab-

lished, we may derive the promised unavoidable substructuresresult. De�ne the increasing

oscillatingsequenceto be the in�nite sequence

4; 1; 6; 3; 8; 5; : : : ; 2k + 2; 2k � 1; : : : :

A plot is shown in Figure 2.11; note that the sequencecan be represented,for example, by

the proper pin sequence1RURU � � � .

We de�ne an increasingoscillationto be any simple permutation that is contained in

the increasing oscillating sequence,decreasingoscillationto be the reverseof an increasing

oscillation, and an oscillationto be any permutation that is either an increasing oscillation

or a decreasingoscillation.
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: :
:

Figure2.11:A plot of the increasingoscillating sequence.

Theorem 2.17. Everysuf�ciently long simplepermutationcontainsan alternationof lengthk or

an oscillationof lengthk.

Proof. By Theorem 2.14, it suf�ces to prove that every suf�ciently long proper pin sequence

contains an alternation or oscillation of length k. Takea proper pin sequencep1; : : : ; pm . By

Lemma 2.15, we may assumethat thesepins lie in the plane in such a way that 0; p1; : : : ; pm

is also a proper pin sequence,where 0 denote the origin.

We say that this sequencecrossesan axis whenever pi +1 lies on the other side of the x-

or y-axis from pi , and refer to f pi ; pi +1 g asa crossing. First suppose that p1; : : : ; pm contains

at least 2k crossings, and so crossessome axis at least k times; suppose that this is the y-

axis. Eachof thesey-axis crossings lies either in quadrants 1 and 2 or in quadrants 3 and

4. We refer to these as uppercrossingsand lowercrossings, respectively. By the separation

and externality conditions, both pins in an upper crossing lie above all previous crossings,

while both pins in a lower crossing lie below all previous crossings. Thus we can �nd

among the pins of thesecrossingsan alternation of length at least k.

Thereforewe aredone if the pin sequencecontains at least2k crossings,sosupposethat

it does not, and thus that the pin sequencecan be divided into at most 2k contiguous sets

of pins so that eachcontiguous set lies in the samequadrant. Eachof thesecontiguous sets

is restricted to two types of pin (e.g.,a contiguous set in quadrant 3 canonly contain down

and left pins) and thus sincethesetwo types of pin must alternate, thesecontiguous setsof

pins must be order isomorphic to an oscillation (e.g.,a contiguous set in quadrant 3 must
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be order isomorphic to an increasing oscillation). Thus we are also done if one of these

contiguous setshas length at least k, which it must if the original pin sequencecontains at

least m � 2k2 pins, proving the theorem.

2.6 Other Contexts

Although our proof is highly permutation-centric, these is no reason why analogues of

Theorem 2.2cannot exist for other types of objects: we will shortly discuss the decompo-

sition problem in the graph case. In the context of general relational structures,however,

any analogue of Theorem 2.2would need to allow for more intersection between the two

simple substructures. For example, let L consist of a 2-ary relation < and a k-ary rela-

tion R. Take A with dom(A) = [2n] where < is interpr eted as the normal linear order on

[2n] and R(1; 3; 5; : : : ; 2k � 3; i ) precisely for even i 2 [2k � 2; 2n]. This structure is sim-

ple, but all simple substructures (with at least two elements) of A must contain each of

1; 3; 5; : : : ; 2k � 3, and then to prevent theseelementsfrom containing a nontrivial interval,

the simple substructure must also contain 2; 4; 6; : : : ; 2k � 4.

2.6.1 Pin Sequencesin Graphs

Our approach for indecomposable graphs3 follows the sameprinciples as we used in the

caseof permutations. We want to de�ne pin sequencesand a setof “exceptional indecom-

posablegraphs” (analogous to parallel and wedge simple alternations) in order to prove:

Conjecture 2.18. Every suf�ciently long indecomposablegraphcontainseithera properpin se-

quenceoforderk, or oneofa �nite numberof familiesofexceptionalindecomposablegraphswith k

vertices.

We begin our discussion with somethoughts on pin sequences.Taking two vertices, p1

and p2 of an indecomposable graph G, f p1; p2g cannot be an interval and so there must be

a vertex p3 which is adjacent to preciselyone of p1 or p2, corresponding to a pin. Now since

f p1; p2; p3g is not an interval, we may �nd a vertex p4 adjacent to somebut not all of p1, p2

3Recall that “simple” graphs are more usually called indecomposablegraphs.
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and p3. We may continue in this manner to form a pin sequence, p1; : : : ; pm for which pi is

adjacent to somebut not all of f p1; : : : ; pi � 1g. Any pin sequencewithin an indecomposable

graph may be extended to form a saturatedpin sequence,that is, one in which every vertex

appears. Note that here our de�nition dif fers slightly from the permutation case;there we

had de�ned saturated to mean that rect(p1; : : : ; pm ) enclosesall of our simple permutation

� , while here we have no graphical representation where such an argument makes sense.

As an immediate consequenceof saturation, however, we may state our equivalent to

“right reaching” pin sequences:

Lemma 2.19. Givenany threedistinct verticesp1, p2 andw in an indecomposablegraphG, there

is a w-reachingpin sequencep1; p2; : : : ; pm = w.

It remains to de�ne proper pin sequencesfor graphs. In the permutation case,we

speci�ed two conditions, namely separation and maximality (or externality in someview-

points). Sincemaximality is essentially a feature arising from the pictorial representation

of permutations, �nding an equivalent for graphs is the �rst problem that arises.However ,

separation is easily converted into the leafcondition: for all i � 3, pi is either a

� Leaf:pi is adjacent to pi � 1 and not to any of p1; : : : ; pi � 2, or an

� Antileaf: pi is adjacent to all of p1; : : : ; pi � 2 and not to pi � 1.

It is worth noting that a similar construction called “r educing pseudopaths” can be

found in the recentwork of Zverovich [122]. Delaying the issueof maximality for the time

being, we may proceed to derive results that look very similar to the permutation case.

First, we have an analogue of Theorem 2.7:

Proposition 2.20. If p1; : : : ; pm is a properpin sequenceof length m � 5, then oneof the sets

of verticesf p1; : : : ; pm g, f p1; : : : ; pm g n f p1g or f p1; : : : ; pm g n f p2g inducesan indecomposable

graph.4

4Note that we still require m � 5 as in the permutation case,as witnessed by the sequencef p1 ; p2 ; p3 ; p4g
with p1 � p2 , p3 a leaf and p4 an antileaf, whence f p1 ; p4g is an interval, but so is f p1 ; p3 ; p4g.
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We may also strengthen Lemma 2.19in the desired way:

Lemma 2.21. Givenany threedistinct verticesp1, p2 andw in an indecomposablegraphG, there

is a properw-reachingpin sequencep1; p2; : : : ; pm = w.

Both proofs follow in the same(in fact, somewhat easier)way as the permutation ver-

sions (Theorem 2.7and Lemma 2.9, respectively), noting that maximality may be removed

without signi�cant effect. However we now �nd that, without maximality , progressgrinds

to a halt. If an indecomposable graph contains a long proper pin sequence,then we can

produce our sought-after substructure for Conjecture 2.18. On the other hand, if all the

pin sequencesare short, we must explore convergenceof pin sequencesand hencederive

the set of “exceptional indecomposables”, but it is in convergence that maximality plays

its crucial rôle. We now present the current most promising de�nition of maximality , and

approachesto the question of convergence.

Given an indecomposable graph G on n vertices, we may �x a labelling of V (G) by

[n] = f 1; : : : ; ng. We are now concerned with a particular type of proper n-reaching pin

sequence,starting from p1; p2: the pin sequencep1; p2; : : : ; pm = n is said to be a proper

quicklyn-reachingpin sequenceif, for all i � 3, pi has the greatestlabel of all vertices v such

that p1; p2; : : : ; pi � 1; v can be extended to a proper n-reaching pin sequence.We may now

strengthen Lemma 2.19yet further:

Lemma 2.22. In an indecomposablegraph on n verticeslabelledby [n], for any two vertices

p1; p2 6= n thereis aproperquicklyn-reachingpin sequencep1; p2; : : : ; pm = n.

Two pin sequencesp1; p2; : : : and q1; q2; : : : are said to converge at the vertexx if there

exists i and j such that pi = qj = x, but f p1; : : : ; pi � 1g and f q1; : : : ; qj � 1g are disjoint. As

we saw in the permutation case,however, convergencealone is not suf�cient; we had to

use initially-nonoverlapping pin sequencesto seethat those converging at their thir d pin

still led to one of the exceptional simples. In the graph case,we may replace “initially-

nonoverlapping” with distinct third pins – i.e. we must �nd pin sequencesthat do not

converge until after their thir d pin. If this can be done, then together with the existing
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K n or K n K n or K n K n or K n K n or K n

Figure2.12:Forming exceptional indecomposable graphs from converging pin sequences.

maximality de�nition we should be able to rule out the type (iv) graphs we will encounter

shortly in Figure 2.14, in which caseConjecture 2.18 would hopefully follow . Unfortu-

nately, there remains the question of whether or not we can �nd suf�ciently many pin

sequenceswith distinct thir d pins:

Question 2.23. In an indecomposablegraphon n vertices,howmanyproperquickly n-reaching

pin sequenceswith distinct third pinscanbeformed?

The problem that distinct thir d pins is needed to solve is that convergence does not

immediately lead us to exceptional indecomposables. In the permutation casewe use the

points in the pin sequencesprior to convergenceto construct an alternation, knowing by

maximality that thesesequencescannot “overlap”. In the graph case,this ceasesto be true,

and even with our new notion of maximality we cannot rule out edgesbetween vertices

of dif ferent pin sequences.Thus either we need to adjust the de�nition of maximality , or

intr oduce some further constraints on which pin sequenceswe select before any further

progresscan be made.

The Exceptional Indecomposables. Considering how the “well behaved” pin sequences

converge,we may begin to describethe exceptional indecomposable graphs which contain

only short pin sequences.Supposea (large) set of pin sequencesconverges at the vertex

x. By symmetry we may assumethat for at least half of these sequencesx is a leaf, so x
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(i) (ii) (iii) (iv)

Figure2.13:The four interactions between pin sequences.

is adjacent to the preceding pin of each of these pin sequencesbut to none of the earlier

pins. Selecting these pin sequences,we now consider the set of immediate predecessor

pins, eachof which was either a leaf or an antileaf. We pick, using Ramsey'sTheorem, the

largest subsetof thesepins which forms a complete or independent subgraph, and which

are all leavesor antileaves.

We now consider the pins occurring immediately before the predecessorpins in our

chosen uniform subset. Again using Ramsey's Theorem, we may �nd a uniform subset

of these vertices, and again we restrict our attention to the pin sequencescorresponding

to these vertices. Momentarily ignoring edge interactions between pin sequencesat the

predecessorand pre-predecessorlevels, we now have one of the situations depicted in

Figure 2.12.

We now consider the possible interactions between eachpair of pin sequences,again

with an aim to choosing a uniform subset. Listing thesesequencesin some order (in Fig-

ure 2.12we view the order asgoing from top to bottom), thereare essentially four dif ferent

interactions between two pin sequences,types (i) — (iv) asshown in Figure 2.13.

A Ramsey-type argument may now be used to obtain a subsetof thesepin sequences

whose pairwise interactions are uniform. The resulting graph needsto be either indecom-

posable or nearly so – as in the permutation case,we allow the removal of one or two

points. In somecasesthe graph is immediately indecomposable (for example, the “double

star” in Figure 2.14), while in others the removal of one or two points is suf�cient (the

“down and to the right” graph in Figure 2.14, the �lled nodes form an indecomposable

graph). However , in certain casesno exceptional indecomposable seemsto be obtainable,

and these structures are the ones that need to be ruled out by an appropriate de�nition
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Figure2.14: From left to right, the “double star”, a “down and to the right” graph and a type (iv)
highly decomposablegraph.

of maximality (the type (iv) interaction graph in Figure 2.14). Note that, if we have also

taken pin sequenceswith distinct thir d pins, we could, instead of looking at the penulti-

mate pins before convergence,look at the antepenultimate pins and thereperhaps rule out

the existenceof a large number of type (iv) interactions.
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SIM PLE EXTEN SION S

3.1 Introduction

OUR A IM in this chapter is to establish how we may embed any given L -structure A

into a simple L -structure B containing as few extra elements as possible. Formally,

we say that B is a simpleextensionof A if B is simple, j dom(A)j < j dom(B)j and Bjdom(A ) =

A. Our aim then is to minimise j dom(B)ndom(A)j, writing it asa function of n = j dom(A)j.

This work is partly motivated by the result for tournaments dating back to 1972,when

Erd �os, Fried, Hajnal and Milner [51] showed that every tournament may be extended to

a simple tournament requiring at most two extra vertices (we will review this result in

Section3.4). Clearly, however, it will not be suf�cient to consider just the two-point exten-

sions for every relational structure. Nor do we need to look far to �nd an example: there

is clearly no two-point simple extension of an arbitrary complete graph K n . The permuta-

tion caseis dif ferent again, while posetsfall somewhere between the two. Thus asking for

a solution for an arbitrary relational structure is somewhat meaningless – as we will see,

even the well-known binary relational structuresdemonstrate a wide variety of results.

We may, however, follow a general approach by recalling the substitution decompo-

sition (Theorem 1.5 on Page 16) of A , and using induction. When the skeleton S of A

de�nes a unique de�ation A = S[A s : s 2 dom(S)] into maximal intervals (i.e. when

j dom(S)j � 3), we can embed A into B inductively by embedding eachA s into B in a pre-

scribed way. The degenerateand linear casesmust in general be dealt with more carefully ,

47
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although induction can still be used to produce the required result.

3.2 Permutations

We begin our study with the permutation case. Recall that, when viewing permutations

graphically, an interval of a permutation � can be seenas a set of points enclosed by an

axis-parallel rectanglewith no other points above,below, to the left or to the right. To em-

bed a given � in a simple permutation, therefore, we must ensure that every axis-parallel

rectangle containing at least two points of � may be extended by a pin from the simple

extension.

Lemma 3.1. An increasingpermutationof sizen hasa simpleextensionwith dn+1
2 e additional

points.

Proof. For n = 2 the increasing permutation 12 is embeddable in the simple permutation

2413, so now suppose n � 3. Let � = 12� � � n. For n = 2k, we claim the permutation

k + 1; 1; k + 3; 2; : : : ; 3k � 1; k; 3k + 1; k + 2; k + 4; : : : ; 3k

is simple and contains 12� � � n. For n = 2k + 1, we claim

k + 2; 1; k + 4; 2; : : : ; 3k + 2; k + 1; k + 3; k + 5; : : : ; 3k + 1

is simple. That both of thesepermutations aresimple follows easily by checking Figure 3.1.

Note also that m = dn+1
2 eis the bestpossible bound. Every adjacentpair i; i + 1 must be

“separated” either horizontally or vertically by one of the additional points, and the points

� (1) = 1 and � (n) = n of � must not lie in the “corners” of the simple extension — a total

of n + 1 gaps to be �lled. The bound on the number of additional points is then obtained

by observing that eachcan �ll at most two gaps (one horizontally , one vertically).

By symmetry, decreasingpermutations may be extended in the sameway:
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Figure3.1: Simple permutations containing 12� � � n, for n = 12 (left) and n = 13 (right).

Lemma 3.2. A decreasingpermutationof sizen hasa simpleextensionwith dn+1
2 e additional

points.

We are now ready to state the result in the general case.

Theorem 3.3. Every permutation� on n symbolshasa simpleextensionwith at most dn+1
2 e

additionalpoints.

Proof. We proceedby induction on n � 2, claiming that for eachpermutation � of length n

we may construct two extensions,� (M ) and � (m) , satisfying:

� Viewed asextensions,both � (M ) and � (m) have a new leftmost point which is neither

a new maximum nor a new minimum, called the entry point.

� Both � (M ) and � (m) have a new exit point; for � (M ) this is a new maximum while for

� (m) this is a new minimum, and in both casesit is neither a new leftmost point nor

a new rightmost point.

� The only minimal non-singleton intervals of � (M ) and � (m) contain the new exit

point.

� At least one of � (M ) and � (m) is simple.
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In the basecasen = 2, either � = 12 or � = 21. When � = 12, � (M ) = 2413is simple,

and the only minimal non-singleton interval of � (m) = 3124is 12, which contains the exit

point. The case� = 21 is dealt with by symmetry.

Sonow supposen � 3. If � is an increasing(respectively, decreasing)permutation, then

Lemma 3.1 (resp., Lemma 3.2) proves the existenceof a simple extension of the required

size. Note further that the simple extension satis�es the requirements to act as� (M ) (resp.,

� (m) ), using symmetry if required. When � is an increasing permutation, we obtain � (m)

from � (M ) by changing the new maximum for a new minimum using the mapping

� (m) (i ) = � (M ) (i ) + 1 mod j� (M ) j:

For decreasingpermutations, � (M ) is created similarly .

We may therefore assumethat � is neither an increasingnor a decreasingpermutation.

Write � asthe substitution decomposition, � = � [� 1; � 2; : : : ; � m ] where the simple skeleton,

� , is of length m � 2, and � 1; � 2; : : : ; � m are permutations of size j� i j = pi for eachi . First

suppose m > 2 so that the substitution decomposition is unique. If pi = 1 for all i , then

� = � is already simple. We construct � (M ) and � (m) by adding precisely two points. The

�rst is a new leftmost point, which may be inserted vertically anywhere except as a new

maximum, minimum, or adjacent to � (1). The new maximum or minimum is inserted

similarly , preserving simplicity .

So now suppose that at least one � i contains at least two points. For every such � i ,

the inductive hypothesis allows us to extend to either � (M )
i or � (m)

i by adding at most

dpi +1
2 e points. Our choice between � (M )

i or � (m)
i is made according to the location of the

next leftmost non-singleton block, � j say (i.e. j > i and no k with j > k > i and � k non-

singleton); if � (j ) > � (i ), then we choose� (M )
i , while if � (j ) < � (i ), we choose� (m)

i . In

either case,the exit point of � (M )
i or � (m)

i is simultaneously used as the entry point for the

extension of � j to � (M )
j or � (m)

j . In this way, we work left-to-right through � connecting the

non-singleton blocks � i (seeFigure 3.2). For the rightmost such block � r , we use � (M )
r to

form � (M ) , and � (m)
r to form � (m) , the exit point being used asthe new maximum for � (M )

or the new minimum for � (m) , respectively.
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Figure3.2: Connecting entry and exit points in the substitution decomposition.

Theseextensions will fail to be simple if the rightmost non-singleton block � r is also

the maximal or minimal block by value in the cases� (M ) and � (m) respectively, and only

then if � (M )
r or � (m)

r was not simple. Since� r can only satisfy at most one of these,we may

turn to the other for our simple extension. By symmetry, therefore, let us suppose that the

rightmost non-singleton block � r was not maximal in value.

Letting I be a non-singleton interval of � (M ) , �rst consider the casewhere I contains

points from two distinct original (non-extended) blocks � i and � j . In this casethe original

simple skeleton � of � forcesus to include every such block, and subsequently all the ex-

tended points too. If on the other hand I contains two points in someextended block � (M )
i

or � (m)
i , then it must contain the exit point of that block and a point of the original � i (else

� (M )
i or � (m)

i did not satisfy the minimal proper interval property). Unless � i was the right-

most non-singleton block, this exit point acts as the entry point of the extension of some

other block � j , which then requiresus to include at least one other point of this extended

block, and hencea point of the original block � j , returning us to the previous case.Finally,

if � i was in fact the rightmost non-singleton block, then it was not the maximal block by

value, and so the exit point of � (M )
i forcesus to include the entirety of someother � j block

(note that such a � j can be a singleton), again reducing to our �rst consideration.

In the casewhere m = 2 the substitution decomposition is not unique. Without loss

we may assumethat � = 12, and so we may write � = 12[� 1; � 2], where � 1 and � 2 may be

chosenin a number of dif ferent ways. We begin by choosing � 1 to be as large aspossible.
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Unless � 2 is now a singleton, we will use this decomposition and proceed by extending

� 1 to � (M )
1 and � 2 to � (M )

2 or � (m)
2 , and connecting the exit point of the �rst to the entry

point of the second. If � 2 is a singleton and � 1 is not sum decomposable,we continue as

above but with the exit point of � (M )
1 placed above � 2. When � 1 is itself decomposableas

� 1 = 12[� 0
1; 1], we look at the decomposition � = 12[� 0

1; 12]. If again � 0
1 = 12[� 00

1 ; 1], then

we repeat,so that � = 12[� 00; 123]. Repeatthis process,noting that it must terminate before

we reachthe end of � , as otherwise � is increasing, and at termination proceedas before.

Simplicity follows in a similar manner to the unique decomposition case.

The number of points added in every one of the above casesis at most
P m

i=1

l
pi +1

2

m
�

(m � 1) � dn+1
2 e, noting that

P m
i=1 pi = n.

3.3 Graphs

Recall that, in a graph G, an interval is a set of vertices X � V (G) such that N (v) n X =

N (w) n X for every v; w 2 X , and instead of “simple” we use the wor d indecomposableto

describea graph containing no proper intervals. We begin by specialising the Substitution

Decomposition Theorem 1.5for the context of graphs:

Proposition 3.4. LetG beanygraph.Thenoneof thefollowingholds:

(1) G = H [Jv : v 2 V(H )] where H is the simpleskeletonof G, and this decompositionis

unique.

(2) G is disconnectedandcanbewritten possiblynon-uniquelyasG = K 2[J1; J2].

(3) G is disconnected,andG canbewritten possiblynon-uniquelyasG = K 2[J1; J2].

Our approachnow follows the samepattern asthe permutation case.We �rst consider

simple extensionsof the complete graph K n , which is oncemore the “worst case”scenario.

This result �rst appeared in Sumner's Ph.D. Thesis[115].

Lemma 3.5(Sumner [115, Theorem 2.45]). K n hasasimpleextensionwith dlog2(n + 1)eaddi-

tional vertices.
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K n� 1

B

v K n� 1

B

v

b�

(1) (2)

Figure3.3: The two casesof Lemma 3.5.

Proof. We proceed by induction on n. The casen = 1 is trivial. For n = 2, we must

add two new vertices. Regardless of whether the subgraph formed by the new vertices is

connected or not, there is a way to add edgesbetween the new and old vertices to form a

graph isomorphic to P4, the path of length four.

Now suppose G �= K n for n > 2. There are two cases(thesediscussions are accompa-

nied by Figure 3.3):

(1) dlog2(n + 1)e = dlog2 ne. Choosea vertex v 2 V(G), and use induction to add a setof

vertices B with edgesto G � v so that (G � v) [ B is simple. The remaining vertex v

can be assigneda neighbourhood in B dif ferent to the neighbourhood of every other

vertex in G � v, and so that N (v) \ B 6= B . Sincev has a dif ferent neighbourhood

to every other vertex, it cannot lie in an interval with any other vertices, and so the

graph is simple.

(2) dlog2(n + 1)e = dlog2 ne+ 1. Choosea vertex v 2 V(G), and use induction to add a

setof vertices B with edgesto G � v so that (G � v) [ B is simple. For the remaining

vertex v, we add a new vertex b� and connect it to v.

Since(G� v) [ B is simple, any proper interval in the extended graph G[ B [ f b� g will

need to involve either v or b� (or both). We claim that any interval I in the extended

graph of size � 2 containing v also contains b� . If I contains a vertex x 2 G � v, then

b� =2 N (x), so b� 2 I . The other caseis where I contains a vertex b 2 B , and then
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there is somex 2 G � v not connectedto b, so x 2 I , reducing to the previous case.

Now supposewe have an interval I � f x; b� g for x 2 (G� v)[ B . Sincethe only vertex

in G connected to b� is v, and x is connected to at least one other vertex y 2 G � v,

we have y 2 I , and x; y 2 I implies (G � v) [ B � I . The vertex v, if not already in I ,

must be included asN (v) \ B = ; .

Note that the above proof does not specify the internal edgesof B , nor edgesbetween

any vertex in B and b� , and so we may useany graph of size dlog2(n + 1)e that we choose.

Furthermor e,by taking the complement, this immediately implies the following:

Lemma 3.6. K n hasasimpleextensionwith dlog2(n + 1)e additionalvertices.

The bound m = dlog2(n + 1)e is also the smallest possible, for if we were to add a setB

of m vertices, with n > 2m � 1, then either two vertices in G have the sameneighbourhood

in G [ B , or one vertex of G is connectedto every other vertex in G [ B , both of which give

an interval.

Theorem 3.7. Every graph G hasa simpleextensionwith at most m = dlog2(jV (G)j + 1)e

additionalvertices.

Proof. Weproceedby induction on n = jV (G)j. The basecasesn = 1 and n = 2 are covered

by Lemmas 3.5 and 3.6, so now suppose n � 3. Write G = H [Jv : v 2 V(H )] where H is

the simple skeleton of G. There are two caseswhen jV (H )j = 2; we will assumewithout

loss in this casethat H = K 2, i.e. that G is disconnected. Further, we will choosethe Jvs so

that at least one of them is connectedand has at least two vertices (having established the

result for independent setsin Lemma 3.6).

If H = G then the graph is already simple, but for the induction to work we must

be able to extend to a larger simple graph. This we do by adding a single vertex, noting

that the only intervals that need to be avoided in this caseare either all of the old graph or

intervals of sizetwo involving the new vertex. The new vertex cannot thereforebeadjacent
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to all or none of the old vertices, and it must also not have the sameneighbourhood asany

other vertex, but any other set of adjacenciesis permitted (giving 2n � 2n � 2 possible

one-point simple extensions).

Now assumethat at least one interval Jv is non-trivial. Suppose�rst that jV (H )j � 4

so the substitution decomposition is unique. For eachJv we may add a set of vertices B v

which are connected to vertices in Jv so that Jv [ Bv is simple by induction. Fix an x 2 H

for which Bx is of maximal size (note that 2 � jV (B x )j � m). For every other interval Jv ,

identify Bv with any subsetof Bx , unless jV (Jv)j = 1, in which casewe set B v = ; . Then

we specify the edgesbetween Jv and Bx n Bv such that:

(G1) Every pair of vertices a 2 Jv and b 2 Bx n Bv disagree on at least one vertex of

Jx [ Jv [ Bx n f a;bg.

First consider the casewhere Jv is not a singleton. If there is a vertex in Jv that is

adjacent to every other vertex in Jv , then we can satisfy (G1) by adding none of the edges

between Jv and Bx nBv . Otherwise we can satisfy (G1) by adding all of the edgesbetween

Jv and Bx n Bv .

If Jv = f ag is a singleton, let us suppose v 6� x in H by symmetry. Here we achieve

(G1) by connecting a to no vertex of B x ; if b 2 Bx is connected to at least one vertex of Jx

then a and bdisagreeon Jx , while if b 2 Bx is connectedto no vertex of Jx then, to prevent

Jx [ Bx n f bg from being an interval of Jx [ Bx , there must be a vertex of B x to which b is

adjacentand on which a and bwill disagree.

Weclaim the resulting graph is simple. Consider an interval I with at least two vertices

a and b. There are four cases:

� a;b 2 Jx [ Bx : simplicity implies that Jx [ Bx � I . Then for any Jv such that jV (Jv)j �

2, thereare at least two vertices of B v in the interval, which forcesJv [ Bv � I . When

jV (Jv)j = 1, by (G1) the single vertex is adjacent to some but not all of Jx [ Bx and

so must be included in I .

� a;b 2 Jv [ Bv , v 6= x: by the construction jV (Jv)j � 2, and by simplicity Jv [ Bv �
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I . There are now two vertices in I from B v � Bx , a casewhich has already been

considered.

� a 2 Ju and b 2 Jv , u 6= v: �rst, if jV (H )j � 4 then the simplicity of H implies that

V (G) � I , and in particular Jx � I , reducing to the �rst caseabove. Thus we have

H = K 2 and (say) Ju connectedwith at least two vertices, by our assumptions at the

beginning of the proof. We then get that a has a neighbour in Ju while b does not,

leading to the caseabove.

� a 2 Jv , v 6= x, and b 2 Bx n Bv: by (G1) there must be at least one more vertex in I ,

and thus one of the other casesapplies.

Although we know this bound is necessarilytight for complete or independent graphs,

there does remain the question of whether or not we can do any better for an arbitrary

graph G on n vertices, i.e. is therea smaller simple extension?Letting ! (G) denote the size

of the largestclique (complete subgraph) of G, and � (G) the sizeof the largest independent

set of G, we pose(without further discussion here) the following conjecture:

Conjecture 3.8. Every graphG hasa simpleextensionwith at mostdlog2(m + 1)e additional

vertices,wherem = max[! (G); � (G)] is thesizeof thelargestcliqueor independentsetin G.

3.4 Tournaments

Recall that a tournament is a complete oriented graph, and an interval of a tournament T is

a setA � V (T) such that for all v =2 A, either v ! A or v  A. Given a tournament, we may

de�ne an abstractalgebra (for a formal de�nition of abstractalgebras,seeSubsection5.3.1)

with two idempotent binary operations AT = hT; _; ^i , so that if x ! y, then x_ y = y_ x =

x and x ^ y = y ^ x = y. A tournament is simple if and only if its corresponding abstract

algebra is also simple, i.e. the kernel of every homomorphism of an abstract algebra is

either the whole structure or a single element. Simple extensions in tournaments have
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thus received some attention, and in particular it is known that at most two vertices are

required in every case,while one vertex is suf�cient in all but a certain family of cases.

Theorem 3.9(Erd �os,Fried, Hajnal and Milner [51]). Everytournamenthasasimpleextension

with at most2 additionalvertices.

Proposition 3.10 (Erd �os, Hajnal and Milner [52]). A tournamentT hasa one-vertexsimple

extensionunlessjT j = 3 or it hasanoddnumberofverticesandis transitive.

Note that theseresults hold for tournaments of arbitrary cardinality , though they had

previously been proved for �nite tournaments by Moon [96]. We give here a proof of the

�nite caseusing the substitution decomposition. Observe that the non-unique decompo-

sitions correspond precisely to transitive tournaments, i.e. tournaments for which x ! y

and y ! z implies x ! z.

Proof. First observe that there are no simple tournaments on 4 vertices, and so a simple

extension of a tournament on 3 vertices requires at least two vertices. There are, up to

isomorphism, only two 3-vertex tournaments, and checking eachcasein turn shows that

two vertices is suf�cient.

Now suppose T is a �nite transitive tournament, so we may label the vertices of T as

1; 2; : : : so that i ! j if and only if i < j . We add a single vertex x to the tournament

satisfying x ! i if i is odd and i ! x if i is even. Unless T has an odd number of vertices,

it is straightforwar d to check that the resulting tournament is simple. In the casewhere

jT j = 2n + 1, we observe that the set of vertices with labels f 1; 2; : : : ; 2n; xg is an interval,

as they all look at the vertex labelled 2n + 1 in the same way. If alternatively we added

a vertex y satisfying y ! i if i is even and i ! y if i is odd, then we �nd that the set

f 2; 3; : : : ; 2n + 1; yg forms an interval. Note that for any other single vertex extension, z

say, there must exist a label i for which z ! i and z ! i + 1 or i ! z and i + 1 ! z,

and in either casef i; i + 1g is an interval. Thus T has no single vertex simple extension. A

2-vertex simple extension is easily formed by, say, adjoining both the vertices x and y, as

in Figure 3.4.
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Figure3.4: A 2-vertex simple extension of a transitive tournament on 7 vertices.

Having covered the transitive and 3-vertex cases,we claim that any other �nite tour -

nament T may be extended by a single vertex x to form a simple tournament. The substi-

tution decomposition allows us to write T = S[A s : s 2 S], where the skeleton S is either

simple or transitive.

Where S is simple, if every As contains just one vertex then T = S. Unless jT j = 3 (a

casethat hasalready beencovered), the addition of x will preservesimplicity providing it

doesnot have the sameconnectionsasany existing vertex of T. (Note that if jT j = n, there

are 2n � n dif ferent ways of choosing x.) Where there is at least one non-singleton block

As, we still attach x to every singleton block as before, ensuring x does not end up with

the sameadjacencyasany of them.

This leaves just the non-singleton blocks, which we attach to x as follows. Any such

As which is neither transitive of odd degree nor satis�es jA sj = 3 may, by induction, be

connected to x so that As [ f xg is simple. If, however, As is transitive and jAsj = 2n + 1,

then, labelling the vertices of As with 1; 2; : : : ; 2n + 1 as before, set x ! i if i is odd and

i ! x for i even. This makes the set f 1; 2; : : : ; 2n; xg a candidate to be an interval, but

we may check that either (1) there is another non-singleton block A s0 satisfying As ! As0

or As0 ! As, but x looks at elements of As0 dif ferently, or (2) all the other blocks of the

substitution decomposition aresingletons, but sincex is already attached to all suchblocks

preserving simplicity there is a singleton block on which x and A s disagree. A similar

argument applies to the casewhere jA sj = 3. The simplicity of the skeleton S now ensures

this one-point extension is simple.

If the skeleton is transitive then we may take S maximally so that eachA s is uniquely

de�ned. Mor eover, at least one such A s is not a singleton (as T is not transitive), and no
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non-singleton block can be transitive. The vertices of S may be labelled 1; 2; : : : as before,

but let us further identify the unique vertex s� of S for which s ! s� for all s 2 S n f s� g.

We attach x to every non-singleton block in any way so that:

� If A1 is a singleton, then x ! A1.

� If As� is a singleton, then As� ! x.

� The vertex x looks at every pair A i and A i +1 of adjacent singleton blocks dif ferently.

This leaves the non-singleton blocks, which, by induction, are attached to x so that the

resulting extension of eachsuch block is simple. It is then easily checkedthat the resulting

one-point extension of T is simple.

3.5 Posets

Posetsagain give a dif ferent result, arising from the non-unique casesof the substitution

decomposition – we encounter a “mix” of the results in the non-unique casesof permu-

tations and graphs. For the former, recall that these casescorrespond to the increasing

and decreasing permutations, which (viewing them as relational structures) occur when

the two linear orders agree – i.e. they correspond to a single linear order. For the latter,

the non-uniqueness comesin the form of complete and independent graphs, arising from

complete or empty edgesets– theseare degeneratecases.Posetscan be decomposednon-

uniquely either through linearity or through degeneracy, and the simple extension in each

caseis signi�cantly dif ferent.

We begin with the casewhere a poset (P; < ) is a linear order. This caseis essentially

identical to the increasing permutation caseof Lemma 3.1. Indeed, there is a mapping

between permutations and posets: letting � be a permutation on [n], we may form the

poset (P; � ) where P = [n], and i � j if and only if both i < j and � (i ) < � (j ). While poset

intervals do not always correspond to permutation intervals, simple permutations do map

to simple posets:
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n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Figure3.5: Simple extensionsof short linear orders.

Lemma 3.11. A permutationis simpleif andonly if its correspondingposetis simple.

Proof. Suppose�rst that � is a simple permutation, that (P; � ) is its corresponding poset

and that A is an interval in the poset. The corresponding set of points A � of � cannot

form an interval, so there must exist some point (i; � (i )) of � not in A � which separates

the points in rect(A � ) either horizontally or vertically . However , the element i of the poset

corresponding to (i; � (i )) must then disagreeon the elementsof A, a contradiction sinceA

was an interval.

Conversely, suppose (P; � ) is a simple poset corresponding to the permutation � , but

that � contains some proper interval I . The set of elements I P of P corresponding to I

cannot form an interval, so thereexistssomeelement p 2 P nI P for which p is not related to

every element of I P in the sameway. However , the point (p; � (p)) of � (which corresponds

to p 2 P) must then separatesomepoints of I , a contradiction since I was an interval.

Observe that, although this mapping is not injective, increasing permutations map

uniquely to linear orders, and thus:

Lemma 3.12. A linear order (P; < ) on n elementshasa simpleextensioncontaining at most

m =
�

n + 1
2

�
additionalelements.
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Figure3.6: A 3-element simple extension of a 7-element antichain.

Proof. The linear order (P; < ) corresponds to an increasing permutation. By Lemma 3.1,

an increasing permutation on n points has a simple extension with at most m =
�

n + 1
2

�

additional points. By Lemma 3.11the corresponding poset is also simple, completing the

proof.

SeeFigure 3.5 for examples of the �rst few casesof this construction. Note that, as in

Lemma 3.1, the casen = 2 must be handled separately, the resulting simple poset corre-

sponding exactly to the permutation 2413.

Meanwhile, the degeneratecaseis an antichain, i.e. a poset containing no non-trivial

relations. Recalling that every poset has a corresponding comparability graph, we may

proceedin the sameway asthe graph case.

Lemma 3.13. An n-elementantichain hasa simpleextensionrequiring at mostdlog2(n + 1)e

additionalelements.

Proof. The comparability graph of the poset (P; < ) is the independent graph K n , which,

by Lemma 3.6, hasa simple extension with dlog2(n + 1)eadditional vertices. Furthermor e,

the edgesbetween theseadditional vertices are unspeci�ed, so we may chooseany set of

edgesthat is transitively orientable. The extension for the graph was indecomposable, so

by Lemma 1.1(on Page11) the corresponding poset will be simple.

For example, Figure 3.6 shows a three-elementsimple extension of an antichain with

sevenelements,where the additional elements were taken to be incomparable. By the re-

sult for graphs, it follows that this is the best possible bound. Note also that the linear

caseof Lemma 3.12 is not easily solved by considering the corresponding comparability
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graph (equal to K n ) since any extension of the graph would need to be transitively ori-

entable. Of course, the bound in Lemma 3.12is also the best possible by its connection to

the permutation case.

Wenow consider simple extensionsof an arbitrary poset. Our approachtakesmuch the

same form as the permutation case,inductively “connecting” entry and exit points from

the simple extensionsof the intervals in the substitution decomposition.

Theorem 3.14. A poset(P; < ) on n elementshasa simpleextensionwith at mostm =
�

n + 1
2

�

additionalelements.

Sketchof proof. We proceedby induction on n, using the substitution decomposition. Our

claim is that we may form three extensions P (mm ) , P (M M ) and P (M m) of a poset (P; < ),

satisfying:

� Eachof the threeextensionshas two new distinguishedelements. For P (mm ) theseare

both new minima, for P (M M ) new maxima, and for P (M m) there is one maximum

and one minimum.

� The only minimal non-singleton intervals of P (mm ) , P (M m) and P (M M ) contain one

of the distinguished elements.

� At least one of P (mm ) , P (M m) and P (M M ) is simple.

The basecaseis n = 2, in which casethe poset is either linear or an antichain. Sim-

ple extensions have already been exhibited in Lemmas 3.12and 3.13, and the extensions

P (mm ) , P (M m) and P (M M ) are easily formed in eachcase.

Sonow supposen > 2 and, by the Substitution Decomposition Theorem 1.5, our poset

may be expressedas a de�ation P = S[A s : s 2 S] where (S;< ) is simple, linear or an

antichain. When S is simple, we proceed in essentially the sameway as the permutation

case. If every As is a singleton, then (P; < ) is already simple, but for the purposes of the

induction we can add two elements to form P (mm ) and P (M M ) in any way we choose,

noting that any minimal non-singleton interval will necessarily involve at least one of the
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Figure3.7: A 2-element simple extension of an arbitrary simple poset.

distinguished elements. Meanwhile, we may ensure that P (M m) is a simple extension by

adjoining two elements to any chosenelement of P in the way shown in Figure 3.7.

When at least one As has more than one element, induction may be used on eachsuch

interval to form the threeextensionsA (mm )
s , A (M m)

s and A (M M )
s . Wechoosethe appropriate

extension according to the following set of rules. Fix an order on the elements s of S for

which the corresponding block As is not a singleton, labelling them as 1; 2; : : : ; k. For

1 � i < k, we pick the distinguished elementsof the extension of A i asfollows:

� One of the distinguished elements is predetermined (for i > 1) by the extension of

A i � 1. When i = 1, the distinguished element will act as one of the distinguished

elements in the extension of P, and so must be chosenaccordingly .

� If A i > A i +1 , createa distinguished element that is both a new minimum for A i and

a new maximum for A i +1 .

� If A i < A i +1 , createa distinguished element that is both a new maximum for A i and

a new minimum for A i +1 .

� If A i and A i +1 are incomparable, createa distinguished element that is either a new

maximum or a new minimum for both A i and A i +1 .

The �nal distinguished element of A k forms the other distinguished element in the exten-

sion of P, and so must be chosen accordingly . An argument similar to the permutation

caseproves that one of the extensions P (mm ) , P (M m) or P (M M ) is simple and of the re-

quir ed size. In the non-unique cases,pick S maximally so that S de�ates P uniquely , and

proceedasabove.
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In the way that simple extensionsof posetsseemto lie somewherebetween the solution

for permutations and graphs, we may be tempted to posea result similar to Conjecture 3.8.

Certainly the above bound can be impr oved when the skeleton turns out to be a linear

order or an antichain by connecting more than two distinguished points together at a time,

asdictated by Lemmas 3.12and 3.13. Preciselyhowthis impr ovesthe bound, though, is not

clear. Even when the skeleton is not degeneratethereare times when severaldistinguished

points can be combined, but the rules for this seemdif �cult to establish. All we can do at

this stageis to ask the following question:

Question 3.15. How is thesizeof a minimal simpleextensionof a posetaffectedby the lengthof

thelargestchainor antichainin theposet?
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SUBSTITUTION DECOM POSITION

A LGORITH M S

M UCH OF TH E EM PH A SIS in the study of the substitution decomposition has been

placed in its computation in optimal time. Finding an algorithm that is optimal

for an arbitrary relational structure is possibly a worthy goal, though one that is likely

to be dif �cult to achieve. For example, as we will shortly seethe method used to derive

an optimal algorithm to decompose permutations relies very heavily on their graphical

presentation, which really is not extendable to more general structures. Although this

doesn't rule out the discovery of an all-encompassing algorithm, it does indicate that such

a method would be overly-complicated and most probably unenlightening.

We thus restrict our attention predominantly to the permutation case,though we will

later discuss the sameproblem for graphs. The �rst algorithm which could compute the

substitution decomposition of a permutation in linear time was given by Uno and Yag-

iura [116]. We will presenta more recentand straightforwar d algorithm �rst published by

Bergeron, Chauve, Montgol�er and Raf�not [17], and here rewritten to �t our treatment of

permutations better.

In addition to the linear time substitution decomposition, Bergeron et al. [17] provide

an optimal algorithm to compute the “common intervals” of a set of permutations on n

elements, where a commoninterval is a set of (not necessarily contiguous) integers that,

in each permutation � , is the image � ([i; j ]) of a contiguous set of positions. Our notion

65
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of interval is recovered from this de�nition by considering the common intervals of the

set f �; � g, and our treatment here will be restricted just to this variety of interval. Note

that, as there can be N = n(n � 1)=2 intervals in a permutation � of length n (consider, for

example, the intervals of an increasingpermutation), we cannot expectto �nd an algorithm

to compute all of these intervals in linear O(n) time. Instead, the best-possiblealgorithm

which we presentworks in O(n + N ) time. Despite it not being computable in linear time,

this algorithm is interesting becauseof the importance intervals play in biomathematics,

asmentioned in Chapter 1.

However , in order to compute the substitution decomposition of a permutation, we

do not actually need to compute all the intervals; it is suf�cient to compute the “str ong

intervals” (de�ned in Section 4.3, though essentially they may be viewed as the intervals

occurring in the substitution decomposition tree),and there can be at most 2n � 1 of these.

Thus we are able to hope for a linear time O(n) algorithm, which is precisely what we

obtain.

4.1 One- and Three-sided Intervals

We begin by considering an alternative way to view intervals; we may think of an interval

of a permutation � as a set of points f p1; : : : ; png which may be enclosedby the rectangle

rect(p1; : : : ; pn ) such that, in the plot of � ,

� rect(p1; : : : ; pn ) contains no points other than p1; : : : ; pn , and

� there are no pins separating any of p1; : : : ; pn extending from rect(p1; : : : ; pn ) in any

dir ection (left, right, up or down).

If we weaken this second restriction by allowing pins to extend only in speci�ed di-

rections, we can obtain setsof points that are not intervals but look like intervals on the

sidesout of which pins are forbidden. For example, we may obtain a three-sidedright-open

interval by specifying that pins extending from rect(p1; : : : ; pn ) can only be right pins. Our

linear-time algorithm commencesby �rst determining particular left-up-down- and right-
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Figure4.1: The shaded region denotes rect(I r ud (� ; 4)) of � = 289576314.

up-down-open intervals and using theseto �nd the related right- and left-open intervals,

which can then be used to “generate” the four -sided intervals.

Denote by I r ud(� ; i ) the largest right-up-down-open interval of � for which i is the

smallest (i.e. leftmost) position, i.e. (i; � (i )) de�nes the left edge of rect(I r ud(� ; i )) . For ex-

ample, if � = 289576314, then I r ud(� ; 4) = f (4; 5); (5; 7); (6; 6); (7; 3); (9; 4)g (seeFigure 4.1).

Also, denote by I r (� ; i ) the largest right-open interval of � for which i is the smallest po-

sition. Returning to the previous example, I r (� ; 4) = f (4; 5); (5; 7); (6; 6); (7; 3)g. Similarly ,

I `ud (� ; i ) is the largest left-up-down-open interval, and I ` (� ; i ) the largest left-open inter-

val of � for which i is the greatestposition. Sincethroughout this sectionwe will be dealing

only with a single permutation � , we will write I r ud(� ; i ) more brie�y as I r ud(i ), I r (� ; i ) as

I r (i ) and so on.

Our algorithm begins by computing I r ud(i ) and I `ud (i ) for each i . Sincethe values of

the points in eachof I r ud(i ) and I `ud (i ) form a contiguous set, it is suf�cient to compute the

points whose values are maximal and minimal for each. For a set of points P, denote by

maxval(P) the positionof the point in P whose value is maximal, and by minval(P) the posi-

tion of the point whose value is minimal. Thus, our �rst step is to compute minval(I r ud(i )) ,

maxval(I r ud(i )) , minval(I `ud (i )) and maxval(I `ud (i )) . The �rst of theseis done using Algo-

rithm 4.1, the others may be determined similarly .

Proposition 4.1(Bergeron et al. [17, Proposition 4]). Let � bea permutationof lengthn. Then

Algorithm 4.1computesminval(I r ud(i )) for all i 2 [n] in O(n) time.

Proof. We assumethat � � 1 hasbeenprecomputed – a processwhich is easily done in O(n)
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Algorithm 4.1Computing minval(I r ud(i ))

S a stack recording point values, with topmost element s
� � 1(0)  0
push 0 on S
for i from 1 to n do

while � � 1(i ) < � � 1(s) do
pop s from S

end while
minval(I r ud(� � 1(i )))  � � 1(s + 1)
push i on S

end for

time. At the beginning of the i th iteration of the for loop, the stack S contains, from top

to bottom, a decreasingsequenceof values whose sequenceof corresponding positions as

points in � is also decreasing. Among this sequenceof values must be the largest value

j < i such that � � 1(j ) < � � 1(i ), as the only way j could have been popped is if there

were some j 0 with j < j 0 < i and � � 1(j 0) < � � 1(j ), contradicting the de�nition of j .

Furthermor e,minval(I r ud(� � 1(i ))) = � � 1(j + 1), and so after popping all the values on top

of j in the stack, the algorithm can return the position of the point whose value is j + 1.

SinceS storesevery value i 2 [n] precisely once,it immediately follows that the algorithm

has complexity O(n).

The next step is to �nd the three-sided intervals I r (i ) and I ` (i ) for each i 2 [n]. Note

�rst that the set of positions in each I r (i ) forms a contiguous set with smallest position

equal to i , so for each i we only need to �nd the point in I r (i ) whose position is greatest

(i.e. the rightmost point). Similarly , the setof positions in I ` (i ) also forms a contiguous set,

with maximum equal to � (i ), sohere it is suf�cient to �nd the point in I ` (i ) whose position

is minimal.

Thus, for a set of points P let minpos(P) denote the position of the minimum (i.e. left-

most) element, and maxpos(P) the position of the maximum (rightmost) element. Given

the four bounds minval(I r ud(i )) , maxval(I r ud(i )) , minval(I `ud (i )) and maxval(I `ud (i )) , we

now seek maxpos(I r (i )) and minpos(I ` (i )) . The �rst of these is computed using Algo-
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rithm 4.2, while the secondis done similarly .

Proposition 4.2(Bergeron etal. [17, Proposition 3]). Let � beapermutationof lengthn. Then,

givenminval(I r ud(i )) andmaxval(I r ud(i )) , Algorithm 4.2computesmaxpos(I r (i )) for all i 2 [n]

in O(n) time.

Algorithm 4.2Computing maxpos(I r (i ))

for i from 1 to n do
r i  i

end for
� (10)  10
for i from n to 1 do

while � (minval(I r ud(i ))) � � (r i + 1) � � (maxval(I r ud(i ))) do
r i  r r i +1

end while
maxpos(I r (i ))  r i

end for

Proof. Note �rst that I r (i ) consistspreciselyof thosepoints of I r ud(i ) whose positions form

the longest contiguous sequence[i; maxpos(I r (i ))] for all i 2 [n]. At the beginning of the

i th iteration of the second for loop, we have found maxpos(I r (i0)) = r i 0 for all i 0 > i , and

r i is still set to i . At all stages,r i denotes the position of a point in I r (i ), and hence[i; r i ] �

[i; maxpos(I r (i ))] . We next test whether the point with position immediately following r i

(i.e. r i + 1) lies in I r ud(i ). If so, then r i + 1 also lies in I r (i ), as indeed does all of the right-

open interval I r (r i + 1). Thus we may now replacer i with maxpos(I r (r i + 1)) = r r i +1 and

consider the new r i + 1 at the start of the while loop. If, on the other hand, r i + 1 =2 I r ud(i ),

then r i is the rightmost point of I r (i ) and we have found maxpos(I r (i )) whence we may

move on to consider the (i � 1)th iteration. The complexity follows by observing that the

contents of the while loop must be executedprecisely n � 1 times in total.

In the caseof our ongoing example, � = 289576314, our list of bounds looks like:

i 1 2 3 4 5 6 7 8 9
minpos(I ` (i )) 1 2 2 4 5 2 7 7 1
maxpos(I r (i )) 9 7 3 7 6 6 7 8 9



70 4 SUBSTITUTION DECOM POSITION A LGORITH M S

There remains one �nal prerequisite before we can show how to �nd intervals. For a

permutation � of length n and position i 2 [n], de�ne the r -supportof i , denoted suppr (� ; i ),

to be the largest position j < i such that I r (i ) � I r (j ). Similarly , de�ne the `-support,

supp̀ (� ; i ), to be the smallest position j > i such that I ` (� ; i ) � I ` (� ; j ). Again we will use

the more brief notation suppr (i ) and supp̀ (i ) sincewe are always working with the single

permutation � . The r - and `-supports will play a central role in �nding the “str ong inter-

vals” of Section4.3, and in Section 4.2 the r -support will reduce the number of candidate

setswhich we need to inspect in listing all the intervals. Given the bounds minpos(I ` (i ))

and maxpos(I r (i )) , we may compute suppr (i ) for all i 2 [n] using Algorithm 4.3, which

clearly achievesthis in O(n) time.

Algorithm 4.3Computing suppr (i )

S a stack recording positions, with topmost element s
push 1 on S
suppr (1)  1
for i from 2 to n do

while maxpos(I r (s)) < i do
pop s from S

end while
suppr (i )  s
push i on S

end for

The algorithm to �nd supp̀ (i ) is analogous. For the example � = 289576314, we obtain:

i 1 2 3 4 5 6 7 8 9
supp̀ (i ) 7 3 6 6 6 9 8 9 9
suppr (i ) 1 1 2 2 4 5 4 1 4

There are now two avenuesof exploration, eachof which we will consider in turn. Sec-

tion 4.2 computes all the intervals of a permutation � on [n], which, if there are N such

intervals, we show can be computed in O(n + N ) time. Section 4.3 shows how to search

for the “str ong intervals” of � (the intervals that de�ne the substitution decomposition)

showing that it can be done in O(n) time, and from therecompute the substitution decom-

position of � .
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Figure4.2: The intersection of I r (4) and I ` (6) forms an interval of � = 289576314.

4.2 Generating Intervals

We have shown how to compute certain one- and three-sided intervals in linear time; it

remains to show how thesemay be used to compute the (four -sided) intervals. Essentially,

this is done by intersecting pairs of the three-sidedintervals we computed in the previous

subsection,and showing that what results is an interval (seeFigure 4.2).

Proposition 4.3 (Bergeron et al. [17, Proposition 2]). Let � bea permutationof lengthn, and

let i < j 2 [n]. Thenthesetofpointswith contiguouspositions[i; j ] is an interval of � if andonly

if i � minpos(I ` (j )) andj � maxpos(I r (i )) .

Proof. Suppose �rst that [i; j ] is a set of positions whose points in � form an interval P.

SinceP is an interval, we have both [i; j ] � [i; maxpos(I r (i ))] and [i; j ] � [minpos(I ` (j )) ; j ],

whence it follows that

[i; j ] � [i; maxpos(I r (i ))] \ [minpos(I ` (j )) ; j ]:

Conversely, suppose that for some i < j 2 [n] we have i � minpos(I ` (j )) and j �

maxpos(I r (i )) . The setof points P with contiguous positions [i; j ] cannot be separatedby a

left pin since(i; � (i )) de�nes the left edgeof I r (i ), and it cannot be separatedby a right pin

since (j; � (j )) de�nes the right edge of I ` (j ). Finally, (j; � (j )) 2 I r (i ) and (i; � (i )) 2 I ` (j ),

and so,by the de�nitions of I r (i ) and I ` (j ), P cannot be separatedby up or down pins and

henceforms a four -sided interval of � .

Proposition 4.3 alone will let us compute the intervals by examining the points with

positions [i; j ] for every i; j with 1 � i � j � n. We can reduce the number of these that
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need to be inspected, however, by making use of the r -support, a consideration which

yields the sought-after O(n + N ) complexity.

Theorem 4.4(Bergeron et al. [17, Theorem 2]). TheN intervalsof a permutation� of lengthn

canbecomputedin O(n + N ) time.

Proof. For brevity, let us �rst set `(i ) = minpos(I ` (i )) , r (i ) = maxpos(I r (i )) and s(i ) =

suppr (i ) for eachi 2 [n]. We must show that the output of Algorithm 4.4 is a complete list

of the intervals of � . Suppose�rst that for somei < j 2 [n], the algorithm hasprinted [i; j ].

This was output during the j th iteration of the for loop, and and within a while loop that

ensuresi � `(j ). Hence we only need to show that j � r (i ), asthen Proposition 4.3tells us

that the points whose setof positions is [i; j ] will form an interval. This follows by studying

how i evolved within the j th iteration before it was output; it was initiated by being set

equal to j , and then was successivelyreplaced by s(j ) �nitely many times (possibly zero).

Thus i is one of j , s(j ), s(s(j )) ; : : :, and j � r (i ) then follows by considering the chain

j � r (j ) � r (s(j )) � r (s(s(j ))) � : : : :

Conversely, for i � j , given the set of positions [i; j ] de�nes an interval of � , Proposi-

tion 4.3 implies that we have i � `(j ) and j � r (i ). Note that if i = j then Algorithm 4.4

is guaranteed to return [i; j ] at the very start of the j th iteration, so we now assumei < j .

Mor eover, since i � `(j ), the algorithm will print [i; j ] providing we encounter the posi-

tion i in the j th iteration of the for loop (assuch an i will satisfy the while loop). Let i 0be

the smallest position such that i < i 0 � j and [i 0; j ] was printed by the algorithm. By the

minimality of i 0, we have s(i 0) � i . Now observe that I r (i0) � I r (i ) as i < i 0 � r (i ), and

so r (i 0) > r (i ) would contradict the maximality of I r (i ). This implies that s(i 0) � i , and so

s(i 0) = i , completing this part of the proof.

Finally, the complexity follows immediately since Algorithms 4.1, 4.2, and 4.3 have

complexity O(n), and the O(n + N ) complexity of Algorithm 4.4follows by noting that the

while loop will operate precisely N times.
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Algorithm 4.4Computing the intervals of �

for j from n to 1 do
i  j
while i � minpos(I ` (j )) do

print [i; j ]
i  suppr (i )

end while
end for

4.3 Strong Intervals and the Substitution Decomposition

Although we can now �nd all the intervals of � in optimal O(n + N ) time, we may prefer

instead to �nd an O(n) algorithm that is capable of telling us all that we really need to

know, namely the substitution decomposition of � , and hencewhether it is simple. To this

end, de�ne a stronginterval of a permutation � to bean interval I of � for which every other

interval J satis�es precisely one of J � I , I � J or J \ I = ; (i.e. I does not overlap with

any other interval). The strong intervals of � are then precisely the intervals arising in the

substitution decomposition, including both the whole of � and all the singleton intervals.

Note that a permutation of length n has at most 2n � 1 strong intervals.

Up to now we have been working primarily with the three-sided intervals I ` (i ) and

I r (i ) for eachi 2 [n] of a permutation � of length n. We have seenthat they can be used to

�nd all the intervals of � , but in order to restrict our attention to the strong intervals, we are

going to want to replaceour three-sided intervals with four -sided ones. De�ne, therefore,

the left-maximuminterval of aposition i 2 [n] to bethe largest interval of � whose rightmost

point hasposition i , and write the leftmost position of this interval aslmax(� ; i ). Similarly ,

let rmax(� ; i ) denote the rightmost position of the largest interval of � whose leftmost point

has position i (the right-maximuminterval). Again we will abbreviate theseto lmax(i ) and

rmax(i ).

Trivially , we have lmax(i ) � minpos(I ` (i )) and rmax(i ) � maxpos(I r (i )) , and this sug-

gestsa starting point for �nding the left-maximum and right-maximum intervals. How-

ever a dir ect search through the sets I ` (i ) and I r (i ) cannot necessarily be performed in
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optimal time, so again we rely on the `- and r -supports to reduce our search.

Proposition 4.5 (Bergeron et al. [17, Theorem 3]). For a permutation� of length n, rmax(i )

canbecomputedin O(n) time.

Proof. Note �rst that Algorithm 4.5 begins by setting rmax(i ) = i for each i , with the ex-

ception of rmax(1) which is set to n, as expected. Note next that the if statement simply

checksto seewhether [suppr (i ); rmax(i )] is a set of positions corresponding to an interval.

If true, then rmax(j ) for j = suppr (i ) is changed to rmax(i ) if it is larger than the existing

rmax(j ). In either case,the set of points with positions [j; rmax(j )] will still correspond to

an interval, so we need only check that the algorithm at somestageencounters the largest

interval of � whose leftmost point is j .

Supposefor j 2 [n] that the set of points with positions [j; j 0] correspond to the largest

interval with leftmost point j , and that the algorithm has correctly found rmax(i ) for all

i such that supp(i ) > j . We may assume j 0 > j as otherwise it is easy to see that Al-

gorithm 4.5 correctly outputs rmax(j ) = j . By the maximality of j 0, we have I r (j 0) =

f (j 0; � (j 0))g and rmax(j 0) = j 0, so we are done if suppr (j 0) = j . (Note suppr (j 0) < j is im-

possible since [j; j 0] corresponds to an interval.) Let us therefore assumethat suppr (j 0) =

j 00> j , and note that the rightmost point in I r (j 00) has position j 0, giving rmax(j 00) = j 0

(since I r (j 00) cannot be extended by a right pin). If suppr (j 00) = j then we are done, so

instead suppose supp(j 00) = j 000> j , and observe that again we must have rmax(j 000) = j 0.

This processcanonly berepeateda limited number of times beforewe �nd somei > j with

supp(i ) = j and rmax(i ) = j 0. The complexity of Algorithm 4.5follows immediately .

The computation for lmax(i ) is similar, and for our running example � = 289576314

this gives:

i 1 2 3 4 5 6 7 8 9
lmax(i ) 1 2 2 4 5 2 7 8 1
rmax(i ) 9 6 3 6 6 6 7 8 9

Moving from the left-maximum and right-maximum intervals to the strong intervals

is now a fairly straightforwar d process. We begin by listing the leftmost and rightmost
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Algorithm 4.5Computing rmax(i )

rmax(1)  n
for i from 2 to n do

rmax(i )  i
end for
for i from n to 2 do

if suppr (i ) � minpos(I r (rmax( i ))) and rmax(i ) � maxpos(I r (suppr (i ))) then
rmax(suppr (i ))  max(rmax(i ); rmax(suppr (i )))

end if
end for

positions of the left-maximum and right-maximum intervals, marking right bounds with

a bar, i.e. the set f i; i ; lmax(i ); rmax(i ) : i 2 [n]g containing 4n bounds.

Next we sort this list into increasing order, f a1; a2; : : : ; a4ng, listing left bounds before

right bounds, noting that this can be done in linear time since there are only 2n possible

values that the entries can take, eachbeing either i or i for some i 2 [n]. The sort can be

further simpli�ed by also noting that for eachi 2 [n] we are guaranteed to seeboth i and i

at least once. For our example (� = 289576314), this list is

f 1; 1; 1; 1; 2; 2; 2; 2; 2; 3; 3; 3; 4; 4; 4; 5; 5; 5; 6; 6; 6; 6; 6; 6; 7; 7; 7; 7; 8; 8; 8; 8; 9; 9; 9; 9g:

We now work from left to right through this list, storing left bounds on a stack as they

appear, and when we seea right bound r we take the top element s off the stackand return

[s; r ] asa setof positions corresponding to a strong interval.

Theorem 4.6 (Bergeron et al. [17, Proposition 8]). Thestrong intervals of a permutation� of

lengthn canbecomputedin O(n) time.

Proof. If Algorithm 4.6 outputs an interval of the form [i; rmax(i )], then every interval

whose positions are of the form [lmax(j ); j ] must have trivial intersection with [i; rmax(i )]

(either [lmax(j ); j ] � [i; rmax(i )] or [lmax(j ); j ] \ [i; rmax(i )] is empty). Subsequently,

[i; rmax(i )] must intersect trivially with every interval of � sinceevery interval is contained

within a left-maximum or a right-maximum interval, and so [i; rmax(i )] is a strong inter-
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Algorithm 4.6Computing the strong intervals of �

S a stack recording positions, with topmost element s
for i from 1 to 4n do

if ai is a left bound then
push ai on S

else
print [s;ai ]
pop s from S

end if
end for

val. A similar argument can be applied if the algorithm outputs an interval of the form

[lmax(j ); j ].

Now suppose the algorithm outputs the set of contiguous positions [i; j ] for which

neither lmax(j ) = i nor rmax(i ) = j . It follows that [i; j ] = [lmax(j ); j ] \ [i; rmax(i )], and so

[i; j ] corresponds to a set of points of � forming an interval. If [i; j ] doesnot correspond to

a strong interval, then there exists a k for which either i < k � j < rmax(k) or lmax(k) <

i � k < j . In the former case,every interval [k0; rmax(k0)] with i < rmax(k0) � k must

satisfy k0 � k, and so the algorithm would only permit the output of j as a right bound

when paired with left bounds at least as big as k, a contradiction, proving that [i; j ] was

strong.

Conversely, let [i; j ] correspond to a set of positions forming a strong interval of � ,

so there are no intervals of � whose positions have non-trivial intersection with [i; j ]. To

ensure the algorithm outputs [i; j ], we must �nd a left bound i and a right bound j in the

ordered list of 4n bounds between which every left bound is matched by a right bound.

Let x denote the number of positions k for which lmax(k) = i and k < j , and y the number

of positions k for which rmax(k) = j and i < k. In the list of bounds f a1; a2; : : : ; a4n g, there

are y � x more left bounds than right between the last occurrenceof the left bound i and

the �rst occurrenceof the right bound j . There are, however, at least x + 1 left bounds i

and y + 1 right bounds j in this list, and so Algorithm 4.6will output [i; j ].
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289576314

2 89576

89

8 9
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7 6
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Figure4.3: The substitution decomposition treeof � = 289576314.

For � = 289576314, after removing duplicates the output is

[1; 1]; [2; 2]; [3; 3]; [2; 3]; [4; 4]; [5; 5]; [6; 6]; [5; 6]; [4; 6]; [2; 6]; [7; 7]; [8; 8]; [9; 9]; [1; 9]:

We obtain the substitution decomposition tree by reading from right to left through

our list of positions of strong intervals as output by Algorithm 4.6, noting that the strong

intervals have been ordered as they would be output by a depth �rst search algorithm,

working from right to left. Figure 4.3 shows the tree obtained for � = 289576314. Note

that, by the de�nition of the strong intervals, in the caseswhere our permutation � is sum

or skew decomposable,eachsum or skew component will occupy a separatenode. Where

� is not sum or skew decomposable,the simple skeleton of � is easily obtained by taking

the permutation order isomorphic to any chosenset of node representativesfrom the �rst

level of the tree.

4.4 Graph Substitution Decomposition

The substitution decomposition hasprobably beenstudied most intensively in the context

of graphs. It should come therefore asno great surprise that much time has beendevoted

to �nding ef�cient algorithms to compute the substitution decomposition. Since1972algo-

rithms that can compute the substitution decomposition treefor a graph with a variety of

complexities ranging from O(jV j4) [73] to O(jV j + jE j log jV j) [38] have beenfound, while

linear O(jV j + jE j) complexity algorithms were found in 1994by McConnell and Spin-

rad [88] and Cournier and Habib [39]. The former of these was later presented in more
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detail in [90]. A simpler divide-and-conquer algorithm was given by Dahlhaus, Gustedt

and McConnell [41].

A related problem, and one that often appears alongside the substitution decomposi-

tion, is the transitive orientation of comparability graphs. The �rst O(jV j + jE j) algorithm

appears in McConnell and Spinrad [89], with a second algorithm by the same authors

given in [90]. Armed with linear-time substitution decomposition and transitive orienta-

tion, one can solve many combinatorial problems in linear time. For example, the recogni-

tion of permutation graphs and two-dimensional posets(posetswhich are the intersection

of two linear orders), and �nding the maximum clique or minimum vertex colouring in

comparability graphs. For further examplessee[90].
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CH A PTER 5

CON TA IN M EN T A S A PA RTIA L ORDER

A S M EN TION ED in Chapter 1, the pattern containment order is easily shown to be re-

�exive, transitive and antisymmetric, and hence forms a partial order on the set of

all permutations (seeFigure 5.1). Downsets of permutations under this order are called

permutationclasses. In other wor ds, if C is a permutation class and � 2 C, then for any

permutation � with � � � we have � 2 C. Thesesetshave in the past also been labelled

closedclassesor patternclasses.

Permutation classesmay be traced as far back as MacMahon [78], where Av(321) was

enumerated by means of the study of “lattice permutations”, though the more popular

origin lies in Knuth [76]. It is not, however, until the last �fteen years that their study has

becomemore intense, with a wide variety of questions being answered pertaining both to

their structureand to their enumeration. Thesetwo varieties of question are not, of course,

independent; greaterknowledge of how permutation classesareconstructed canoften lead

quickly to enumerative consequences,while the question of enumeration is frequently the

motivation for the study of their structure. The structural work on simple permutations

in Part I �ts, to some extent, this mould; while their study was initially motivated by

an enumeration problem, the consequencesof the study extend well beyond the original

question.

81
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1234 1243 1324 1342 1423 1432 2134 � � � 4321

123 132 213 231 312 321

12 21

1

Figure5.1: The start of the containment partial order.

5.1 De�ning Permutation Classes

Permutation classesarise naturally in a variety of settings, ranging from sorting (see,for

example, Bóna's survey [21]) to algebraic geometry (see, for example, Lakshmibai and

Sandhya [77]). Typically , a permutation classis de�ned in one of the following ways:

� Pattern avoidance. A permutation classC can be regarded as a set of permutations

which avoid certain patterns. The set B of minimal permutations not in C is known

asthe basisof C. We write C = Av(B ) to mean the classC= f � j � 6� � for all � 2 B g.

Basesneed not be �nite – seethe examples in Subsection5.1.2and the discussion on

antichains in Section5.3.

� Permuting machines. As already mentioned, permutation classesarise naturally as

a result of machines which permute an input stream of symbols. Indeed, the set of

stack-sortable permutations dates back to the major origin of permutation classes,

Knuth [76]. Their study remains an areaof active interest to this day – seethe discus-

sion at the end of Example 5.3.

� Constructions. New permutation classescan be formed using constructions involv-

ing one or more old classes(e.g. the union of two classes).SeeSubsection 5.1.2for
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extensive examples.

� Closures. We may also de�ne a classby taking the closure of some set of permuta-

tions, or even a set of functions that are order isomorphic to permutations. For two

linearly ordered sets A and B and a bijection f : A ! B , we de�ne the closure of

f to be the permutation classC = Sub(f : A ! B ) as follows. 1 A permutation �

of length n lies in C if there exists a sequencea1 < a2 < : : : < an of A for which

f (a1); f (a2); : : : ; f (an ) is order isomorphic (under the linear order of B ) to � . Simi-

larly, we may de�ne the closure of a set of bijections f f i : A i ! B i ; i 2 I g simply by

taking the union,

Sub(f i : A i ! B i ; i 2 I ) =
[

i 2 I

Sub(f i : A i ! B i ):

Waton [118] intr oduced a geometrical approach to this notion of closure in his PhD

thesis,whereby a permutation classis de�ned by the setof permutations which may

be drawn by taking points that lie on a speci�ed geometrical shape.

Once we have speci�ed our chosenpermutation class,we may wish to know answers

to one or more of a wide variety of properties which the classmay or may not possess.In

all but the �rst case,our �rst problem is likely to be to �nd its basis, or at least whether

the basis is �nite or not, as this is arguably the most convenient way to representa class.

We will presentmany properties in the next two sections,but �rst, however, let us review

some speci�c examples of permutation classes,the ways in which they may arise, and

compute their bases.

5.1.1 Examples

Example 5.1 (Finite Classes). By the Erd �os-SzekeresTheorem 2.3, a classC is �nite if and

only if its basis B contains both an increasing permutation and a decreasing permuta-

tion. For example, the class C = f 1; 12; 21; 132; 213; 231; 312; 2143; 2413; 3142; 3412g has

basisB = f 123; 321g.
1This is a special caseof “ages” for classesof relational structures– seethe discussion on atomicity in the

general setting in Section5.5.
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Figure5.2: Sorting 4213with a stack.

Example 5.2(The setof IncreasingPermutations). The “smallest” in�nite classis the setof

increasing permutations I = f 1; 12; 123; 1234; 12345; : : :g. It can easily be seenthat every

permutation in I avoids the permutation 21, and also that 21 is the only basiselement, so

that I = Av(21).

Example 5.3 (The set of Stack-SortablePermutations). A stackis a one-dimensional array

into which symbols may be “pushed”, one on top of the other, with only the topmost

symbol being available to be “popped” at each stage. A permutation of length n is stack

sortableif it can be sorted into the increasing permutation 12� � � n by passing it through a

stack,symbol by symbol (see,for example, Figure 5.2).

The set of stack sortable permutations clearly satis�es downwar d closure under the

containment order, and so forms a permutation class.We next seekits basis,and �rst note

that 231is not stack sortable, since either the 2 must be popped before the 1 is pushed, or

the 3 must be popped before the 2 can be popped. It is then fairly straightforwar d to show

that every permutation that is not stack-sortable contains a copy of 231, and so Av(231)

representsthe set of stack sortable permutations.

There are many variants to this problem, several of which are discussedin Bóna's sur-

vey [21]. For example, we may connect two or more stacksin parallel or in series;we may

restrict the depth of the stack by allowing it to contain at most m symbols at any one given
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time. The answers to some of these questions are immediate, while others remain open,

and, indeed, somevarieties do not form closed classes.

For example, in the caseof connecting two stacks in series the general caseis shown

by Murphy [97] to be in�nitely based with shortest basis elements of length 7, though a

description of the complete basisis unknown. Atkinson, Murphy and Ru�skuc [10] provide

the complete but in�nite basis for the subclassformed by imposing the condition that the

stacksmust be ordered– that is, from top to bottom the elements in eachstack must form

an increasing sequence. To achieve a �nitely based class, we may restrict our attention

to connecting a stack of depth 2 and an in�nite stack in series, which has just 20 basis

elementsvariously of lengths 5, 6, 7 and 8 [49].

Considerable study has been devoted to the West-t-stacksortablepermutations[119],

formed by adding a greedy algorithm to a sequenceof ordered stacks: take the earliest

available “push” onto a stack in the seriesif it exists, otherwise “pop” a new output sym-

bol. However , the West-t-stack sortable permutations do not, in general, form a permuta-

tion class– for example, 35241is West-2-sortable but 3241is not.

Example 5.4 (The SeparablePermutations). We de�ne the classS of separable permuta-

tions constructively. A permutation is separableif and only if it canbe obtained by repeated

application of dir ect and skew sums, starting with the permutation 1. For example,

354621 = 1324	 21

= (132� 1) 	 1 	 1

= (1 � 21� 1) 	 1 	 1

= (1 � (1 	 1) � 1) 	 1 	 1:

(Note the omission of certain brackets,which follows by the associativity of � and 	 .)

It is then clear that the set of separablepermutations is closed downwar ds under the

containment order. It was shown by Bose, Buss and Lubiw [24] that the class of sepa-

rable permutations is equal to Av(2413; 3142), and we may derive this result easily after

considering Proposition 5.28(seePage106). Note that 2413and 3142are the two simple
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permutations of length 4, and that subsequently the only simple permutations in this class

are 1, 12 and 21, which is precisely what we expect to seewhen we consider the substitu-

tion decomposition of a separablepermutation.

The separablepermutations seemto have made their �rst appearanceas the permuta-

tions that can be sorted by pop-stacks in series,seeAvis and Newborn [13]. Shapiro and

Stephens[108] showed that the separablepermutations are those that �ll up under boot-

strap percolation.2 They are essentially the permutation analogue of series-parallel posets

(seeStanley [113, Section3.2]) and complement reducible graphs (seeCorneil, Lerchs,and

Burlingham [36]).

5.1.2 New Classesfrom Old

There is virtually an endless number of ways to de�ne new sets of permutations from

old, and only slightly fewer which construct permutation classes. Besides the obvious

constructions given by the intersection and union of two classes,we can look at ways

in which permutations themselves may be combined. For example, we may place per-

mutations next to one another (horizontal juxtaposition) or one above the other (vertical

juxtaposition); we may mix two permutations together (merge), or use in�ations to place

permutations inside one another (wr eath product).

The Intersection of two Permutation Classes. Given two permutation classesde�ned

by their basesC = Av(A) and D = Av(B ), consider their intersection C \ D. It is trivial

to seethat C \ D forms a permutation class,and also that its basis is given by the union

A [ B . If, therefore, C and D are �nitely based, then so is C\ D. Little more needs to be

said – Murphy [97] “awaits questions about intersections that are worthy of attention!”

The Union of two Permutation Classes. Given two classesC = Av(A) and D = Av(B ),

the union C [ D is again a permutation class. Its basis is also easily determined; a per-

2Bootstrap percolation is a processde�ned on n � n 0-1 matrices, in which at each stage of the process
every zero entry in the matrix becomesone if two or more of its neighbours are non-zero, while entries with
value one remain the same. The processterminates when no more entries can be changed. Given an n � n
permutation matrix, it will completely �ll up with ones if and only if the permutation is separable.
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mutation in the basis of C [ D must contain a copy of some � 2 A and � 2 B , and by

its minimality it follows that such a basis element can contain no points other than these

(such a permutation is known asa minimal mergeof � and � ). Thus, if Cand D are �nitely

based,then so is C[ D.

For example, letting C = I = Av(21) and D = Av(12), then

C[ D = f 1; 12; 21; 123; 321; 1234; 4321; : : : g;

and its basisconsistsof the minimal mergesof 21 and 12, which are 132, 213, 231and 312.

Thus C[ D = Av(132; 213; 231; 312).

Juxtaposition. Given two permutation classesC and D, their horizontaljuxtaposition, de-

noted
�

C D
�
, consists of all permutations � that can be written as a concatenation � �

where � is order isomorphic to a permutation in C and � is order isomorphic to a per-

mutation in D. In other wor ds, the horizontal juxtaposition of C and D consists of those

permutations � whose plot may bedivided with a vertical line, so that the points on the left

are order isomorphic to a permutation in C while those on the right are order isomorphic

to a permutation in D.

The question of �nite basis is immediately answerable, and may be derived by follow-

ing a similar argument to the one above for the union of two classes.

Proposition 5.5 (Atkinson [7]). Let C andD bepermutationclasses.Thebasiselementsof the

class
�

C D
�

canall bewritten asconcatenations�� � whereeither:

� � is empty, � is orderisomorphicto abasiselementof C, and� is orderisomorphicto a basis

elementofD, or

� j� j = 1, �� is orderisomorphicto abasiselementof C, and� � is orderisomorphicto a basis

elementofD.

(In particular, if two classesare�nitely basedthentheir juxtapositionis also�nitely based.)
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There is an obvious symmetry to this operation. The vertical juxtapositionof the classes

C and D is denoted
�

C
D

�
, and consists of those permutations � whose plot may be di-

vided with a horizontal line, so that the points above the line are order isomorphic to a

permutation in Cwhile those below are order isomorphic to a permutation in D.

Merge. A permutation � is a merge of the permutations � and � if � consists of two

subsequences,one order isomorphic to � , the other to � . This may be written � = � t � .

Little is known about the basis of the merge Ct D of two classes– there are no counter

examples to contradict the suggestion that C t D is always �nitely based if C and D are

�nitely based, but neither are there suf�cient results to support such a conjecture. The

merge of two permutations corresponds – somewhat roughly – to connecting permuting

machines in parallel (seeAtkinson and Beals[8]).

Grid Classes. An m � n-gridding of a permutation � is a collection of m � 1 distinct hori-

zontal lines and n � 1 vertical lines that divide the plot of � into mn cells.3 Given an m � n

matrix M of permutation classes,the grid classof M is the classCof all permutations � for

which � is m � n-griddable, with the points in eachcell of the gridding being order isomor-

phic to a permutation from the classin the corresponding entry of the matrix. Grid classes

may be considered to be a generalisation of the juxtaposition construction, though they

are not merely compositions of juxtapositions. We may, however, ask the samequestions.

Pertinently:

Question 5.6. If M is a matrix of permutationclassesall of whichare �nitely based,whenis the

grid classof M �nitely based?

Obviously for matrices of dimensions m � 1 or 1 � n, grid classesare equivalent to

vertical and horizontal juxtapositions, respectively, and so the question of basis is known.

In general it is not �nitely based,consider, for example, the 2 � 2 matrix

M =
�

; Av(321654)
Av(321654) ;

�
:

3Most authors switch m and n to consider vertical lines �rst. Here, to avoid rede�ning the order in which
the dimensions of a matrix are written for this brief review, we go against this convention.
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The basis for the grid classof M is in�nite – seeMurphy [97]. There is more hope if we

restrict M to contain only the monotone classesf 1; 12; 123; : : :g or f 1; 21; 321; : : :g, but even

here results canonly beproved for a few speci�c 2� 2 matrices. SeeWaton [118] for further

discussion.

Conversely, we may ask when a given classmay be gridded. Given two permutation

classesC and D, C is said to be D-griddableif, for some m and n, C is a grid classof the

m � n matrix M all of whose entries are D. Huczynska and Vatter [70] characterise the

D-griddable classeswhere D is taken to consistsprecisely of the monotone permutations,

while the following more general result appears in Vatter [117]:

Theorem 5.7 (Vatter [117]). ThepermutationclassC hasa D-gridding if andonly if it doesnot

containarbitrarily longsumsor skewsumsof basiselementsof D, i.e.thereexistsaconstantm so

that Ccontainsneither� 1 � � � � � � m nor � 1 	 � � � 	 � m for basiselements� i ofD.

Direct and Skew Sums. There are several ways to use dir ect and skew sums to de�ne

new permutation classes.Na�̈vely, there is of coursethe setC� D = f � � � : � 2 C; � 2 Dg,

though this is only a permutation classif we force the empty permutation to be a member

of both Cand D.

Of greater use is the “sum completion” of a classC; a permutation classCis said to be

sumcompleteif �; � 2 Cimplies � � � 2 C, and the sumcompletionof a classCis the smallest

sum complete class containing C. Similarly , we may de�ne skewcompleteand the skew

completionby replacing the operation � with 	 . We may also mix thesetwo operations; a

classCis said to be strongly completeif C is both sum and skew complete. Accordingly , the

strongcompletionof a permutation classCis the smallest strongly complete classcontaining

C.

We can tell if a classis sum, skew or strongly complete by looking at its basis.

Proposition 5.8. A classCis sum(respectively, skew, strongly)completeif andonly if everybasis

elementis sum(respectiveyskew, strongly) indecomposable.
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Proof. If we were to �nd a sum decomposable basis element � of the sum complete class

C, then we could write � = � � � for some � and � , both of which necessarily lie in C. But

then, by its sum completion, Ccontains � � � , a contradiction. Conversely, if all the basis

elements of C are sum indecomposable, then if for some � and � in C there is a copy of a

basiselement � in � � � , we would have either � � � or � � � , a contradiction.

The casesfor skew complete and strongly complete classesare similar.

Computing the basisof a sum, skew or strong completion of a classis not straightfor -

ward – in particular , if the classis �nitely basedthen the sum, skew and strong completions

need not be �nitely based,examplesof which we will seein Chapter 8.

The Wreath Product. The wreathproductof two permutation classesC and D is the set

CoD of all permutations which can be expressedas an in�ation of a permutation in C by

permutations in D, i.e. the setof permutations of the form � [� 1; � 2; : : : ; � n ] with � 2 Cand

� 1; � 2; : : : ; � n 2 D.

It is easy to check that the wr eath product of two permutation classesis again a per-

mutation class. For example, the sum completion of a classC corresponds to the wr eath

product I oC, while the strong completion of C is the wr eath product S oC where S =

Av(2413; 3142) is the classof separablepermutations.

The question of �nite basis has been answered in only a few cases– if C and D are

�nitely based,when is CoD �nitely based? We take up this question in Chapter 8, estab-

lishing a more general �nite basisresult for wr eath products.

Wreath Closure. A class C of permutations is wreath-closedif � [� 1; : : : ; � m ] 2 C for all

� ; � 1; : : : ; � m 2 C. The wreath-closure of a set X , W(X ), is de�ned as the smallest wr eath-

closedclasscontaining X . (This concept is well-de�ned becausethe intersection of wr eath-

closed classesis wr eath-closed,and the setof all permutations is wr eath-closed.)

Letting Si(C) denote the set of simple permutations in the class C, we observe that

Si(C) = Si(W(C)) and indeed W(C) is the largest classwith this property.4 For example,
4While this claim may appear intuitively obvious, there are some technical subtleties. Every permutation
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the wr eath closure of Av(132) is the largest classwhose only simple permutations are 1,

12, and 21, which is precisely the classof separablepermutations of Example 5.4.

It is quite easyto decide if a permutation classgiven by a �nite basis is wr eath-closed:

Proposition 5.9 (Atkinson and Stitt [12]). A permutationclassis wreath-closedif and only if

eachof its basiselementsis simple.

One may alsowish to compute the basisof W(C). This is routine for classeswith �nitely

many simple permutations (seeProposition 5.28), but much lessso in general. An example

of a �nitely based classwhose wr eath closure is in�nitely based is Av(4321) – its wr eath

closure contains a variant of the increasing oscillating antichain, which we will de�ne in

Example 5.14.

The natural question is then:

Question 5.10. Givena �nite basisB , is it decidablewhetherW(Av (B )) is �nitely based?5

5.2 Enumeration

Probably the largestactive areain the study of permutation classesis enumeration: given a

classC, how many permutations are there of length n, and is this sequencewell-behaved?

Once thesequestions are answered, we may be interested in �nding out what other com-

binatorial structures are enumerated by this sequence,and whether bijections can be es-

tablished between them. In the �rst instance, this may be done by looking at the Online

Encyclopaedia of Integer Sequences[110].

For a permutation classC, we denote by Cn the set C\ Sn , i.e. the permutations in Cof

length n, and we refer to f (x) =
P

jCn jxn as the generatingfunction for C. The generating

function f is algebraicif it solves an equation of the form pn (x)f n + pn� 1(x)f n� 1 + � � � +

p0(x)f 0 = 0 for polynomials pi . Similarly , a rational generatingfunction is one that may

in C is an in�ation of a member of Si(C) so it follows (e.g., inductively) that C � W (Si(C)) . Thus W (C) �
W (Si(C)) , establishing that Si(C) = Si(W (C)) . As wr eath closed classesare uniquely determined by their sets
of simple permutations, W (C) is the largestclasswith this property.

5The analogous question for graphs was raised by Giakoumakis [60] and has received a sizable amount of
attention, seefor example Zverovich [122].
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be written as a rational function, i.e. a function of the form
p(x)
q(x)

where p(x) and q(x) are

polynomials in x over the �eld of rational numbers.

As a trivial �rst example, consider the classI = f 1; 12; 123; : : :g. There is precisely one

permutation of eachlength, and soits generating function is f (x) =
1X

n=0

xn = 1+x+ x2+ � � � ,

or, in other wor ds, f =
1

1 � x
, a rational function. Note that here our sum begins at n = 0,

implying that we are including the single permutation of length zero in the class. This

is a convention that may or may not always be used – there are caseswhere including

the empty permutation is convenient (particularly when considering recursive structures),

while in other caseswe may speci�cally not want it. It will be our convention to include

the empty permutation unless required to do otherwise.

Our next example is somewhat more complicated, and the method employed to derive

the enumeration is a classicrecursive technique relying on knowledge of the structure of

a permutation in the speci�ed class. This is, of course, precisely where the rôle of simple

permutations and the substitution decomposition will becomeinvaluable.

Example 5.11(The StackSortable Permutations). As seenin Example 5.3, the set of stack

sortable permutations is precisely the classAv(231). Within this class, the permutations

of lengths 1; 2; 3; 4; 5: : : are enumerated by the sequence1; 2; 5; 14; 42; : : :, which looks en-

couragingly like the sequenceof Catalan Numbers (sequenceA000108of [110]), with gen-

eral term
(2n)!

n!(n + 1)!
.

We prove this fact by considering a permutation � 2 Av(231) of length n. Since �

must avoid 231, every point coming before the value n in � must lie below every point

coming after the value n, i.e. � = � � (1 	 � ) for some � and � , which also of coursemust

themselves avoid 231(seeFigure 5.3). Thus � and � must lie in Av (231), but there are no

other restrictions on � and � savethat we must of coursehave j� j + j� j + 1 = n. Note also

that this decomposition into � and � is unique, and hencecan be used to decompose (or

construct) every permutation in Av(231).

In terms of generating functions, if f (x) is the generating function for C = Av(231),
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� 2 Av(132)

� 2 Av (132)

Figure5.3: Generic structure of a 231-avoider.

then we can use the above consideration to derive the recursion

f = xf 2 + 1:

Note that here we have included the empty permutation, as we must allow � and/or �

to be empty. Note further that the empty permutation cannot be decomposed as we did

above becauseit has no maximum entry, hencethe appearanceof the “ +1 ” term. Solving

this algebraic equation is then straightforwar d, and gives

f =
1 �

p
1 � 4x

2x
= 1 + x + 2x2 + 5x3 + 14x4 + : : :

asrequired.

Central to the enumeration problem is the classi�cation of permutation classeswith the

sameenumeration. Wesay that two permutations � and � are Wilf equivalentif j Av (� ) n j =

j Av (� )n j for all n, i.e. the classesAv(� ) and Av(� ) are enumerated by the same gener-

ating function. We may also say that the permutations � and � belong to the same Wilf

class. For example, the permutations 231 and 123 are Wilf equivalent, a fact which may

be proved using several dif ferent bijections – seeRichards [102], Rotem [104], Simion and

Schmidt [109] or West [120] for various approachesto this problem. Sinceenumeration is

then preserved under symmetry, this proves that all the permutations of length 3 belong

to the sameWilf class.The computation of the Wilf classesup to length 7 were completed

in 2001by Stankova and West [112].
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This term has since been extended in the natural way to sets of permutations – the

permutation sets A and B are Wilf-equivalent if j Av (A)n j = j Av (B )n j. While this may

open up an endlessbut for the most part uninter esting variety of problems, there are some

very surprising results. Notably, Bóna [18] shows that the classAv(1342) has generating

function f =
32x

� 8x2 + 20x + 1 � (1 � 8x)3=2
. This is the sameas the classof permutations

which may be sorted with two ordered stacksin series,whose basis is in�nite:

B = f (2; 2m � 1; 4; 1; 6; 3; 8; 5; : : : ; 2m; 2m � 3)jm = 2; 3; 4; : : : g:

(This problem was previously discussedat the end of Example 5.3.)

Another approach to the problem of enumeration is that of asymptotics – how many

permutations of length n are there in a given permutation classas n approachesin�nity?

In other wor ds, we want to be able to say something about lim
n!1

jCn j, or, somewhat more

usefully, lim
n!1

n
p

jCn j. As a �rst step, we have the “Stanley-Wilf conjecture”, namely that

for a given classCnot containing every permutation, there exists a constant K such that

lim sup
n!1

n
p

jCn j = K :

This result was proved in 2004by Marcus and Tardos [87]. The constant K is known asthe

uppergrowth rateof the permutation class. We may similarly de�ne the lowergrowth rate,

lim inf n!1
n
p

jCn j = K . This naturally begs the question whether the upper and lower

growth rates coincide, in which caselim n!1
n
p

jCn j = K is called the growth rate of C.

It is conjectured that the growth rate always exists, a fact that has been shown in some

cases.Arratia [6] proves this for sum or skew complete classes,among which are all of the

permutation classesde�ned by a single basiselement.

For example, the growth rate of the stack sortable permutations Av(231) is 4, a fact

easily seenby recalling that j Av (231)n j =
(2n)!

n!(n + 1)!
, and using Stirling's approximation

n! �
p

2n�
� n

e

� n
.
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5.3 Antichains, Partial Well Order and Atomicity

In any partial order, an antichain is a set of pairwise incomparable elements. Immedi-

ate from its de�nition, the basis of any permutation class is an antichain. As previously

mentioned, there are in�nitely based permutation classes,and hence there are in�nite

antichains. These have been widely studied – see for example Atkinson, Murphy and

Ru�skuc [9] and Murphy and Vatter [98].

An attempt at the classi�cation of “fundamental” antichains was given in Murphy's

PhD Thesis[97], though little progresshasbeenmade since. An in�nite antichain A is said

to be fundamentalif its closure, Sub(A), contains no in�nite antichains, except subsetsof A

itself. Other authors (see,for example, Gustedt [66]) refer to such antichains as minimal,

becausethey are minimal under the following order on in�nite antichains: A � B if A

is contained in the closure of B . The need for identifying the fundamental antichains will

becomeapparent when we intr oduce partial well order. Meanwhile, we offer the following

conjecture:

Conjecture 5.12. Everymemberof a fundamentalin�nite antichaincontainsat mosttwo proper

intervals.

Example 5.13(The Increasing Oscillating Antichain) . Let us consider the antichain based

on the increasing oscillating sequencefrom Section 2.5. The �rst few elements of this an-

tichain are 51234; 4127356; 412639578; : : :, with nth term 4126385� � � 2n + 3; 2n � 1; 2n +

1; 2n + 2. The sixth term of this sequenceis plotted in Figure 5.4); note the underlying

pin sequenceconstruction and the pair of points at either end of the sequencewhich form

anchors, preventing its involvement in any other member of the antichain.

To prove that this is an antichain, we must show that no member is contained in any

other. This may be done in a variety of ways, but a particularly neat method can be found

in Klazar [75]. The graphof a permutation� of length n is the graph G� whose vertex set

is V = [n], with i � j if and only if i < j and � (i ) > � (j ) or vice versa (j < i and

� (j ) > � (i )), i.e. if and only if there is a descent in � between i and j . For example, the
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Figure5.4: The sixth term of the increasingoscillating antichain.

Figure5.5: Forming the graph of the sixth term of the increasingoscillating antichain.

increasingpermutation 12� � � n correspondsto the independent graph on n vertices, while

the decreasingpermutation n � � � 21 corresponds to the complete graph K n .

Although we lose uniqueness (for example, G213 = G132), the pattern containment

order translates to graph containment under taking induced subgraphs, that is, � � � im-

plies G� � G� . To show that two arbitrary members of the increasingoscillating antichain

are not comparable under pattern containment, therefore, it is suf�cient to show that their

corresponding graphs are incomparable in the graph containment partial order. In some

casesthis may not make the containment problem any easier, but here the required result

follows almost immediately .

The graph of the sixth term of the antichain is shown in Figure 5.5. Note that the nth

member of the antichain will thus correspond to a graph consisting of a path of length 2n �

1 with a pair of leavesattached to eachend. It is then clear that if we were to superimpose
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Figure5.6: A basiselement of the wr eath closure of Av(4321).

the graph of a smaller member of the antichain onto the graph of a larger one, the end

nodes of the smaller must correspond to the end nodes of the larger, leaving a path which

cannot be superimposed onto the longer path without losing an edge. Thus the graphs are

pairwise incomparable, and hencethe permutations are pairwise incomparable.

Finally, we may observe that the antichain is fundamental sinceevery subpermutation

of an element of the antichain is either sum decomposableor lacks at least one anchor.

We may, of course, vary the anchors of the increasing oscillating sequence– and, in-

deed, most other antichains – to produce a complete variety of dif ferent antichains. We

will use this fact in Chapter 8 to exhibit several antichains which lie in the basis of par-

ticular classes.Meanwhile, let us return to considering the basis of the wr eath closure of

Av(4321):

Example 5.14(A Variant of the IncreasingOscillating Antichain) . Wepresenthere the vari-

ant of the increasing oscillating antichain, which, instead of having a pair of points at the

top of the sequenceto form an anchor, has a single point acting, essentially, as a left pin.

The �rst two elementsare542163and 74216385, and its nth term is (2n+ 3)4216385� � � (2n+

4)(2n + 1) (seeFigure 5.6). A similar argument to Example 5.13may be used to prove that

it is an antichain.
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5.3.1 Partial Well Order

While every basis forms an antichain, be it �nite or in�nite, we may also be interested in

whether a classcontains in�nite antichains. A partial order is said to be a partial well or-

derif it contains neither an in�nite properly decreasingsequencenor an in�nite antichain.

In the caseof permutation classesthis �rst condition is always true (by the existenceof a

smallest element), and so a permutation classis partially well orderedif it contains no in�-

nite antichain. For example, Knuth [76] shows that the set of stack sortable permutations,

Av(231) is partially well ordered.

The decidability problem of whether a given permutation classis partially well ordered

remains open:

Question 5.15. Is it possibleto decideif apermutationclassgivenby a�nite basisis partially well

ordered?6

Indeed there has been no recent major progresson the general problem. Alongside

a variety of speci�c examples, Atkinson, Murphy and Ru�skuc [9] showed that Av(� ) is

partially well ordered if and only if � 2 f 1; 12; 21; 132; 213; 231; 312g.

Showing that a class is not partially well ordered is simply a caseof spotting an an-

tichain inside it. For example, the class Av(321) contains the increasing oscillating an-

tichain presented above. A non-partially well ordered class may contain many in�nite

antichains, but among them there must be at least one fundamental antichain.

Proposition 5.16(Gustedt [66]). Everynon-partiallywell orderedpermutationclasscontainsan

in�nite fundamentalantichain.

Proof. With an eye toward applying Zorn's lemma, take an in�nite descending chain A 1 �

A2 � � � � of in�nite antichains and de�ne

A1 = f � : � is an element of all but �nitely many A i sg:

6This question is considered in more generality by Cherlin and Latka [34].



5.3 A N TICH A IN S, PA RTIA L WELL ORDER A N D ATOM ICITY 99

First observe that A1 is an antichain, and that A1 � A i for all i . We claim that it is

also in�nite. Suppose to the contrary that A1 is �nite. Thus A1 is a subset of all but

�nitely many of the A i s; without loss let us assumethat it is contained in all the A i s. Now

choose� 1 2 A1 n A1 . For each i � 2, becauseA i � A i � 1, we may choose� i 2 A i such

that � i � � i � 1. This gives a descending chain � 1 � � 2 � : : :, so becausepermutation

classeshave no in�nite strictly descending chains, there is some � 1 and integer I such

that � i = � 1 for all i � I . However , this implies that � 1 � � I = � 1 2 A1 � A1, which

requires (becauseA1 is an antichain) � 1 = � 1 , a contradiction to our choice of � 1. Thus

Zorn's Lemma shows that the setof in�nite antichains in a non-partially well ordered class

has a minimal element under � , asdesired.

Note that if A is a fundamental antichain then its strict closure, f � : � < � 2 Ag, is

partially well ordered.

On the other hand, showing that a class is partially well ordered is a considerably

harder task. The primary tool here is a result of Higman [67], which we now state. We

say that (A; M ) is an abstractalgebraif A is a set of elementsand M a set of operations, for

which each � 2 M is a k-ary operation, � : A k ! A, for some positive integer k. Denote

the set of k-ary operations by M k , and suppose that M k is empty for every k > n for some

n. (Note that we will allow 0-ary operations.) The abstract algebra (A; M ) is said to be

minimal if no subsetB of A allows (B ; M ) to be an abstract algebra.

A partial order � A on the set of elements A is a divisibility order on (A; M ) if every

operation � 2 M k , k = 0; 1; : : : ; n, satis�es,

� a � A bimplies � (x; a; y ) � A � (x ; b;y ),

� a � A � (x ; a; y ),

where x and y are arbitrary sequencescomprising elements of A whose lengths sum to

k � 1. Furthermor e, given partial orders � M k on M k , k = 0; 1; : : : ; n, we say that � A is

compatiblewith thesepartial orders if, for �; � 2 M k ,

� � � M k � implies � (x) � A � (x) for all x 2 Ak .
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Theorem 5.17(Higman [67]). Supposethat (A; M ) is a minimal abstractalgebrafor which,for

somen, thesetM k of k-ary operationsin M is partially well orderedfor eachk = 0; 1; : : : ; n and

emptyfor k > n. Then(A; M ) is partially well orderedunderany divisibility orderingcompatible

with theordersof M k .

Higman's Theorem is applied to prove that a given permutation classis partially well

ordered by showing how we may “build” the class from a smaller (very possibly �nite)

set.

Example 5.18. By our de�nition in Example 5.4, the classAv(2413; 3142)of separableper-

mutations is precisely the strong completion of the class f 1g, i.e. the class formed from

the permutation 1 using the binary operations � and 	 . Higman's Theorem may now

immediately be applied to show that Av(2413; 3142) is partially well ordered.

A permutation class C is strongly �nitely basedif it is �nitely based and every closed

subset of C is also �nitely based.7 Recalling that the basis of a class is an antichain, this

de�nition immediately returns us to partial well order, and indeed we have a variety of

equivalent conditions. A formal proof is provided by Atkinson, Murphy and Ru�skuc [9].

Proposition 5.19. LetCbeapermutationclass.Thenthefollowingareequivalent:

(1) Cis strongly �nitely based.

(2) Chasat mostcountablymanyclosedsubsets.

(3) Ccontainsno in�nite antichain.

(4) Thesubclassesof Csatisfythedescendingchaincondition.

Partial well order also plays a rôle in some enumeration attempts. Klazar [75] shows

that the smallest growth rate which admits uncountably many closed permutation classes

lies between 2 and 2:33529: : : . This growth rate is determined by the smallest growth rate

that a non-partially well ordered class can have – by Proposition 5.19, such a class will

7Higman [67] refers to this as the “�nite basisproperty.”
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have uncountably many closed subsets,each of which cannot have a growth rate larger

than the parent class. The lower bound arises by showing all classeswith growth rate

under 2 contain only �nitely long alternations and oscillations, and these classes– via

Higman – are partially well ordered. The upper bound arises by considering the class

Av(321; 4123; 3412; 23451), and noting that it contains the increasing oscillating antichain

(henceis not partially well ordered). This classhas rational generating function

f (x) =
x5 + x4 + x3 + x2 + x

1 � x � 2x2 � 2x3 � x4 � x5

and the growth rate 2:33529: : : arisesas the reciprocal of the smallest real root of the de-

nominator (in fact, it is the only real root). Klazar mentions that Vatter and Murphy [pri-

vate communication] can impr ove the upper bound to 2:20556: : : . The classwhich satis-

�es this is formed by appending the basiselements 134526, 134625, 314526and 314625to

Av(321; 4123; 3412; 23451), and its growth rate is the dominant root of x 3 � 2x2 � 1.

Mor e recently, Vatter [117] proved that the bound is precisely2:20556: : : by computing

the growth ratesof all partially well ordered classes,a task relying on Proposition 5.22. He

also makes the following conjecture:

Conjecture 5.20. Every growth rate of permutationclassesis alsothegrowth rate of a partially

well orderedpermutationclass.

5.3.2 Atomicity

Recall in Subsection5.1.2how the union of two �nitely basedclassesis again �nitely based.

It follows (by considering symmetries, if necessary)that the union of two strongly �nitely

basedclassesis again strongly �nitely based,and subsequently we have the following.

Proposition 5.21(Atkinson, Murphy and Ru�skuc [9, Lemma 2.1]). Theunion ofa�nite num-

berof �nitely basedpartially well orderedpermutationclassesis partially well orderedand�nitely

based.

Conversely, how can we “br eak up” partially well ordered classesinto a union of

smaller “unbr eakable” classes?This question motivates the study of atomic classes;a per-
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mutation class is atomicif it cannot be expressedas the union of two proper subclasses.

This de�nition then allows us to provide a converse,as intr oduced in [9], though here we

present an alternative proof based on the descending chain condition, �rst seen in Mur -

phy's PhD thesis [97].

Proposition 5.22(Atkinson, Murphy and Ru�skuc [9, Theorem 2.2]and Murphy [97, Propo-

sition 188]). Every partially well ordered permutationclasscan bewritten asa �nite union of

atomicclasses.

Proof. Consider the binary tree whose root is the partially well ordered class C, whose

leavesare all atomic classes,and in which the childr en of the non-atomic classD are two

proper subclassesD0; D00� D such that D0[ D00= D. BecauseCis partially well ordered its

subclassessatisfy the descending chain condition by Proposition 5.19, so this treecontains

no in�nite paths and thus is �nite. Its leavesgive the desired atomic classes.

In somesense,atomic classescan therefore be considered asthe elemental classesfrom

which all others are constructed by taking unions. In practice, however, outwith the com-

fortable realm of partial well order, atomicity does not behave as elegantly as we might

hope – we can, for example, encounter atomic classesthat are the union of in�nitely many

pairwise incomparable atomic classes(seeProposition 170 of Murphy [97]), while there

are non-atomic �nitely basedclasseswhich contain in�nitely basedmaximal atomic sub-

classes(Proposition 186of Murphy [97]). In its defence,however:

Proposition 5.23(Murphy [97, Proposition 171]). Everypermutationclasscanbewritten asa

union ofmaximalatomicclasses.

The question of uniqueness for this decomposition, however, falls short of what we

would like. To ensurea union
S

i 2 I Ci of maximal atomic classesis unique, we must ensure

that they are independent, that is, for every i 2 I we have

[

j 6= i

Cj �
[

j

Cj ;

and this is not always obtainable. Meanwhile, there remains the question of decidability:
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Question 5.24. Is it possibletodecidewhetherapermutationclassgivenbya�nite basisis atomic?

As with partial well-or der, a general answer to this seemsfar off, though answers in

speci�c casesare often obtainable. Cherlin, Shelahand Shi [33], however, suggest that the

problem for general relational structuresis not decidable.

Our toolbox for this question consistsof a variety of equivalent de�nitions for atomic-

ity. A classC is said to satisfy the joint embeddingpropertyif, for any two permutations �

and � in C, there exists � such that � � � and � � � .

Theorem 5.25(Fra�̈ssé [56]). Thefollowingconditionson apermutationclassCareequivalent:

(1) C = Sub(f : A ! B ) for somelinearly orderedsetsA; B andbijectionf .

(2) Ccannotbeexpressedasaunion of two properclosedsubsets.

(3) Csatis�esthejoint embeddingproperty.

(4) Ccontainspermutations� 1 � � 2 � : : : suchthat for every� 2 Cwehave� � � n for some

n.

Every sum, skew or strongly complete class is atomic. For example, given � and �

in a sum complete class C, we have � � � 2 C and so C satis�es the joint embedding

property. Sinceevery permutation must be either sum or skew decomposable, it follows

by Proposition 5.8that every classhaving just one basiselement is sum or skew complete,

and henceatomic. Beyond that, however, decidability is not known – for example, we may

write the classAv(321; 2143)asAv(321; 2143; 3142)[ Av (321; 2143; 2413).

Restricting our view to natural classes– that is, atomic classesde�ned via bijections of

the natural numbers f : N ! N – Atkinson, Murphy and Ru�skuc [11] proved that it is

decidable whether a �nitely based permutation classis natural. It may also be decidable

in other special cases;the author tried – and failed – to derive similar conditions for the

“rational” case,namely f : Q ! Q.
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5.4 Permutation Classesand Simple Permutations

By the central rôle which simple permutations take in forming the building blocks of per-

mutations, it is not surprising that they also perform a similarly crucial job within permu-

tation classes.Clearly every permutation of a classCmay be broken down by meansof its

substitution decomposition, using only Si(C), the simple permutations from C. For exam-

ple, in the classS = Av(2413; 3142)of separablepermutations, we have Si(S) = f 1; 12; 21g,

and every permutation in S can be formed by repeatedin�ations of 12and 21.

The converse,of course, is not true in general: we cannot reconstruct a classC by tak-

ing every possible in�ation of the simple permutations Si(C) (for example, Si(Av(231)) =

f 1; 12; 21g, but 231= 21[12; 1]). This can only be done when a permutation classis wr eath

closed,assuch a classthen contains every in�ation by its very de�nition.

When the set of simple permutations is in�nite, there is not a great deal more that can

be said. There is, however, a seemingly vast array of permutation classesthat contain only

�nitely many simple permutations, and in this casethere is much to say. In this section we

will review a number of the known results, before contributing several more new results

in Chapters 6 and 7.

Counting Simple Permutations. A �rst step towards determining whether a classcon-

tains only �nitely many simple permutations is to use the Schmerl-Trotter Theorem 2.1

(found on page 21). By simply counting the simple permutations of size n = 1; 2; : : :, if

we encounter two consecutive lengths where there are no simple permutations, then the

classcan contain no longer simple permutations. For example, the number of simple per-

mutations in Av(1324; 2143; 4231) of lengths 1 to 7 is 1; 2; 0; 2; 4; 0; 0, and so the longest

simple permutations in this classare of length 5. We will presenta complete answer to this

decidability problem in Chapter 7.
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5.4.1 Finitely Many Simples

Classeswith only �nitely many simple permutations have nice properties. To name the

threemost signi�cant: theseclasseshave algebraic generating functions, are partially well

ordered, and are �nitely based.We will consider eachof thesetopics in turn.

Algebraic Generating Functions. Albert and Atkinson [2] showed how every classcon-

taining only �nitely many simple permutations is enumerated by an algebraic generating

function, and this function is readily computable. This should come asno great surprise –

expressingall permutations in such a classas the in�ation of a simple skeleton gives us a

recursive construction, in much the sameway as when we enumerated the stack sortable

permutations (Example 5.11), and such recursions immediately suggestthat we should ex-

pect an algebraic generating function. We prove this fact, and a much more general result,

in Chapter 6.

Partial Well Order. Sinceantichains (or, at least, fundamental antichains) rely heavily on

the structure of simple permutations to maintain their incomparability (as witnessed by

the statementof Conjecture 5.12), we can reasonablyexpecta permutation classcontaining

only �nitely many simple permutations to be partially well ordered. Before showing this,

however, we exhibit an observation about partial well order that we will need.

Proposition 5.26. Theproduct(P1; � 1) � � � � � (Ps; � s) ofacollectionofpartial ordersis partially

well orderedif andonly if eachof themis partially well ordered.

Without further ado, we may now proceed to the desired result. Our proof follows

Gustedt [66], although note that Albert and Atkinson [2] give a dif ferent proof, using Hig-

man's Theorem 5.17.

Proposition 5.27 (Gustedt [66]). Every permutationclasswith only �nitely many simpleper-

mutationsis partially well ordered.

Proof. Suppose to the contrary that the class C contains an in�nite antichain but only

�nitely many simple permutations. By Proposition 5.16, Ccontains an in�nite fundamental
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antichain. Mor eover, there is an in�nite subsetA of this antichain for which every element

is an in�ation of the samesimple permutation, say � . Let D denote the strict closure of A

and note that A is also fundamental, so D is partially well ordered. It is easyto seethat the

permutation containment order, when restricted to in�ations of � , is isomorphic to a prod-

uct order: � [� 1; : : : ; � m ] � � [� 0
1; : : : ; � 0

m ] if and only if � i � � 0
i for all i 2 [m]. However ,

this implies that A is an in�nite antichain in a product D � � � � � D of partially well ordered

posets,contradicting Proposition 5.26.

Finitely Based. That a classcontaining only �nitely many simple permutations is �nitely

basedarisesby �rst considering its wr eath closure. Our �rst task is to compute the basis

of a wr eath closedclasscontaining only �nitely many simple permutations, which may be

done using the Schmerl-Trotter Theorem 2.1(Page21):

Proposition 5.28. If thelongestsimplepermutationsin Chavelengthk thenthebasiselementsof

W(C) havelengthat mostk + 2.

Proof. The basis of W(C) is easily seen to consist of the minimal (under the pattern con-

tainment order) simple permutations not contained in C(cf. Proposition 5.9). Let � be such

a permutation of length n. Theorem 2.1 shows that � contains a simple permutation � of

length n � 1 or n � 2. If n � k + 3, then � =2 C, so � =2 W(C) and thus � cannot lie in the

basisof W(C).

For example, using this Proposition it can be computed that the wr eath closure of 1,

12, 21, and 2413is Av(3142; 25314; 246135; 362514) – we will encounter this classagain in

Example 6.10.

By Proposition 5.27, any permutation class– and in particular any wr eath closed class

– containing only �nitely many simples is partially well ordered. Subsequently:

Theorem 5.29(Albert and Atkinson [2]). Everypermutationclasscontainingonly �nitely many

simplepermutationsis �nitely based.



5.5 TH E CON TA IN M EN T PA RTIA L ORDER IN OTH ER STRUCTURES 107

Proof. Let C be a class containing only �nitely many simple permutations. By Proposi-

tion 5.28, W(C) is �nitely based,and by Proposition 5.27it is partially well ordered. The

classC must therefore avoid all elements in the basis of W(C), together with the minimal

elementsof W(C) not belonging to C, which form an antichain. By its partial well ordering

any antichain in W(C) is �nite, and so there can only be �nitely many basis elements of

C.

5.5 The Containment Partial Order in Other Structures

We may, of course, de�ne the containment order on any relational structure and treat it

as a partial order. Expanding upon the notion of extensions in Chapter 3, if A and B are

relational structuresover a common language L then an embeddingof A into B is an injec-

tion ' : dom(A) ! dom(B) so that Bj ' (dom( A )) is isomorphic to A . If such an embedding

exists, then we say A � B, a quasi order from which we may induce a partial order by

considering the equivalence classesA �= B, arising if and only if A � B and B � A .

In theory, one may then study any closed classof relational structures for a given lan-

guage in the sameway as one might study permutation classes.Formally, a set C of rela-

tional structures over a common relational language L is an L -classif A 2 C and B � A

implies B 2 C. We might then if we wished de�ne an L -classin terms of structure avoid-

anceand try to compute its generating function. We could consider intersections, unions

and, by recalling the de�nition of in�ation in this general setting, wr eath products and

wr eath closures.

Antichains, partial well order and atomicity arenotions taken from the theory of posets.

Antichains are merely setsof pairwise incomparable elements;seeGustedt [66] for notions

of minimality in antichains and someconsiderations on the existenceof in�nite antichains.

Sinceevery L -classhas a minimal element on one point, no L -classcan contain an in�nite

properly decreasing sequence. Thus an L -classC is partially well ordered if it contains no

in�nite antichains, and Higman's Theorem canbe used in the general setting. Atomicity in

the permutation classcaseis merely a special caseof the “  classes”of Fra�̈ssé [56]; many
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of the results that are true for permutation classesare also true in the general case. For

example, an atomic L -classCsatis�es the joint embedding property, and is alsoexpressible

in a way analogous to the Sub(� : A ! B ) notation. SeeFra�̈ssé [56], Hodges [68, Section

7.1],and, for a survey of more recent results, Pouzet [101].

Finitely many Simples. By means of the substitution decomposition, L -classeswhich

contain only �nitely many simple L -structureswill have a recursive construction much as

in the permutation classcase.However in the general setting this does not correspond to

an algebraic generating function, since structures in the partial order are de�ned only up

to equivalence. In fact, it seemsthat having an algebraic generating function is special to

the permutation case(for example, it is not true in the graph case).

All such L -classesare, however, partially well ordered. As in the permutation case,

antichains are instrinsically linked to simple permutations, and Proposition 5.27is proved

in the general caseby Gustedt [66].

To answer the question of whether these classesare �nitely based, we may obtain a

partial answer by considering the most general setting of the Schmerl-Trotter Theorem 2.1

given in [107], namely that of binary, irr e�exive relational structures,a set which includes

graphs, tournaments and posets. Ehrenfeucht and McConnell [48] show that, for k � 3,

a simple structure de�ned on a single k-ary relation must contain a simple substructure

with k, k � 1 or k � 2 fewer points, and this was impr oved to just k � 1 or k � 2 fewer points

by Bonizzoni and McConnell [23]. Further generalisations remain unknown.

The Graph Case. The “graph containment order ” is in fact the order de�ned by induced

subgraphs, and has been extensively studied. As with many other relational structures,

classesof graphs closed under taking induced subgraphs are more often referred to as

hereditaryproperties. A stronger condition is obtained by considering setsof graphs closed

under taking subgraphs (rather than induced subgraphs), and these are referred to as

monotoneproperties.

Properties need not be hereditary – consider, for example, the property consisting of all
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regular graphs. Examples of hereditary properties include the set of triangle-fr eegraphs,

all graphs of chromatic number at most k and the setof split graphs (graphs which may be

partitioned into an independent setand a clique).

As with permutation classes,much of the study of hereditary graph properties is in

their asymptotic enumeration. For a property P, let Pn denote the set of graphs in P with

n vertices, whence the function jPn j de�nes the speedof the property. While little can be

said about the speed of an arbitrary property, Scheinermanand Zito [106] prove that the

speed of hereditary graph properties must, for suf�ciently large n, be constant, polyno-

mial, exponential, factorial or superfactorial. Subsequent study – in particular Balogh,

Bollobás and Weinreich [15, 16] – has shown that there are many “jumps” within this al-

ready broken spectrum of speeds.





CH A PTER 6

A LGEBRA IC GEN ERATIN G FUN CTION S

6.1 Introduction

WH EN A CLA SS is enumerated by an algebraic generating function, we intuitively

expect to �nd somerecursive description of the permutations in the class.Suchde-

scriptions may arise in a variety of ways, but one of the most important is the substitution

decomposition.

In a classwhich has only �nitely many simple permutations, therefore, any long per-

mutation must map nontrivial intervals onto intervals, and henceall the permutations of

the classare constructed recursively via the substitution decomposition. With only �nitely

many simple permutations on which to “build”, we expect the classto have an algebraic

generating function:

Theorem 6.1 (Albert and Atkinson [2]). A permutationclasswith only �nitely many simple

permutationshasa readilycomputablealgebraicgeneratingfunction.

Our aim in this chapter is to establish a generalisation of Theorem 6.1. We do this by

observing that the recursive construction given by the substitution decomposition is not

a feature merely of pattern avoidance in the containment order, but can be extended to

enumerate a wide variety of other setsof permutations. In essenceit can be extended to

enumerate any set of permutations which can be built in the same way from a �nite set

of simple permutations, though we will still require that the set lies within a permutation

classwith only �nitely many simple permutations.

111
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Theorem 6.2. Let C bea permutationclasscontainingonly �nitely many simplepermutations,

P a �nite query-completesetof properties,and Q � P. Thegeneratingfunction for the setof

permutationsin Csatisfyingeverypropertyin Q is algebraicoverQ(x).

The next section establishesthe terminology required by Theorem 6.2, which we will

then prove in Section 6.3. Section 6.4 shows how to describe some common families of

permutations as query-complete sets of properties and hence demonstrates the scope of

Theorem 6.2, with speci�c worked examplesgiven in Section6.5. In Sections6.6and 6.7we

adapt these techniques to enumerate two further families, namely involutions and cyclic

closures,respectively. Someclosing remarks are given in Section 6.8.

6.2 Properties and Query-completeness

As we saw at the end of Chapter 5, the term “pr operty” has been used extensively in

the study of other relational structures, and particularly in graph theory. It is natural,

therefore, to use this term in the context of permutations in a similar way. To this end,

de�ne a property, P, to be any setof permutations, and say that a permutation � satis�esP

if � 2 P. Note that a permutation classis now simply an example of a property.

A setP of properties is query-completeif, for eachsimple permutation � of length m and

property P 2 P, there is a procedure to determine whether � [� 1; : : : ; � m ] satis�es P based

only on the knowledge of which properties of P each� i satis�es. For example, the set of

properties consisting of the 132-avoiding permutations, f Av(132)g, is not query-complete,

as witnessed by the fact that 12[1; 1] 2 Av(132) but 12[1; 21] =2 Av(132), while both 1 and

12 avoid 132. However , f Av (132); Av (21)g is query-complete:

12[� 1; � 2] 2 Av(132) ( ) � 1 2 Av(132) and � 2 2 Av(21);

21[� 1; � 2] 2 Av(132) ( ) � 1 2 Av(132) and � 2 2 Av(132);

� [� 1; : : : ; � m ] =2 Av(132) if � =2 f 1; 12; 21g is simple;

12[� 1; � 2] 2 Av (21) ( ) � 1 2 Av(21) and � 2 2 Av(21);

� [� 1; : : : ; � m ] =2 Av(21) if � =2 f 1; 12g is simple:
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Note that since � [� 1; : : : ; � m ] is uniquely determined by � and the � i s, every property

P lies in some query-complete set, e.g., f Pg [ ff � g : � a permutation g is query-complete

for every P. Thus the �niteness condition in Theorem 6.2is essential.Another observation

about query-complete sets,which will be liberally applied, is the following.

Proposition 6.3. A union ofquery-completesetsofpropertiesis itself query-complete.

6.3 Proof of Main Result

We begin by recalling the substitution decomposition for permutations, which is encapsu-

lated in two propositions from Chapter 1.

Proposition 1.7. Everypermutationmaybewritten asthein�ation of a uniquesimplepermuta-

tion. Moreover, if � canbewritten as� [� 1; : : : ; � m ] where� is simpleandm � 4, thenthe� i sare

unique.

Proposition 1.8. If � is anin�ation of12, thenthereis auniquesumindecomposable� 1 suchthat

� = 12[� 1; � 2] for some� 2, which is itself unique. Thesameholdswith 12 replacedby 21 and

“sum” replacedby “skew”.

Given a permutation classCand set P of properties, we write CP for the set of permu-

tations in Cthat satisfy every property in P, and write f P for the generating function of CP .

Before beginning the proof of Theorem 6.2we consider the casewhere C is wr eath-closed

and P = ; , which contains many of the main ideas of the proof in a more digestible form.

(This presentation borrows heavily from Albert and Atkinson [2].)

We begin by intr oducing two properties,

�

= f sum indecomposable permutations g and
�

= f skew indecomposable permutations g:

Note that both f
�

g and f
�

g are query-complete, becausefor simple � ,

� [� 1; : : : ; � m ] 2
�

( ) � 6= 12and

� [� 1; : : : ; � m ] 2
�

( ) � 6= 21:
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We also intr oduce the notation

� [C1; : : : ; Cm ] = f � [� 1; : : : ; � m ] : � i 2 Ci for all i 2 [m]g:

By Propositions 1.7and 1.8and the assumption that Cis wr eath-closed,Ccanbewritten

as

C= f 1g ] 12[C� ; C] ] 21[C� ; C] ]
]

� 2 Si(C)
j� j� 4

� [C; : : : ; C];

while C� and C� have the expressions

C� = f 1g ] 21[C� ; C] ]
]

� 2 Si(C)
j� j� 4

� [C; : : : ; C] = Cn 12[C� ; C];

C� = f 1g ] 12[C� ; C] ]
]

� 2 Si(C)
j� j� 4

� [C; : : : ; C] = Cn 21[C� ; C]:

Thesegive the system
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

f = x + f � f + f � f +
X

� 2 Si(C)
j� j� 4

f j � j ;

f � = x + f � f +
X

� 2 Si(C)
j� j� 4

f j � j = f � f � f =
f

1 + f
;

f � = x + f � f +
X

� 2 Si(C)
j� j� 4

f j � j = f � f � f =
f

1 + f
:

If we now let s denote the generating function for the simple permutations of length at

least 4 in C, we �nd that

f = x +
2f 2

1 + f
+ s(f );

so if s is algebraic, a fortiori if s is polynomial, f is algebraic. In particular , note that

the separable permutations correspond to s = 0; substituting this value for s leaves f =

x + 2f 2=(1 + f ), and so we have proved that the generating function for the separablesis

f =
1 � x �

p
1 � 6x + x2

2
= x + 2x2 + 6x3 + 22x4 + 90x5 + : : :

giving the large Schröder numbers (sequenceA006318of [110]).
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The following brief review of algebraic systems is a specialisation of the more general

treatment in Stanley [114, Section6.6]. Let A = f a1; : : : ; ang denote an alphabet. A proper

algebraicsystemover Q[x1; : : : ; xm ] is a setof equations ai = pi (x1; : : : ; xm ; a1; : : : ; an ) where

eachpi is a polynomial with coef�cients from Q, hasconstant term 0, and contains no terms

of the form caj where c 2 Q. The solution to such a system is a tuple (f 1; : : : ; f n ) of formal

power seriesfrom Q[[x1; : : : ; xm ]] such that for all i , f i is equal to pi (x1; : : : ; xm ; a1; : : : ; an )

evaluated at (a1; : : : ; an ) = (f 1; : : : ; f n ).

Theorem 6.4 (Stanley [114, Proposition 6.6.3and Theorem 6.6.10]). Every properalgebraic

system(p1; : : : ; pn ) overQ[x1; : : : ; xm ] hasauniquesolution(f 1; : : : ; f n). Moreover, eachofthese

f i s is algebraicoverQ(x1; : : : ; xm ).

The proof of Theorem 6.2now follows, modulo the result of Lemma 6.5.

Theorem 6.2. Let C bea permutationclasscontainingonly �nitely many simplepermutations,

P a �nite query-completesetof properties,and Q � P. Thegeneratingfunction for the setof

permutationsin Csatisfyingeverypropertyin Q, i.e.,f Q , is algebraicoverQ(x).

Proof. Let B denote the basisof C, which is �nite by Theorem 5.29(on Page106). Lemma 6.5

shows that for every � 2 B , the property Av (� ) lies in a �nite query-complete set. Thus

the set f Av (� ) : � 2 B g is contained in a �nite query-complete set,and we have

C= W(C)f Av (� ): � 2 B g:

Therefore it suf�ces to prove the theorem for wr eath-closed classes.Furthermor e, if P is

query-complete then P [ f
�

;
�

g is also query-complete, so we may assumewithout loss

that
�

;
�

2 P.

Let P(� ) denote the set of properties in P satis�ed by � and, avoiding inclusion-

exclusion, let gR denote the generating function for the set of � 2 C with P(� ) = R,

so

f Q =
X

Q�R�P

gR :
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As P is query-complete, for eachsimple � , P(� [� 1; : : : ; � m ]) is completely determined by �

and P(� 1); : : : ; P(� m ). Thus for eachsimple � of length m, there is a �nite collection of m-

tuples of setsof properties such that P(� [� 1; : : : ; � m ]) = R precisely if (P(� 1); : : : ; P(� m ))

lies in this collection. If m � 4 then Proposition 1.7 implies that the generating function

for all in�ations � of � with P(� ) = R can be expressednontrivially as a polynomial in

f gS : S � Pg of degree m. If m = 2, suppose � = 12 without loss. By Proposition 1.8,

all in�ations of 12 have a unique decomposition as 12[� 1; � 2] where � 1 2
�

. Thus the

generating function for in�ations � of 12 with P(� ) = R can be expressedas a sum of

terms of the form gSgT where
�

2 S.

Therefore gR can be expressedasa polynomial in x (depending on whether P(1) = R)

and f gS : S � Pg. Mor eover, thesepolynomials have no constant terms and no terms of

the form cgS for constant c 6= 0. Thus they form a proper algebraic system,so Theorem 6.4

implies that eachgS is algebraic.

6.4 Finite Query-Complete Sets

We exhibit several query-complete sets of properties in this section. The �rst of these is

necessaryfor the proof of Theorem 6.2, the others for Corollary 6.21.

Lemma 6.5. Foreverypermutation� , thesetf Av (� ) : � � � g is query-complete.

Proof. We prove the lemma by induction on the length of � . The basecase� = 1 being

trivial, let us suppose that � is of length at least 2. By induction, f Av( ) :  � � g is query-

complete for all � < � , and thus by appealing to Proposition 6.3 it suf�ces to prove that

whether � = � [� 1; : : : ; � m ] satis�es Av(� ) can be decided entirely by knowing, for eachi ,

which permutations � satisfy � � � i and � � � .

We de�ne a lenientin�ation to be an in�ation � [ 1; : : : ;  m ] in which the  i s are allowed
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to be empty. List all expressionsof � asa lenient in�ation of � as

� = � [ (1)
1 ; : : : ;  (1)

m ];
...

� = � [ (t )
1 ; : : : ;  (t )

m ]:

Clearly if we have, for some s 2 [t], � i �  (s)
i for all i 2 [m], then � � � . Equivalently , to

have � 2 Av(� ), for every s 2 [t] there must be at least one i 2 [m] for which � i 6�  (s)
i .

Conversely, every embedding of � into � gives oneof the lenient in�ations in the list above,

which completes the proof.

In a barredpermutation, one or more of the entries is barred; for � to avoid the barred

permutation � means that every set of entries of � order isomorphic to the nonbarred

entries of � canbeextended to a setorder isomorphic to � itself. For example, 24315avoids

213 becauseevery inversion (i.e., copy of 21) can be extended to a copy of 213(append the

5), but 24315contains 312 becausethe 3 and 1 of 24315areorder isomorphic to 32, but there

is no way to extend this to a copy of 312. Barred permutations have arisen several times in

the permutation pattern literatur e. For example,under West'snotion of 2-stacksorting (see

Example 5.3on page 84) the permutations that can be sorted are those that avoid 2341and

35241, while Bousquet-Mélou and Butler [25] characterisethe permutations corresponding

to locally factorial Schubert varieties in terms of barred permutations.

A blockedpermutationis a permutation containing dashes indicating the entries that

need not occur consecutively (in the normal pattern-containment order, no entries need

occur consecutively), or in the caseof the beginning or trailing dashes,entries that neednot

occur at the beginning or end of the permutation, respectively. For example,24135contains

only one copy of -1-23-, namely 235; the entries 245do not form a copy of -1-23- becausethe

4 and 5 are not adjacent. Babsonand Steingr�́msson [14] intr oduced blocked permutations

(although they called them generalisedpatterns, and implicitly assumedthat their patterns

had beginning and trailing dashes)and showed that they could be used to expressmost
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Mahonian statistics. For example, the major index 1 of � is equal to the total number of

copies of -1-32-, -2-31-, -3-21-, and -21- in � .

The proof of Lemma 6.5extends in a straightforwar d manner to show that the property

of avoiding a blocked or barred permutation (or, for that matter, a permutation combining

theserestrictions) also lies in a �nite query-complete set,although the setsare not soeasily

described.2

The permutation � 2 Sn is said to be alternatingif for all i 2 [2; n � 1], � (i ) does not lie

between � (i � 1) and � (i + 1).

Lemma 6.6. Thesetofpropertiesconsistingof

� AL = f alternatingpermutationsg,

� B R = f permutationsbeginningwith a rise,i.e.,permutationswith � (1) < � (2)g,

� ER = f permutationsendingwith a riseg, and

� f 1g.

is query-complete.

Proof. Clearly ff 1g; B R; ERg is query-complete:

� [� 1; : : : ; � m ] 2 B R ( ) � 1 2 B R or (� 1 = 1 and � 2 B R) ;

� [� 1; : : : ; � m ] 2 ER ( ) � m 2 ER or (� m = 1 and � 2 ER) :

For � = � [� 1; : : : ; � m ] to be an alternating permutation, we �rst need � 1; : : : ; � m 2 AL .

Now suppose that the entries of � up to and including the � (i ) interval are alternating (we

have this for i = 1 from the above). If � (i ) > � (i + 1) then � contains a descentbetween its

� (i ) interval and its � (i + 1) interval. Thus � i is allowed to be 1 (i.e., � i 2 f 1g) only if i = 1

1The major index is more commonly de�ned as the sum of the descentsof � ,
X

� ( i ) >� ( i +1)

i .

2Consider, e.g., the problem of deciding whether � = 3142[� 1 ; � 2 ; � 3 ; � 4 ] avoids -1-23-. First, each of
the � i 's must avoid -1-23-. Then we also need � 3 and � 4 to not contain ascents(i.e., avoid -12-) since � 2 is
nonempty, and � 2 to avoid -1-2, sinceotherwise the thir d element of the -1-23- could be chosenfrom � 3 .
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or � (i � 1) < � (i ), while if � i 6= 1 then we must have � i 2 ER, and whether or not � i is 1

we must have � i +1 2 B R [ f 1g. The casewhere � (i ) < � (i + 1) is analogous, completing

the proof.

Recall that an evenpermutationis one that can be written as the product of an even

number of transpositions, or (much more conveniently for our purposes) a permutation

with an even number of inversions.

Lemma 6.7. Thesetofpropertiesconsistingof

� EV = f evenpermutationsg and

� EL = f permutationsofevenlengthg

is query-complete.

Proof. We have

� [� 1; : : : ; � m ] 2 EL ( ) an even number of � i 's fail to lie in EL;

so f ELg is query-complete. To seethat f EV; ELg is query-complete, we divide the inver -

sions in � [� 1; : : : ; � m ] into two groups: inversions within a single � (i ) interval and inver -

sions between two intervals � (i ) and � (j ). We need to compute the parity of eachof these

numbers. The parity of the �rst type of inversions depends only on whether � i 2 EV. For

the secondtype, suppose i < j . If � (i ) < � (j ) then there are an even number of inversions

(more speci�cally , 0) between the intervals � (i ) and � (j ) while if � (i ) > � (j ) then the num-

ber of inversions between theseintervals is j� i jj � j j, which is even if � i or � j lie in EL and

odd otherwise.

We say that the entry � (i ) beginsa descentif � (i ) > � (i + 1) and beginsan ascentif

� (i ) < � (i + 1). A permutation is Dumont of the�rst kind if eacheven entry begins a descent

and eachodd entry either begins an ascentor occurs last (this dates back to Dumont [42]).

For example, 5642137is a Dumont permutation of the �rst kind. We further say that a

permutation is almostDumont if every non-terminal even entry begins a descentand every
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non-terminal odd entry begins an ascent,or anti-almostDumont if every non-terminal odd

entry begins a descentand every non-terminal even entry begins an ascent.

Lemma 6.8. Thesetofpropertiesconsistingof

� DU = f Dumont permutationsof the�rst kindg,

� AD = f almostDumont permutationsg,

� AAD = f anti-almostDumont permutationsg,

� EO = f permutationswhichendwith anoddentryg and

� EL = f permutationsofevenlengthg

is query-complete.

Proof. First note that DU = AD \ EO, so it suf�ces to show that f AD ; AAD ; EO; ELg

is query-complete. By the proof of Proposition 6.7 we have that f ELg is query-complete.

Using the EL property, we candetermine the parity of the number of entries of lesservalue

than any given interval; there are an even number of entries below the � (i ) interval if and

only if an even number of the permutations � � � 1 (1) ; � � � 1 (2) ; : : : ; � � � 1 (� (i )� 1) fail to lie in

EL . From this, it follows readily that the set f EO; ELg is query-complete: � [� 1; : : : ; � m ] 2

EO if � m 2 EO and an even number of entries lie below the � (m) interval, or if � m =2 EO

and an odd number of entries lie below the � (m) interval.

We are reduced to the problem of determining membership in AD and AAD . As

the casesare analogous, we consider only the former. Consider the permutation � =

� [� 1; : : : ; � m ]. We divide our task into two parts: �rst, we check that the entries corre-

sponding to each� (i ) interval satisfy the desired properties, and second,we checkthat the

“transitions” between successiveintervals satisfy theseproperties. To resolve the �rst, for

� to lie in AD , we must have that each� i lies in AD (resp.,AAD ) if and only if there are an

even(resp.,odd) number of entries below the � (i ) interval. For the second,if � (i ) < � (i + 1)

then the � (i ) interval must end in an odd entry. This requires that � i 2 EO if there are an
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even number of entries below the � (i ) interval, and � i =2 EO otherwise. The � (i ) > � (i + 1)

casefollows similarly , completing the proof.

The imaginative reader should at this point have no trouble constructing many other

properties that lie in �nite query-complete sets. Examples include the property of begin-

ning with a 1, or more generally of mapping any �xed i to any �xed j , or of having major

index congruent to 1 mod 3, or of having an odd number of left-to-right minima.

6.5 Examples

While we have already shown how to enumerate the separablepermutations in Section6.3,

here we use the approach of Theorem 6.2.

Example 6.9 (Separablepermutations) . With the notation from the proof of Theorem 6.2,

we have that for the separablepermutations:

8
<

:

g �

;
� = x;

g � = (g �

;
� + g� )(g�

;
� + g � + g� );

g � = (g �

;
� + g� )(g�

;
� + g � + g� );

whereour universe of properties P is f
�

;
�

g. Weare interestedin f = g �

;
� + g � + g � . By

summing the threeequalities above and simplifying one obtains f = x + (x + f )f , which

leads, reassuringly, to the generating function for the large Schröder numbers,

f =
1 � x �

p
1 � 6x + x2

2
:

This system does not change dramatically when another simple permutation is intr o-

duced, asshown by the next example.

Example 6.10(The wr eath closure of 1; 12; 21; and 2413). Here we again take P = f
�

;
�

g

and the system is

8
<

:

g �

;
� = x + (g �

;
� + g � + g� )4;

g � = (g �

;
� + g� )(g�

;
� + g � + g� );

g � = (g �

;
� + g� )(g�

;
� + g � + g� ):
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The generating function for this class,f = g �

;
� + g � + g� , satis�es

f 5 + f 4 + f 2 + (x � 1)f + x = 0;

and the �rst terms of the sequenceare 1; 2; 6; 23; 102; 492; : : : (sequenceA120346of [110]).

Example 6.11 (Av(132)). The wr eath closure of Av (132) is the classof separable permu-

tations, so to enumerate Av(132) we need to re�ne Example 6.9. While Proposition 6.5

shows that f Av (1); Av (12); Av (21); Av (132)g is query-complete, it is suf�cient to set P =

f
�

;
�

; Av(21); Av (132)g by our remarks in Section 6.2. Our system is then
8
>>><

>>>:

g�

;
�

;Av (21) = x;
g�

;Av (21) = g �

;
�

;Av (21) (g
�

;
�

;Av(21) + g�

;Av (21) );
g� = (g �

;
�

;Av (21) + g�

;Av (21) + g � )(g �

;
�

;Av (21) + g �

;Av (21) + g� + g � );
g� = g � (g �

;
�

;Av (21) + g�

;Av(21) ):

(As we are only interestedin 132-avoiding permutations we have suppressedthe subscript

Av(132), which would otherwise be presentin all theseterms.) Setting

f = g�

;
�

;Av (21) + g �

;Av (21) + g� + g �

and solving yields

f =
1 � 2x �

p
1 � 4x

2x
;

the generating function for the Catalan numbers, asexpected.

Example 6.12(Av (2413; 3142; 2143)). Here we take P = f
�

;
�

; Av (21); Av (2143)g and our

system is
8
>>><

>>>:

g�

;
�

;Av (21) = x;
g�

;Av (21) = g �

;
�

;Av (21) (g
�

;
�

;Av(21) + g�

;Av (21) );
g� = (g �

;
�

;Av (21) + g�

;Av (21) + g � )(g �

;
�

;Av (21) + g �

;Av (21) + g� + g � );
g� = g �

;
�

;Av (21) (g
� + g� ) + g � (g�

;
�

;Av(21) + g �

;Av (21) );

whereherewe have suppressedthe Av(2143)subscript. This gives the generating function

1 � 3x + 2x2 �
p

1 � 6x + 5x2

2x(2 � x)
;
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and thus the number of permutations of length n in this class is
P � n

k

�
Fn� k (sequence

A033321of [110]), where Fn denotes the nth term in Fine's sequence.3

Example 6.13 (Alternating separable permutations) . Lemma 6.6 shows that we need to

intr oduce the properties AL (alternating permutations), B R (permutations beginning with

a rise), ER (permutations ending with a rise), and f 1g. In the separablecasef 1g =
�

\
�

so we take P = f
�

;
�

; B R; ER; AL g, and asAL occurs in eachof the terms of our system

we suppressit. We then have

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

g�

;
� = x;

g� = (g �

;
� + g �

;E R )(g �

;
� + g�

;B R + g �

;B R );
g�

;B R = g �

;B R;E R (g �

;
� + g �

;B R + g�

;B R );
g�

;E R = (g �

;
� + g �

;E R )(g �

;B R;E R + g�

;B R;E R );
g�

;B R;E R = g �

;B R;E R (g �

;B R;E R + g �

;B R;E R );
g� = g � (g � + g� );
g�

;B R = (g �

;
� + g �

;B R )(g � + g � );
g�

;E R = g � (g �

;
� + g�

;E R + g�

;E R);
g�

;B R;E R = (g �

;
� + g �

;B R )(g �

;
� + g�

;E R + g �

;E R ):

The generating function for thesepermutations satis�es

f 3 � (2x2 � 5x + 4)f 2 � (4x3 + x2 � 8x)f � (2x4 + 5x3 + 4x2) = 0;

and the �rst few terms of the sequenceare 1; 2; 4; 8; 20; 48; : : : (sequenceA121703of [110]).

6.6 Involutions

Unfortunately , involutionhood lies just outside the scopeof our query-complete-pr operty

machinery: letting I denote the set of involutions we have that 12[� 1; � 2] 2 I ( )

� 1; � 2 2 I , but when is 21[� 1; � 2] 2 I ?

Webegin by considering the effect of inversion on the substitution decomposition. First

observe that

(� [� 1; : : : ; � m ]) � 1 = � � 1[� � 1
� � 1 (1) ; : : : ; � � 1

� � 1 (m) ]:

3Fine's sequenceis de�ned by 2Fn + Fn � 1 = Cn for n � 1, where Cn denotes the nth Catalan number (se-
quenceA000957of [110]).
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Recalling the �rst part of Proposition 1.7 (“every permutation is the in�ation of a unique

simple permutation”), we have that if � is an involution then it must be the in�ation of a

simple involution. By the secondpart of Proposition 1.7we then obtain the following:

Proposition 6.14. If � = � [� 1; : : : ; � m ] is aninvolution and� 6= 21is asimplepermutationthen

� is an involution and� i = � � 1
� � 1 (i ) = � � 1

� (i ) for all i 2 [m].

The case� = 21 must be handled separately but is not any more dif �cult.

Proposition 6.15. Theinvolutions that arein�ations of21 arepreciselythoseof theform

� 21[� 1; � 2] for skewindecomposable� 1 and� 2 with � 1 = � � 1
2 , and

� 321[� 1; � 2; � 3], where� 1 and� 3 areskewindecomposable,� 1 = � � 1
3 , and� 2 is an involu-

tion.

De�ne the inverseof the property P by P � 1 = f � � 1 : � 2 Pg, and for a setof properties

P, P � 1 = f P � 1 : P 2 Pg.

Theorem 6.16. Let C bea permutationclasscontainingonly �nitely manysimplepermutations,

P a �nite query-completesetof properties,and Q � P. Thegeneratingfunction for the setof

involutions in Csatisfyingeverypropertyin Q is algebraicoverQ(x).

Proof. We assume(without loss) both that
�

;
�

2 P and that P = P � 1. As in the proof

of Theorem 6.2, let P(� ) denote the set of properties in P satis�ed by � and gR denote the

generating function for the set of � 2 Cwith P(� ) = R. Also let hR denote the generating

function for the set of involutions � 2 Cwith P(� ) = R. It suf�ces to show that eachhR is

algebraic over Q(x).

As Propositions 6.14and 6.15 indicate, we need to count pairs (�; � � 1) where � and

� � 1 satisfy certain setsof properties. To this end de�ne

pR =
X

� 2C
P (� )= R

x j � j+ j� � 1 j :

Note that pR is nothing other than gR (x2).
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Now take � to be a simple permutation. We need to compute the contribution to

hR of in�ations of � . If � is not an involution, Proposition 6.14 shows that this contri-

bution is 0. Otherwise since P is query-complete, P(� [� 1; : : : ; � m ]) = R if and only if

(P(� 1); : : : ; P(� m )) lies in a certain collection of m-tuples of sets of properties. Choose

one of these m-tuples, say (R 1; : : : ; R m ), and suppose �rst that m = j� j � 4. It suf�ces

to calculate the contribution of involutions of the form � [� 1; : : : ; � m ] with P(� i ) = R i for

all i 2 [m]. If there is some j 2 [m] for which R j 6= R � 1
� (j ) then this contribution is 0 by

Proposition 6.14. Otherwise the contribution is a single term in which each �xed point

j corresponds to an hR j factor and each non-�xed-point pair (j; � (j )) corresponds to a

pR j factor. A similar analysis of in�ations of 12 and 21 — in the latter caseappealing to

Proposition 6.15— allows us to compute their contributions.

Therefore eachhR can be expressednontrivially as a polynomial in x, f hS : S � Pg,

and f pS : S � Pg. Viewing x and f pS : S � Pg asvariables, Theorem 6.4implies that each

hR is algebraic over Q(x; f pS : S � Pg). Furthermor e, pS = gS(x2), so Q(x; f pS : S � Pg)

is an algebraic extension of Q(x) by Theorem 6.2, proving the theorem.

One could adapt the proof of Theorem 6.16 to count the permutations in C that are

invariant under other symmetries. For example, the permutations invariant under the

composition of reverseand complement studied by Guibert and Pergola [64]. Egge [43]

considers the enumeration of restricted permutations invariant under other symmetries.

Example 6.17(Separableinvolutions) . We take P = f
�

;
�

g. Using the notation from the

proof of Theorem 6.16, we wish to �nd f = h �

;
� + h � + h � . Thesegenerating functions

are related to eachother and to the p generating functions by

8
<

:

h �

;
� = x;

h � = (p �

;
� + p � ) + (p �

;
� + p � )(h �

;
� + h � + h � );

h � = (h �

;
� + h � )(h �

;
� + h � + h � ):
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From Example 6.9 it can be computed that

p �

;
� � x2 = 0;

2p2� + (3x2 � 1)p � + x4 = 0;

2p2� + (3x2 � 1)p � + x4 = 0:

Combining thesewith the system above and solving asusual shows that

x2f 4 + (x3 + 3x2 + x � 1)f 3 + (3x3 + 6x2 � x)f 2 + (3x3 + 7x2 � x � 1)f + x3 + 3x2 + x = 0;

and the �rst few terms of the sequenceare 1; 2; 4; 10; 24; 64; : : : (sequenceA121704of [110]).

6.7 Cyclic Closures

In order to demonstrate that the framework developed here can be applied in lessobvious

situations, we presentan application which dif fers in �avour from our previous examples.

The permutation � is said to be a cyclic rotation (or simply, rotation) of the permutation � ,

both of length n, if there is an i 2 [n] for which � = � (i + 1) : : : � (n)� (1) : : : � (i ). Given a

permutation classC, its cyclicclosure, cc(C), consistsof all rotations of members of C. This

operation hasbeenstudied by the Otago group [1], who proved severalbasisand enumer-

ation results. The main result of this section, Theorem 6.19, shows that the cyclic closure

of a classwith �nitely many simple permutations hasan algebraic generating function.

The cyclic closure of the classC can be partitioned into orbits of permutations under

rotation. As the orbit of a permutation of length n has precisely n elements, to enumerate

a cyclic closure it suf�ces to count orbits. We do this by distinguishing one permutation

per orbit and then counting thesepermutations. For us, a distinguishedmember of cc(C) is

a permutation � that satis�es:

(1) � 2 C(this can clearly be achieved, becauseevery orbit in cc(C) contains at least one

element of C) and

(2) among all permutations in its orbit satisfying (1), � is the one in which the entry 1

lies furthest to the left.
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For example, one orbit in cc(Av (132)) is

12534; 41253; 34125; 53412; 25341:

Only two of thesepermutations avoid 132, 34125and 53412. Sincethe entry 1 lies further

to the left in 34125, this is the distinguished permutation of its orbit.

Our goal is to show that the property of distinction lies in a �nite query-complete set

of properties. We begin by offering a dif ferent viewpoint in which instead of rotating per-

mutations we divide them into two parts. A dividedpermutationis a permutation equipped

with a divider j, i.e., � 1j� 2, and we refer to � 1j� 2 as a division of the concatenation � 1� 2.

Wesay that the divided permutation � 1j� 2 is contained in the divided permutation � 1j� 2 if

� 1� 2 contains a subsequenceorder isomorphic to � 1� 2 in which the entries corresponding

to � 1 come from � 1 and the entries corresponding to � 2 come from � 2. For example, 513j42

contains 32j1 becauseof the subsequence532, but 32j1 is not contained in 51j342.

Supposenow that we are given a permutation � 2 C = Av(B ) and we wish to decide

if � is a distinguished member of cc(C). According to (2) above, we need to check all

rotations of � in which the 1 lies further to the left. Instead, let us consider all divisions

� 1j� 2 of � in which � 1 is nonempty and � 2 contains the entry 1, thinking of such a division

as corresponding to the rotation � 2� 1. For � to be distinguished, each of these divisions

must contain � 2j� 1 for some � 1� 2 2 B , becausethat will imply that the corresponding

rotation contains � 1� 2 and thus fails to lie in C.

For a set of divided permutations � , let us therefore de�ne the property DP1(�) to

consist of all permutations � for which every division � 1j� 2 where � 1 is nonempty and the

1 lies in � 2 contains at leastone of the divided permutations in � . Our setof distinguished

permutations for cc(C) will then consist of those permutations from Cwhich satisfy

DP1(f � 2j� 1 : � 1� 2 2 B g):

We also need a similar family: DP(�) consistsof all permutations � for which every divi-

sion � 1j� 2 of � in which � 1 is nonempty contains at least one of the divided permutations

in � . (Note that we allow � 2 to be empty.)
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Lemma 6.18. Forany �nite setB ofpermutations,thepropertyDP1(f � 2j� 1 : � 1� 2 2 B g) liesin

a �nite query-completesetofproperties.

Proof. The �nite query-complete setwe take consistsof

f Av (� ) : � � � for some � 2 B g

and the properties DP(�) and DP1(�) for all � � f � 2j� 1 : � 1� 2 � � for some� 2 Bg.

Let � = � [� 1; : : : ; � m ]. Propositions 6.3 and 6.5 show that the Av properties form a

query-complete set, so it suf�ces to prove that membership in the DP and DP1 can be

decided basedon � and which of theseproperties each� i satis�es. Sincetheseproperties

are very similar, we consider only the DP1(�) case.

Supposethat � (`) = 1, so that the entry 1 in � occurs in its � (`) interval. First, for each

k < `, we need to consider divisions of � which slice its � (k) interval (or slice between

this interval and the next). As in the proof of Proposition 6.5we consider lenient in�ations

(in�ations in which intervals are allowed to be empty), although we now insist that the

divider occur in the kth interval of the lenient in�ations (we allow that interval to contain

the divider alone). List all such lenient in�ations of all divided permutations in � as

� [ (1)
1 ; : : : ;  (1)

m ]; : : : ; � [ (t )
1 ; : : : ;  (t )

m ]:

We need to determine whether every division of � which slices its � (k) interval contains

one of theselenient in�ations. If for somes 2 [t] and j 6= k, � j doesnot contain  (s)
j (which

can be determined from the Av properties), then none of thesedivisions of � can contain

that lenient in�ation. Remove theseinfeasible in�ations from the list, leaving

� [ (u1 )
1 ; : : : ;  (u1 )

m ]; : : : ; � [ (uv )
1 ; : : : ;  (uv )

m ]:

Now a division of � slicing its � (k) interval contains the i th lenient in�ation in this list if

and only if  (u i )
k is either a lone divider or is contained (as a divided permutation) in the

resulting, divided � k . Thus every division of � which slices its � (k) interval contains a

divided permutation from � if and only if

� k 2 DP(f  (u1 )
k ; : : : ;  (uv )

k g);
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and this property is in our setof properties. The analysis for divisions of � which slice the

� (`) interval (the block containing the entry 1) is identical, except that DP is replaced by

DP1.

Theorem 6.19. If apermutationclassCcontainsonly �nitely manysimplepermutationsthenits

cyclicclosurecc(C) hasan algebraicgeneratingfunction overQ(x).

Proof. Let C= Av(B ) contain only �nitely many simple permutations, soby Theorem 5.29,

B is �nite. Lemma 6.18the shows that the property DP1(f � 2j� 1 : � 1� 2 2 B g) lies in a �nite

query-complete set. Thus the distinguished permutations, which are the permutations in

C that satisfy this property, have an algebraic generating function by Theorem 6.2. Call

this generating function f . Since every orbit of length n permutations in cc(C) contains

n elements, precisely one of which is distinguished, the generating function for cc(C) is

xf 0(x), which is also algebraic.

We conclude the section with an abridged example.

Example 6.20(The cyclic closure of Av(132)). The distinguished elements for cc(Av (132))

are those that lie in Av(132) and satisfy

DP1(f � 2j� 1 : � 1� 2 = 132g) = DP1(132j; 32j1; 2j13; j132):

If any division of a permutation contains 132j or j132then the permutation itself contains

132; since we are only counting 132-avoiding permutations, we may write the generating

function for the distinguished elementsas f D P1(32j1;2j13), where f Q denotes the generating

function for the permutations in Av(132) which satisfy every property in Q but may sat-

isfy additional properties. In the other examples we have given the complete system of g

generating functions. Owing to the number of properties involved and the labour neces-

sary for their speci�cation, here we only describehow to compute two of the f generating

functions.

Let us begin with the f �

;D P1(32j1;2j13) term. Sinceour only simple permutations are 1,

12, 21, the � -indecomposable permutations are 1 and those that canbe expresseduniquely
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as21[� 1; � 2] where � 1 2
�

. First consider divisions of 21[� 1; � 2] which slice � 1; for theseto

contain either 32j1 or 2j13, the divided � 1 must contain either 21j, which can be extended

to 32j1 by including an entry of � 2, or 2j13. All such permutations must contain 21, so they

are counted by f �

;D P (21j;2j13) � f �

;Av (21);D P (21j;2j13) . Now observethat the divisions which

slice � 2 before its entry 1 necessarily contain a copy of 32j1 where the `3' comes from � 1

and the `2' comesfrom an entry of � 2 preceding 1 (if there is no such entry, then none of

these divisions need checking), and so every 132-avoiding permutation may serve as � 2.

Thus we have

f �

;D P1(32j1;2j13) = x +
�

f �

;D P (21j;2j13) � f �

;Av(21) ;D P (21j;2j13)

�
f :

This leavesus to determine f �

;D P (21j;2j13). Thesepermutations (exceptfor 1) canbewritten

uniquely as � = 12[� 1; � 2] where � 1 2
�

and asthey avoid 132we have � 2 2 Av(21). The

divisions slicing � 1 must create21j or 2j13patterns in � , which will occur if and only if � 1 2

DP(21j; 2j1). This rules out � 1 = 1, so thesepermutations are counted by f �

;D P (21j;2j1) � x.

Because� 2 DP(21j; 2j1), � 1 must contain 21, and thus all divisions which slice � 2 will

contain 21j. Therefore the only restriction on � 2 is that it must avoid 21, giving the equation

f �

;D P (21j;2j13) = x +
�

f �

;D P (21j;2j1) � x
�

f Av (21) :

Similar reasoning allows one to compute the entire system,which leads to the solution

f D P1(32j1;2j13) =
(1 � 2x)(1 � 2x �

p
1 � 4x)

2x(1 � x)
:

From this we �nd that the generating function for cc(Av(132)) is

xf 0
D P1(32j1;2j13) =

1 � 4x + 4x2 � 4x3 � (1 � 2x)
p

1 � 4x
2x(1 � x)2

p
1 � 4x

;

which agreeswith the results of Albert et al. [1]. The �rst few terms of the sequenceare

1; 2; 6; 24; 100; : : :.

6.8 Applicability and Application

With the results of the paper now established, we conclude by discussing their use. First,

let us summarise the �nite query-complete setsthat we have covered in this chapter as a
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corollary of Theorem 6.2.

Corollary 6.21. In apermutationclassCwith only �nitely manysimplepermutations,thegener-

ating functionsfor thefollowingsequencesarealgebraicoverQ(x):

� thenumberofpermutationsin Cn (this is theresultof Albert andAtkinson [2]),

� thenumberofalternatingpermutationsin Cn ,

� thenumberofevenpermutationsin Cn ,

� thenumberofDumont permutationsof the�rst kind in Cn ,

� thenumberof permutationsin Cn avoidingany �nite setof blockedor barredpermutations,

and

� thenumberof involutions in Cn .

Moreover, theseconditionscanbecombinedin any �nite mannerdesired.

As mentioned previously, Av (132) contains only threesimple permutations, so Corol-

lary 6.21explains, e.g.,why the even permutations in Av(132; � ) have an algebraic gener-

ating function for every � , �rst proved in Mansour [83]. Other results in the literatur e to

which Corollary 6.21applies appear in [44, 45, 46, 50, 62, 63, 79, 80, 82, 84].

Other reasons for algebraicity . Having �nitely many simple permutations is a suf�-

cient condition for a class to possessan algebraic generating function, but it is by no

means necessary. Consider Av(123), which, like Av(132), is enumerated by the Cata-

lan numbers. However , Av(123) contains the in�nite sequenceof simple permutations

2n � 1; 2n � 3; : : : ; 3; 1; 2n; 2n � 2; : : : ; 4; 2 (one such permutation is plotted in Figure 1.3on

page 10). Indeed, every classof the form Av(� ) where j� j � 4 contains either this in�nite

family or a symmetry of it. Thus our approach cannot be used to derive Bóna's result [18]

that Av(1342) has an algebraic generating function. Nor can it be used to prove the fact

that, for a surprising number of length 4 permutations � , the � -avoiding involutions are
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counted by the Motzkin numbers, ashasbeenestablishedby numerous researchersinclud-

ing Guibert [61], Guibert, Pergola and Pinzani [65], Jaggard [72] and Bousquet-Mélou and

Steingr�́msson [26]. The method alsocannot beused to enumerate West-two-stack-sortable

permutations [119].

Derangements. Notably absent from our list of �nite query-complete setsin Section 6.4

are derangements, despite the fact that the 132-avoiding derangements are counted by

Fine's sequence(Robertson,Saracino,and Zeilberger [103]), which hasan algebraic gener-

ating function. To seethat the set of derangements does not lie in a �nite query-complete

set of properties, for � 2 Sn de�ne D(� ) = f � (i ) � i : i 2 [n]g. Then 21[12� � � j; � ] is a

derangement if and only if j =2 D(� ). This shows that � 1 and � 2 must lie in dif ferent sets

of properties whenever D(� 1) \ N 6= D(� 2) \ N, implying that the setof derangementscan

only lie in an in�nite query-complete set of properties.

6.8.1 Simple Decomposition Revisited

We have not yet discussedthe consequencesof the decomposition of simple permutations

for our knowledge of permutation classes.In the next chapter we will cover the problem

of decidability for simple permutations, but this is by no means the only use of the de-

composition. Indeed, our initial motivation was to derive the following theorem, whose

importance hasso far beenleft unspoken:

Theorem 2.2. Thereis a function f (k) suchthat everysimplepermutationof lengthat leastf (k)

containstwo simplesubsequences,eachof lengthat leastk, sharingat mosttwo entries.

This result helps us in the enumeration of certain permutation classes,which we will

intr oduce by meansof a motivational example. As we have seen,the simple permutations

of the classAv(132) are precisely1, 12and 21. Theorems 2.2and 6.1(on Page111) combine

to give a short proof of the following result.

Theorem 6.22(Bóna [19]; Mansour and Vainshtein [85]). Foreveryr , theclassofall permuta-

tionscontainingat mostr copiesof132hasan algebraicgeneratingfunction.
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For example, the generating function in the r = 1 caseis

1 �
p

1 � 4x
2x

+
8x3

p
1 � 4x

�
1 +

p
1 � 4x

� 3 ;

due, originally , to Bóna [20].

Proofof Theorem 6.22 via Theorems2.2 and 6.1. We wish to show that only �nitely many

simple permutations contain at most r copies of 132, or in other wor ds, that there is a

function g(r ) so that every simple permutation of length at least g(r ) contains more than

r copies of 132. Since the only simple permutations in Av(132) are 1, 12 and 21, we may

take g(0) = 3. We now proceed by induction, setting g(r ) = f (g(br =2c)) , where f is the

function from Theorem 2.2. By that theorem, every simple permutation � of length at least

g(r ) contains two simple subsequencesof length at least g(br =2c). By induction each of

these simple subsequencescontains more than br =2c copies of 132. Mor eover, because

thesesimple subsequencesshare at most two entries, their copies of 132are distinct, and

thus � contains more than r copiesof 132, asdesired.

Indeed, the proof above shows that every permutation classwhose members contain

a bounded number of copies of 132has an algebraic generating function, whereasTheo-

rem 6.22is concerned only with the entire classof permutations with at most r copies of

132. There is of course nothing special about 132. Denote by Av(� � r 1
1 ; � � r 2

2 ; : : : ; � � r k
k ) the

classof permutations that have at most r 1 copies of � 1, at most r 2 copies of � 2, and so on.4

The proof just given can be adapted to prove the following result.

Corollary 6.23. If theclassAv(� 1; � 2; : : : ; � k ) containsonly �nitely manysimplepermutations

thenfor all choicesofnonnegativeintegersr 1, r2, : : : , r k , theclassAv(� � r 1
1 , � � r 2

2 ; : : : ; � � r k
k ) also

containsonly �nitely manysimplepermutations.

The largest permutation classwhose only simple permutations are 1, 12, and 21 is of

course the class of separable permutations, Av (2413; 3142). Thus as another instance of

4That this is a permutation classis clear, although �nding its basismay be lessobvious. An easyargument
shows that the basis elements of this classhave length at most maxf (r i + 1)j� i j : i 2 [k]g; seeAtkinson [7]
for the details. One such computation: Av(132 � 1 ) = Av(1243, 1342, 1423, 1432, 2143, 35142, 354162, 461325,
465132).
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Corollary 6.23, we have the following.

Corollary 6.24. Forall r ands, everysubclassofAv (2413� r ; 3142� s) containsonly �nitely many

simplepermutationsandthushasan algebraicgeneratingfunction.

This chapter has extended the scope of Theorem 6.1 to �nite query-complete sets of

properties, and we may combine Corollary 6.21with Theorem 2.2 to give easy proofs of

several results in the literatur e. For example, the even permutations in Av(132� r ) are enu-

merated by an algebraic generating function, due originally to Mansour [81]. (Note that,

when counting evenpermutations, unlike when counting all permutations, symmetry con-

siderations reduce us to threecasesof length threepermutations – 123, 132, and 231– not

two, and thus there is another result we can state at this point: the even permutations in

Av(231� r ) have an algebraic generating function for all r , although this result seemsto

have escapedprint. 5)

Other results to which Theorem 2.2 and Corollary 6.21may be applied can be found

in [35, 80, 86].

6.8.2 Linear Time Membership

Out of someof the machinery developed in this chapter comesan indication that, given a

permutation classCcontaining only �nitely many simple permutations, it may be decided

in linear time whether an arbitrary permutation � of length n lies in C. The approach

relies �rst and foremost on the fact that we may compute the substitution decomposition

of any permutation in linear time, as per Chapter 4. We begin by �rst performing some

precomputations speci�c to the classC, all of which may be done essentially in constant

time:

� Compute Si(C), the number of simple permutations in C.

5We cannot say anything about the other case,Av(123) , since it contains in�nitely many simple permu-
tations, and hence so does Av(123 � r ). The class Av(123 � 1) was, however, counted by Noonan [99], while
Av(123 � 2 ) was counted by Fulmek [57], proving a conjecture of Noonan and Zeilberger [100]. No results for
larger values are known, although Fulmek conjecturesformulas for r = 3 and r = 4, and that Av(123 � r ) has
an algebraic generating function for all r .
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� Compute the basis B of C, noting that permutations in B can be no longer than

max
� 2 Si(C)

j� j + 2 by the Schmerl-Trotter Theorem 2.1.

� For every � either lying in B or contained in a permutation lying in B , list all expres-

sions of � asa lenient in�ation of each� 2 Si(C).

(Recall that a lenient in�ation is an in�ation � [ 1; : : : ;  m ] in which the  i s are allowed to

be empty.)

With theseprecomputations performed, we now take our candidate permutation � of

length n and compute its substitution decomposition, � = � [� 1; : : : ; � m ]. Now, after �rst

trivially checking that the skeleton � lies in C, we look at all the expressionsof each� 2 B

aslenient in�ations of � . Note that if � � � , theremust exist an expressionof � asa lenient

in�ation � = � [ 1; : : : ;  m ] so that  i � � i for every i = 1; : : : ; m.

Thus, taking eachlenient in�ation � = � [ 1; : : : ;  m ] in turn, we look recursively at each

block, testing to seeif  i � � i is true. Though this recursion makes the linear-time com-

plexity non-obvious, note that the number of levels of recursion that are required cannot

be more than the maximum depth of the substitution decomposition tree,which itself can-

not have more than 2n nodes. The recursion will eventually reducethe problem to making

only trivial comparisons, eachof which is immediately answerable in constant time. The

author would be keen to seea more rigour ous treatment of this problem, and indeed an

implementation of any subsequentalgorithm.





CH A PTER 7

DECIDA BILITY A N D UN AVOIDA BLE

SUBSTRUCTURES

7.1 Introduction

H AVIN G DEFIN ED permutation classesand observed in Section5.4and Chapter 6 how

simple permutations control many of their properties, it seemsessentialnow to ask

which �nitely basedclassescontain only �nitely many simple permutations. Our decom-

position of simple permutations and identi�cation of their unavoidable substructures in

Chapter 2 puts us in a strong position to establish whether this question is decidable. Our

main result establishesthat this can be done algorithmically:

Theorem 7.1. It is possibleto decideif apermutationclassgivenbya�nite basiscontainsin�nitely

manysimplepermutations.

We �rst begin by reminding the reader of pin sequences,as de�ned in Chapter 2. In

particular , here we will be constructing pin sequencesfrom scratch,before studying their

possible subsequences.As we saw in Section 2.4, this treatment requiresus to consider a

slight variant of the original de�nition of pin sequences,namely that a proper pin sequence

p1; : : : ; pm must satisfy the following two conditions:

� Separationcondition: pi +1 must separatepi from f p1; : : : ; pi � 1g. That is, pi +1 must lie

horizontally or vertically between rect(p1; : : : ; pi � 1) and pi .

� Externality condition: pi +1 must lie outside rect(p1; : : : ; pi ).

137
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p1

p2

p3

p4

p5

p6

p7

x

y

Figure7.1: The points p1; : : : ; p7 form a proper pin sequence,and rect(p1; : : : ; p7) is denoted by the
grey box. The point x satis�es the externality and separation conditions for this pin sequenceand
thus could be chosenasp8; y, however, fails the separation condition.

(SeeFigure 7.1 for an illustration.) To consider subsequencesof a given pin sequence,as

we must, we refer the reader to the discussion on pin wor ds given in Section 2.4.

Proper pin sequencesare intimately connected with simple permutations. In one di-

rection, we recall:

Theorem 2.7. If p1; : : : ; pm is a properpin sequenceof length m � 5 then oneof the setsof

pointsf p1; : : : ; pm g, f p1; : : : ; pm g n f p1g, or f p1; : : : ; pmg n f p2g is orderisomorphicto a simple

permutation.

While proper pin sequencesare simple or nearly so,we also saw that there were other

“fundamental” types of simple permutation – in particular , we recall the de�nitions of

parallel and wedge alternations. Whereasevery parallel alternation contains a long simple

permutation (to form this simple permutation we need, at worst, to remove two points),

wedge alternations do not. However , there are two dif ferent ways to add a single point to

a wedge alternation to form simple permutations (called wedgesimplepermutationsof types

1 and2). Thesethreefamilies are plotted in Figure 7.2.

We recall that thesefamilies of permutations capture, in a sense,the diversity of simple

permutations:
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Figure 7.2: From left to right: a parallel alternation, a wedge simple permutation of type 1, and a
wedge simple permutation of type 2.

Theorem 2.14. Everysuf�ciently long simplepermutationcontainseithera properpin sequence

of lengthat leastk, aparallelalternationof lengthat leastk, or wedgesimplepermutationof length

at leastk.

Theorems 2.7 and 2.14 show that Theorem 7.1 will follow if we can decide when a

classhasarbitrarily long parallel alternations, wedge simple permutations and proper pin

sequences.The �rst two of theseconsiderations are straightforwar d, and form the subject

of the next section,while the question for proper pin sequencesrequiresa little morework.

Essentially, the problem of deciding whether a permutation classcontains arbitrarily long

pin sequencesis equivalent to the problem of determining whether a permutation class

admits arbitrarily long pin wor ds. Thus converting the problem to one of languages, we

will review in Section 7.3 the required results from formal language theory before going

on to prove in Section 7.4 that the language of pins is regular, and hence the problem is

decidable.

7.2 The EasyDecisions

Webegin by describing how to decide if a permutation classgiven by a �nite basiscontains

arbitrarily long parallel alternations or wedge simple permutations. Consider �rst the case

of parallel alternations, oriented nn, as in Figure 7.2. These alternations nearly form a

chain in the pattern-containment order; precisely, there are two such parallel alternations

of eachlength, and eachof thesecontains a parallel alternation with one fewer points and
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all shorter parallel alternations of the same orientation. Thus if the permutation class C

has a basis element contained in any of these parallel alternations, it will contain only

�nitely many of them. Conversely, if C has no such basis element, it will contain all of

thesealternations. Therefore we need to characterisethe permutations that are contained

in any parallel alternation. This, however, is done simply by using the juxtaposition, as

de�ned in Subsection 5.1.2. The basis of the juxtaposition of two classesis decidable by

Proposition 5.5 (Page87), and this is all we need to solve the parallel alternation decision

problem.

Proposition 7.2. ThepermutationclassAv(B ) containsonly �nitely manyparallelalternations

if andonly if B containsanelementofeverysymmetryof theclassAv(123; 2413; 3412).

Proof. The set of permutations that are contained in at least one (and thus, all but �nitely

many) parallel alternation(s) oriented nn is

�
Av(12) Av(12)

�
= Av(123; 2413; 3412);

asdesired.

Like parallel alternations, the wedge simple permutations of a given type and orien-

tation also nearly form a chain in the pattern-containment order, and thus we are able to

take much the sameapproach with them.

Proposition 7.3. ThepermutationclassAv(B ) containsonly �nitely manywedgesimplepermu-

tationsof type1 if andonly if B containsanelementofeverysymmetryof theclass

Av(1243; 1324; 1423; 1432; 2431; 3124; 4123; 4132; 4231; 4312):

Proof. The wedge simple permutations of type 1 that are oriented < , as in Figure 7.2, are

contained in

� �
Av (21)
Av (12)

�
f 1g

�
=

�
Av(132; 312) Av(12; 21)

�

= Av(1324; 1423; 1432; 2431; 3124; 4123; 4132; 4231):
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(a) (b) (c)

(d) (e) (f)

(g)
(h) (i)

(j)

i j n

� (n)

� (j )

� (i )

Figure7.3: The situation in the proof of Proposition 7.3.

It is easyto seethat thesewedge simple permutations also avoid 1243and 4312, and thus

they are contained in the classstated in the proposition, which we call D.

Now take a permutation � 2 D of length n. We would like to show that � is con-

tained in a wedge simple permutation. If � 2
�

Av (21)
Av (12)

�
then � is clearly contained in a

wedge simple permutation, so suppose this is not the case.Thus � (1) � � � � (n � 1) is order

isomorphic to a permutation in
�

Av(21)
Av(12)

�
, and it suf�ces to show that:

� the entries of � above � (n) are increasing,and

� the entries of � below � (n) are decreasing.

We prove the �rst of these items; the second then follows by symmetry becauseit can be

observed from its basis that D is invariant under complementation, i.e., if the length n

permutation � lies in D then so does the complement of � . Suppose to the contrary that

there is a descentabove� (n). Thus thereare indices i < j < n such that � (i ) > � (j ) > � (n).

Choose these two indices to be lexicographically minimal with this property. There must

be other entries of � as otherwise � is simply 321, which lies in the juxtaposition we have

assumed � does not lie in. We now divide the entries above � (n) into 7 regions as shown

in Figure 7.3. About theseregions we can state:

� regions (a)–(e)and (i) are empty because� avoids 1432, 4132, 4312, 2431, 4231, and

4231, respectively;
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� the points in region (f) are decreasingbecause� avoids 4231;

� regions (g) and (h) are empty by the minimality of i and j , respectively;

� the points in region (j) are increasing because� avoids 2431.

This establishesthat � lies in
�

Av(21)
Av(12)

�
, a contradiction that completes the proof.

Proposition 7.4. ThepermutationclassAv(B ) containsonly �nitely manywedgesimplepermu-

tationsof type2 if andonly if B containsanelementofeverysymmetryof theclass

Av(2134; 2143; 3124; 3142; 3241; 3412; 4123; 4132; 4231; 4312):

Proof. Let D denote the classin the statement of the proposition. It is clear that the wedge

simple permutations of type 2 that are oriented � , as in Figure 7.2, lie in D, and so it

remains to show that every permutation � 2 D is contained in one of thesewedge simple

permutations. Thus � is contained in

�
Av (21) Av (12) f 1g

�
=

�
Av (213; 312) Av (12; 21)

�

= Av(2134; 2143; 3124; 3142; 3241; 4123; 4132; 4231);

and so in particular , the permutation obtained by removing the rightmost element of � ,

say � (n), is contained in
�

Av (21) Av (12)
�
. It suf�ces to show that � (n) is n or n � 1.

Suppose,to the contrary, that there are at least two entries of � above � (n). Then we have

one of the two situations depicted in Figure 7.4.

Again, we use the basis elements of D to derive the following about the labelled re-

gions:

� regions (a.a),(a.c),and (b.a)are empty because� avoids 4312, 4231, and 3412, respec-

tively;

� the points in regions (a.b) and (b.b) are decreasingbecause� avoids 4231.

Theseobservations, combined with the fact that the permutation obtained from � by re-

moving � (n) lies in
�

Av(21) Av(12)
�

shows that � itself lies in
�

Av(21) Av(12)
�
,
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(a.a)

(a.b)

(a.c)

i j n

� (n)

� (j )

n

(b.a)

(b.b)

i j n

� (n)

� (i )

n

Figure7.4: The two situations in the proof of Proposition 7.4.

and so � is contained in one of the desired wedge simple permutations, completing the

proof.

7.3 Review of Regular Languages and Automata

The classic results mentioned here are covered more comprehensively in many texts, for

example, Hopcroft, Motwani, and Ullman [69], so we give only the barest details.

A nondeterministic�nite automatonover the alphabet A consistsof a set S of states, one

of which is designated the initial state, a transition function � from S � (A [ f "g) into the

power set of S, and a subset of S designated as acceptstates. The transition diagramfor

this automaton is a dir ected graph on the vertices S, with an arc from r to s labelled by

a precisely if s 2 � (r; a). The initial state is designated by an inwar d-pointing arrow. An

automaton acceptsthe wor d w1 � � � wm if there is a walk from the initial state to an accept

state whose arcs are labelled (in order) by w1; : : : ; wm ; the set of all such wor ds is the

languageacceptedby the automaton. For example, Figure 7.5shows the transition diagram

for the automaton that acceptsstrict pin wor ds (in this automaton, all states are accept

states).

A language that is accepted by a �nite automaton is called recognisable. By Kleene's
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V H
L; R

U; D

1;
2;

3;
4 1; 2; 3; 4

Figure7.5: The automaton that acceptsthe language of strict pin wor ds (V and H are acceptstates).

theorem, the recognisable languages are precisely the regular languages,1 and they have

numerous closure properties, of which we use two: the union of two regular languages

and the set-theoretic dif ferenceof two regular languages are also regular languages. The

other result we need about regular languages is below.

Proposition 7.5. It canbedecidedwhethera regularlanguagegivenby a �nite acceptingautoma-

ton is in�nite.

Sketchofproof.A regular language is in�nite if and only if one can �nd a walk in the given

accepting automaton that begins at the initial state, contains a dir ected cycle, and ends at

an acceptstate.

A �nite transduceris a �nite automaton that can both read and write. Transducers also

have states,S, one of which is designated the initial state and several may be designated

accept states. The transition function for a transducer over the alphabet A is a map from

S � (A [ f "g) � (A [ f "g) into the power setof A. In the transition diagram of a transducer

we label arcs by pairs, so the transition r
a;b

� ! s stands for “r ead a, write b”. Empty inputs

and outputs are allowed, both designated by ", e.g.,r
";b

� ! s means“r ead nothing, write b”.

A wor d w 2 A � is producedfrom the wor d u 2 A � by the transducer T if there is a walk

s1
u1 ;w1� ! s2

u2 ;w2� ! s3 � � �
um ;wm� ! sm+1

1The reader unfamiliar with formal languages is welcomed to take this as the de�nition of regular lan-
guages.
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in the transition diagram of T beginning at the initial state,ending at an acceptstate,and

such that u = u1 � � � um and w = w1 � � � wm (note that theseui s and wi s are allowed to be ").

We denote the set of wor ds that the transducer T produces from the set of input wor ds L

by T(L ).

Proposition 7.6. If L is a regularlanguageandT is a �nite transducerthenT(L ) is alsoregular,

anda �nite acceptingautomatonfor T(L ) canbeeffectivelyconstructed.

Sketchof proof. Let M denote a �nite accepting automaton for L . Suppose that the states

of M are R and the statesof T are S. The statesof an accepting automaton for T(L ) are

then R � S, where there is a transition (r 1; s1) b� ! (r 2; s2) whenever there are transitions

r1
a� ! r2 and s1

a;b
� ! s2 in M and T, respectively.

7.4 Decidability

We are now in a position to prove our main result. We wish to decide whether the �nitely

based class Av(B ) contains only �nitely many simple permutations. Propositions 7.2–

7.4 show how to decide if Av (B ) contains arbitrarily long parallel alternations or wedge

simple permutations, so by Theorem 2.14(repeated in this chapter on page 138) it suf�ces

to decide whether Av(B ) contains arbitrarily long proper pin sequences.

We �rst recall two lemmas concerning pin wor ds that we will require. The �rst shows

that we may convert every proper pin sequenceto a strict pin wor d. The proof is given on

Page37.

Lemma 2.15. Everyproperpin sequencecorrespondsto astrict pin word.

The other lemma we must recall shows us how to relate subsequencesof proper pin

sequenceswith pin wor ds, and vice versa. The proof may be found on Page38.

Lemma 2.16. If thepin word w correspondsto thepermutation� and � � � thenthere is a pin

wordu correspondingto � with u � w. Conversely, if u � w thenthepermutationcorresponding

to u is containedin thepermutationcorrespondingto w.
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Now, consider a permutation � that is order isomorphic to a proper pin sequenceand

thus, by Lemma 2.15, corresponds to at least one strict pin wor d, say w. If � 62Av(B ) then

� � � for some � 2 B . By Lemma 2.16, � corresponds to a pin wor d u � w. Conversely, if

w � u for some u corresponding to � 2 B , then Lemma 2.16shows that � � � . Therefore

the set

f strict pin wor ds w : w � u for someu corresponding to a � 2 Bg

consistsof all strict pin wor ds which representpermutations not in Av (B ), soby removing

this set from the regular language of all strict pin wor ds we obtain the language of all strict

pin wor ds corresponding to permutations in Av(B ). In the upcoming lemma, we prove

that for any pin wor d u, the set f strict pin wor ds w : w � ug forms a regular language, and

thus the language of strict pin wor ds in Av(B ) is regular. It remains only to check if this

language is �nite or in�nite, which can be determined by Proposition 7.5.

Lemma 7.7. For any pin word u, thesetf strict pin wordsw : w � ug formsa regularlanguage,

anda �nite acceptingautomatonfor this languagecanbeeffectivelyconstructed.

Proof. Let T denote the transducer in Figure 7.6. We claim that a strict pin wor d w lies in

T(u) if and only if w � u. The lemma then follows by intersecting T(u) with the regular

language of all strict pin wor ds.

We begin by noting several prominent featuresof T:

(T1) Every transition writes a symbol.

(T2) Other than the start stateS, the automaton is divided into two parts, the “fabrication”

statesFi and the “copy” statesCi .

(T3) Every transition to a fabrication statehas " input.

(T4) Every transition from a fabrication state to a copy state reads a numeral and writes

a dir ection, and except for the transitions from S, these are the only transitions that

read a numeral.
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Figure7.6: The transducer that producesall strict pin wor ds containing the input pin wor d.
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(T5) All transitions between copy states read a dir ection and write the same dir ection,

these are the only transitions that read a dir ection, and there is such a transition for

every copy stateand every dir ection.

(T6) From every fabrication and copy state, eachdir ection can be output via a transition

to a fabrication statewith input " .

(T7) The subscripts of the fabrication and copy statesindicate quadrants: if the strict pin

wor d w1 � � � wn , corresponding to the pin sequencep1; : : : ; pn , has just been written

by the transducer and the transducer is currently in state Ck or Fk , then pn lies in

quadrant k. Mor eover, if the pin wor d u1 � � � um , corresponding to the pin sequence

q1; : : : ; qm , has been read and the transducer currently lies in the copy state Ck , then

qm lies in quadrant k.

(T8) From any state, any copy state can be reached by two transitions, the �rst being a

transition to a fabrication state; for example: C2
";D
� ! F3

4;R
� ! C4.

First we prove that w � u for every strict pin wor d w produced from input u by this

transducer. We prove this by induction on the number of strong numeral-led factors in u.

The basecaseis when u consistsof precisely one strong numeral-led factor. Supposethat

the output right before the �rst letter of u is read is v(1) . Thereare two cases.If v(1) is empty,

then the transducer is currently in stateS, and must both readand write the �rst letter of u,

moving the transducer into state Cu1 . At this point, (T5) shows that the transducer could

continue to transition between copy states,outputting a wor d w = uv (2) � u. The only

other option available to the transducer (again, by (T5)) is to transition to a fabrication

state,but then (T4) shows that the transducer can never again reacha copy state (because

u has only one numeral), and thus by (T3), it can never �nish reading u. In the other

case,where v(1) is nonempty, the transducer lies in a fabrication state by (T4). The next

transition must then by (T4) be into a copy state,and (T7) guaranteesthat the letter written

corresponds to a point in quadrant u1. The sameargument as in the previous caseshows

that the transducer is now con�ned to copy statesuntil the rest of u has been read, and
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thus the transducer will output v(1) w(1) v(2) � u.

Now suppose that u decomposesinto j � 2 strong numeral-led factors as u (1) � � � u(j ) .

By induction, at the point where u(j � 1) has just been read, the transducer has output a

wor d v(1) w(1) � � � v(j � 1)w(j � 1) and lies in a copy state. Since the �rst letter of u(j ) is a nu-

meral, the transducer is forcedby (T4) to transition to a fabrication state,and this transition

will write but not read by (T3). The transducer can then transition freely between fabrica-

tion states.Let us suppose that v(1) w(1) � � � v(j � 1)w(j � 1)v(j ) has beenoutput at the moment

just before the transducer begins reading u(j ) . As in our secondbasecaseabove, the trans-

ducer must at this point transition to a copy state by (T4), which it will do by reading the

numeral that begins u(j ) and writing a letter that — by (T7) — corresponds to a point in

this quadrant. The situation is then analogous to the basecase,and the transducer will

output v(1) w(1) � � � v(j � 1)w(j � 1)v(j )w(j )v(j +1) � u.

Now we need to verify that the transducer producesevery strict pin wor d w with w �

u. Break u into its strong numeral-led factors u(1) � � � u(j ) and supposethat the factorisation

w = v(1) w(1) � � � v(j � 1)w(j � 1)v(j )w(j )v(j +1) satis�es (O1) and (O2). If v(1) is nonempty then

it can be output immediately by a sequenceof transitions to fabrication statesby (T6); by

(O2) and (T7), the �rst letter of w(1) (which must be a dir ection becausew is a strict pin

wor d) can then be output by transitioning to a copy state, from which (T5) shows that the

rest of u(1) can be read and the rest of w(1) can be written. If v(1) is empty then u(1) = w(1)

by (O1). The transducer can, by (T5), read u(1) and write w(1) by transitioning from S to

a copy state and then transitioning between copy states. Becausew is a strict pin wor d,

(O2) shows that v(2) must be nonempty, and (T6) shows that v(2) can be output without

reading any more letters of u. We then must output w(2) whilst reading u(2) . The only

possible obstacle would be reaching the correct copy state, but (T8) guarantees that this

can be done. The restof u can be read, and the rest of w written, in the samefashion.

The proof of Theorem 7.1 now follows from the discussion at the beginning of the

section.
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7.5 An Easier Suf�cient Condition

Though we have now seena complete answer to the decidability problem, putting this

method into practical use may, in some cases,be more work than is actually required. We

can in fact derive a much easier-to-check set of conditions by recalling the unavoidable

substructuresresult of Chapter 2:

Theorem 2.17. Everysuf�ciently long simplepermutationcontainsan alternationof lengthk or

an oscillationof lengthk.

Thus a permutation classwithout arbitrarily long alternations or arbitrarily long oscil-

lations necessarily contains only �nitely many simple permutations. First note that these

strong conditions are not necessary; for example, the juxtaposition
�

Av(21) Av(12)
�

contains arbitrarily long (wedge) alternations, yet the only simple permutations in this

class are 1, 12, and 21. The work of Albert, Linton, and Ru�skuc [5] also attests to the

strength of theseconditions; they prove that classeswithout long alternations have ratio-

nal generating functions.

As we have already shown how to decide if Av (B ) contains arbitrarily long alterna-

tions, to convert Theorem 2.17from a theorem about unavoidable substructuresto an eas-

ily checkedsuf�cient condition for containing only �nitely many simple permutations we

need to decide if Av(B ) contains arbitrarily long oscillations. As with the parallel and

wedge alternations from Section 7.2, the increasing oscillations nearly form a chain in the

pattern-containment order, so we need only compute the class of permutations that are

contained in some increasing oscillation, or equivalently , that are order isomorphic to a

subset of the increasing oscillating sequence.This computation is given without proof in

Murphy's thesis [97]. Here we provide the proof.

Proposition 7.8. Theclassofall permutationscontainedin all but �nitely manyincreasingoscil-

lationsis Av(321; 2341; 3412; 4123).

Proof. It is straightforwar d to seethat every oscillation avoids 321, 2341, 3412, and 4123,

so it suf�ces to show that every permutation avoiding this quartet is contained in the in-
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creasing oscillation sequence.We use the rank encoding2 for this. The rank encoding of the

permutation � of length n is the wor d d(� ) = d1 � � � dn where

di = jf j : j > i and � (j ) < � (i )gj;

i.e., di is the number of points below and to the right of � (i ). It is easy to verify that a

permutation canbereconstructed from its rank encoding. Now consider the rank encoding

for some� 2 Av(321; 2341; 3412; 4123). Routinely, one may check:

� d(� ) 2 f 0; 1; 2g� ,

� d(� ) doesnot end in 1, 2, or 20,

� d(� ) doesnot contain 21, 22, 111, 112, 2011, or 2012factors.

We now describe how to embed a permutation with rank encoding satisfying these rules

into the increasingoscillating sequence.Supposethat we have embedded � (1); : : : ; � (i � 1).

If di � 1 then we embed � (i ) as the next even entry in the sequence. If di = 0 then we

embed � (i ) as the next odd entry if it ends a 20, 110, or 2010 factor, and as the second

next odd entry otherwise. SeeFigure 7.7 for an example. It remains to show that this is

indeed an embedding of � ; to do this it suf�ces to verify that the number of points of this

embedding below and to the right of our embedding of � (i ) is di . This follows from the

rules above.

7.6 Other Contexts.

To the best of our knowledge, no analogue of Theorem 7.1 is known for other relational

structures. If we were to follow the pattern laid down in this thesis, our approach would

be to decomposethe simple structuresand then establish an algorithmic method to avoid

these structures. We discussed in Section 2.6 some possibilities to generalise the decom-

position methods of Chapter 2, and saw in particular the problems encountered in the

2We refer the reader to Albert, Atkinson, and Ru�skuc [4] for a detailed study of the rank encoding.
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: :
:

Figure7.7: The �lled points show the embedding of 2153647, with rank encoding 1020100, given by
the proof of Proposition 7.8.
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Figure7.8: The prototype transducer for graphs.

graph case.On the assumption that thesedif �culties may be overcome(particularly in the

graph case,but perhaps moregenerally) it seemslikely that decidability would most likely

follow . Our approach, therefore, remains furtive.

Determining the Language of Pins in Graphs. Assuming the existing de�nition from

Section2.6 for pin sequencesin the graph caseis nearly correct, it will actually turn out to

besomewhat easierto construct an analogue to Lemma 7.7. To begin with, recall that the al-

phabet for the language of pins in graphs consistsof only four letters, namely f L; A; I ; Eg,

where L corresponds to adding a leaf, A an antileaf (connected to all but the last pin), I
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Figure7.9: The basiselementsof length 6 for the pin class(up to symmetry).

an independent point (i.e. connected to nothing) and E a point connected to everything.

The transducer producing all strict pin wor ds for graphs is thus much smaller than the

permutation caseof Figure 7.6, and a prototype is given in Figure 7.8. Note that since we

do not have the issueof quadrants in graphs, there is only one fabrication stateF and one

copy stateC.

7.7 The Pin Class

Weclosewith a �nal, capricious, thought. The setof permutations that correspond to strict

pin wor ds forms a permutation classby Lemma 2.16. As this classarises from wor ds, it

has a distinctly “r egular ” feel, and thus we offer:

Conjecture 7.9. Theclassof permutationscorrespondingto pin wordshasa rational generating

function.

The enumeration of this classbegins 1; 2; 6; 24; 120; 664; 3596; 19004. It is not even ob-

vious that this “pin class” has a �nite basis. Its shortest basis elements are of length 6,

and there are 56 of these (seeFigure 7.9). The classalso has 220basis elements of length

7. The classof course contains arbitrarily long simple permutations, and it is trivially not
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partially well ordered – the members of the variant of the increasing oscillating antichain

from Example 5.14(Page97) may be encoded by wor ds of the form 122RURU � � � RUL.
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TH E WREATH PRODUCT

WE N OW CON SIDER a somewhat dif ferent problem, following the classicproblem of

determining the basisof a permutation classde�ned in one of the ways described

in Section5.1. As we mentioned there,the question for the wr eath product of two permuta-

tion classesis known in only a few speci�c cases.Atkinson [12] shows that for any �nitely

basedclassC, the wr eath product CoAv(21) is �nitely based,but that Av(21)oAv (321654)is

not �nitely based. There remains to be seenprecisely what distinguishes thesetwo cases.

Our aim in this chapter is to �nd an answer to that question. In particular , we establish the

following:

Theorem 8.1. For any �nitely basedclassD not admitting arbitrarily long pin sequences,the

wreathproductCoD is �nitely basedfor all �nitely basedclassesC.

The approach is constructive, and will rely on our knowledge of the substitution de-

composition learnt from Chapter 1, and our results concerning pin sequencesfrom Chap-

ter 2. We �rst intr oduce D-pro�les, which give us the ability to decomposepermutations

arising in wr eath products into components belonging to the two original classes. For a

permutation not arising in such a wr eath product, we prove the existenceof a subsequence

order isomorphic to a basiselement of the classC. Mor eover, there is a basiselement of D

lying within the “minimal block” de�ned by any two points of this subsequence.It is then

a matter of using these considerations to show that, when the classD admits only �nite

pin sequences,the minimal elementsnot in the wr eath product have bounded size.

155
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Our secondary aim, arising asa result of the above considerations, is to exhibit a num-

ber of classesof the form D = Av(� ) for j� j � 3, or D = Av(�; � ) with j� j � 4, j� j � 4

which do not satisfy Theorem 8.1, and to demonstrate how an in�nitely based wr eath

product CoD can be found in eachcase.

8.1 D -Pro�les

We need to be able to know when a given permutation lies in the wr eath product of two

permutation classes. This could be done by inspecting all possible decompositions and

checking for membership of the original classes,but this is liable to be computationally

intensive. Instead, we would prefer only to check a single decomposition, from which

membership or otherwise of the wr eath product is immediately obvious.

The pro�le of a permutation � is the unique permutation obtained by contracting every

maximal consecutive increasing sequencein � into a single point [7]. For example, the

pro�le of 3415672is 3142becauseof the segments34,1, 567and 2.

The notion of a “ D-pro�le” connects this idea with the de�nition of the substitution

decomposition � = � [� 1; : : : ; � m ]. We want the D-pro�le of � to be the shortest possible

de�ation of � , given that we may only de�ate by elements from the classD. However , this

is not clearly well-de�ned, so before we can proceed,we must �rst intr oduce D-de�ations.

Formally, let D be a permutation class,and � any permutation. Then a D-de�ation of �

is a permutation � 0 for which � can be expressedas � 0[� 1; � 2; : : : ; � k ] with � 1; � 2; : : : ; � k 2

D. For an arbitrary permutation � , there are many dif ferent D-de�ations. However , the

shortest one is unique, and it is this one that gives rise to the D-pro�le.

Lemma 8.2. ForeveryclosedclassD andpermutation� , theshortestD-de�ation of � is unique.

Proof. Weproceedby induction on n = j� j. The casen = 1 is trivial, sonow supposen > 1.

Fix a shortest D-de�ation of the permutation � , and label this permutation � D . If � 2 D

then � D = 1 is unique, so we will assume� =2 D.

Let � , of length m � 2, be the skeleton of � , and �rst consider the casewhere m � 4,

whereby we have the unique substitution decomposition � = � [� 1; � 2; : : : ; � m ]. By the
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inductive hypothesis, the shortest D-de�ations of � 1; � 2; : : : ; � m are unique, and we will

label them � D
1 ; � D

2 ; : : : ; � D
m . We claim that � D = � [� D

1 ; � D
2 ; : : : ; � D

m ]. Consider any other D-

de�ation of � , � = � 0[� 1; � 2; : : : ; � k ]. Since� =2 D, � 0 cannot be trivial, and so � � � 0, and

indeed � is the skeleton of � 0, giving a unique de�ation � 0 = � [� 0
1; : : : ; � 0

m ]. Mor eover, � 0
i

is a D-de�ation of � i for all i . Since � D
i is the unique shortest D-de�ation, we must have

� D
i � � 0

i , which implies � D � � 0.

When m = 2, more care is required. In this case� is either sum or skew decomposable,

and without loss of generality we may assumethe former. Write � = 12� � � t [� 1; � 2; : : : ; � t ]

where each� i is sum indecomposable. If every � i 2 D, then any shortest D-de�ation of �

will be an increasing permutation of length at most t, and as there is only one increasing

permutation of each length, � D will be unique. So now suppose that there exists at least

one i such that � i =2 D, so that j� D
i j � 2. Since� i is sum indecomposable, � D

i is also sum

indecomposable. We claim the shortest D-de�ation of � will be

� D = (� 1 � � � � � � i � 1)D � � D
i � (� i +1 � � � � � � t )

D :

Any other D-de�ation will also have to be written asa dir ect sum of threepermutations in

this way, and by induction eachof these will involve the respective shortest D-de�ation.

Thus, for any classD and permutation � , the D-pro�le of � is the unique shortest D-

de�ation of � , and is denoted � D . Note that setting D = Av(21), the set of increasing

permutations, returns the original de�nition of the pro�le, but if we set D = S, the set of

all permutations, we do not get the substitution decomposition back, as � S = 1 for any

permutation. However , an easyconsequenceof the above proof is that if � =2 D, and � is

the skeleton of � , then � � � D .

As mentioned at the beginning of this section, our aim with D-pro�les is to be able to

to move from the permutations of the wr eath product CoD down to the permutations in

the two classesC and D in a single step. Thus although initially we may know very little

about the structure of a permutation in the basisof CoD, by taking its D-pro�le we should
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be left with a permutation involving a (known) basis element of C. Conversely, we want

to be able to construct basiselementsof CoD given only the basesof Cand D. Theseideas

are encapsulated in the following theorem.

Theorem 8.3. Let C and D betwo arbitrary permutationclasses.Then� 2 CoD if andonly if

� D 2 C.

Proof. One dir ection is immediate. For the converse, since � 2 CoD, there exists � 0 2 C

which is a de�ation of � by permutations in D. The proof of Lemma 8.2 then tells us that

� D � � 0, completing the proof.

Any expression of the form � = � D [� 1; : : : ; � k ] is called a D-pro�le decompositionof � ,

and the blocks � i are called the D-pro�le blocks. These blocks are not typically uniquely

de�ned. For example, the Av(123)-pro�le of 234615is 23514, but it can be decomposed

either as23514[12; 1; 1; 1; 1] or 23514[1; 12; 1; 1; 1]. Thus it will beuseful to �x a particular D-

pro�le decomposition, especially aslater we are going to need to know about the structure

of eachof the D-pro�le blocks.

The left-greedyD-pro�le of � is the decomposition � = � D
� [� 1; � 2; : : : ; � ` ] with � i 2 D for

all i , in which � 1 is �rst chosenmaximally , then � 2, and so on. Each� i is called a left-greedy

D-pro�le blockof � . This yields the usual, unique, D-pro�le:

Lemma 8.4. ForanyclassD andpermutation� , � D = � D
� .

Proof. Again, we use induction on n = j� j. The basecasen = 1 is trivial, so now suppose

n > 1. Assume further that � =2 D, as otherwise � D = � D
� = 1 follows immediately . Let

� = � D
� [� 1; � 2; : : : ; � ` ] be the left-greedy D-pro�le of � , let � D [� 1; � 2; : : : ; � k ] be any other

D-pro�le decomposition of � , and let � [� 1; � 2; : : : ; � m ] be the substitution decomposition.

Consider �rst the casewhere m = j� j � 4. By the proof of Lemma 8.2, we have

� D = � [� D
1 ; � D

2 ; : : : ; � D
m ]. A similar argument shows that � D

� = � [(� 1)D
� ; (� 2)D

� ; : : : ; (� m )D
� ],

and by induction � D
i = (� i )D

� for all i , giving the required result.

When m = 2, � is either sum or skew decomposable,and we may assumethe former.

Write � = 12� � � t [� 1; � 2; : : : ; � t ] where each � i is sum indecomposable. In the casewhere
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every � i 2 D, both � D and � D
� will be increasing permutations with k � ` � t. When

using the left-greedy D-pro�le decomposition, the block � 1 was chosenmaximally , and so

� 1 � � 1. Then the block � 2 was taken maximally , so the D-pro�le block � 2 cannot extend

further right than the end of � 2, hence � 2 � � 1 � � 2. Continuing in this manner, we see

that, for all i , � i � � 1 � � 2 � � � � � � i , and in particular � k � � 1 � � 2 � � � � � � k . But we

must have k � `, and so k = `. The remaining caseis where at least one � i =2 D. Pick i

to be minimal with this property, and then by the proof of Lemma 8.2,the D-pro�le breaks

into threepieces,

� D = (� 1 � � � � � � i � 1)D � � D
i � (� i +1 � � � � � � t )

D :

A similar argument holds for the left-greedy D-pro�le, and then by induction eachof the

threepiecesin the left-greedy D-pro�le is equal to the corresponding piecein the D-pro�le.

There is, of course, nothing special about the left-greedy D-pro�le; it can be seenthat

any algorithm to compute a D-pro�le-like decomposition in which at eachstagethe blocks

are chosenmaximally will yield a D-pro�le de�ation. For our purposes, however, when

required we will always use the left-greedy algorithm.

8.2 The Minimal Block

The primary aim of this section is to be able to tell if any two points in a permutation

belong to the same left-greedy D-pro�le block, and also a partial converse: given the D-

pro�le de�ation, what can we say about the points “between” two speci�ed points? To

this end, we de�ne a new concept as follows. Let � be any permutation of length n. For

all 1 � i < j � n, the minimal blockof � that contains� (i ) and � (j ), denoted mb(� ; i; j ), is

the segment of � which forms the shortest interval containing both � (i ) and � (j ). In other

wor ds, there exists k � i and ` � j � k such that mb(� ; i; j ) = � (k) � � � � (k + `) forms

an interval but no subsegment of this contains both � (i ) and � (j ) and forms an interval.
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Figure8.1: The minimal block mb(� ; 2; 3) in � = 236745981.

For example, if � = 236745981, then the minimal block on � (2) = 3 and � (3) = 6 is

mb(� ; 2; 3) = 36745(SeeFigure 8.1).

It follows from the observation that the intersection of two intervals itself forms an

interval (seeProposition 1.2(a)) that the minimal block is always uniquely de�ned. Before

we can proceedto the main result of this section, we make one further observation.

Lemma 8.5. Let � be any permutationand let i 6= j be any pair of positionsin � . Then if

k; ` 2 mb(� ; i; j ) with k 6= ` wehave

mb(� ; k; l ) � mb(� ; i; j ):

Moreover, if bothi andj separatek from` by position,thenmb(� ; k; `) = mb(� ; i; j ).

Proof. That mb(� ; k; `) is contained in mb(� ; i; j ) is obvious. Now suppose i and j separate

k from ` by position, i.e. k � i < j � `. Then mb(� ; k; `) is an interval of � containing both

� (i ) and � (j ). As mb(� ; i; j ) is minimal with this property, we have mb(� ; i; j ) � mb(� ; k; `)

and so mb(� ; i; j ) = mb(� ; k; `).

We are now ready to prove our main technical result of this section.

Lemma 8.6. Let D bea permutationclass,andlet � 2 Sn beany permutation.Thenfor any pair

i; j with 1 � i < j � n:

(i) If thepermutationorderisomorphicto mb(� ; i; j ) doesnot lie in D, then� (i ) and� (j ) lie in

different D-pro�le blocks.
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(ii) Conversely, if � (ai ) and� (aj ) arethe�rst symbolsoftwo distinct left greedyD-pro�le blocks

� i and � j respectively, thenthepermutationorderisomorphicto mb(� ; i; j ) doesnot lie in

D.

Proof. (i) By minimality and uniqueness of the minimal block, every block in � containing

both � (i ) and � (j ) must contain the minimal block mb(� ; i; j ). Hence every such block

doesnot lie in D, so cannot be a D-pro�le block.

(ii) Write � = � D [� 1; � 2; : : : ; � k ], and let the sequence� (a1); � (a2); : : : ; � (ak ) represent

the leading points in � of the left-greedy D-pro�le blocks � 1; � 2; : : : ; � k . Let � i and � j ,

i < j , be a pair of D-pro�le blocks. We prove the statement by induction on i .

When i = 1, the block � 1 was picked maximally subject to � 1 2 D. For any j >

1, the minimal block mb(� ; a1; aj ) strictly contains � 1 and then the maximality of � 1 is

contradicted unless mb(� ; a1; aj ) =2 D.

Supposenow that i > 1, and that mb(� ; a` ; aj ) =2 D for any ` < i and j > `. The D-

pro�le block � i was picked maximally to avoid basis elements of D, subject to starting at

symbol � (ai ). Consider, for some j > i , the minimal block mb(� ; ai ; aj ), necessarily con-

taining all of � i . If the leftmost point of mb(� ; ai ; aj ) is � (ai ), then since � i is the maximal

block lying in D which startsat � (ai ), we must have mb(� ; ai ; aj ) =2 D. Sonow supposethat

mb(� ; ai ; aj ) contains at least one symbol � (h) from � with h < ai . Let the D-pro�le block

containing � (h) be � ` ; we claim that � ` is completely contained in mb(� ; ai ; aj ). If not,

then part of � ` lies outside mb(� ; ai ; aj ) in both position and value, and so the part lying

inside mb(� ; ai ; aj ) itself forms an interval in either the top-left or bottom-left corner of the

minimal block, but yet it contains neither � (ai ) nor � (aj ), contradicting the minimality of

mb(� ; ai ; aj ). In particular , the �rst symbol � (a` ) of � ` is in mb(� ; ai ; aj ), and by Lemma 8.5,

we have mb(� ; a` ; aj ) = mb(� ; ai ; aj ). By the inductive hypothesis mb(� ; a` ; aj ) =2 D, and

so mb(� ; ai ; aj ) =2 D.

Using this result, we now know when two points of a permutation will lie in the same

D-pro�le block, and, more importantly for what follows, we know that a basiselement of

D exists in the minimal block of the �rst symbols of any two D-pro�le blocks. What we do
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not yet know is how to �nd it; given such a minimal block, we need a method to search

through the block systematically and locate the points that form this basiselement within

a bounded number of steps. Once again it is pin sequencesthat will provide the solution.

8.3 Pin Sequencesand the Wreath Product

For the pin sequencesin this chapter, we will revert to considering thosethat occur within a

given permutation, or, indeed, part of a permutation. Recall that for this purpose a proper

pin sequenceuses the separation condition instead of the externality condition, together

with maximality:

� Maximality: eachpin must be taken maximally in its dir ection. For example, a proper

left pin out of rect(p1; p2; : : : ; pi � 1) must be the left pin slicing rect(p1; p2; : : : ; pi � 1)

with smallest position.

� Separation: in slicing rect(p1; p2; : : : ; pi ), the pin pi +1 must lie either horizontally or

vertically between pi and rect(p1; p2; : : : ; pi � 1).

Also, while we have thus far used pin sequencessolely with simple permutations, here

we will need to use them in a more general setting. We cannot, of course,expect the same

results to hold, but we may prove some that are similar for minimal blocks. Recall that, in

a permutation � , a pin sequencep1; p2; : : : ; pm is said to be saturated if rect(p1; p2; : : : ; pm )

enclosesall of � . Whereasin simple permutations any pin sequencemay be extended to

one that is saturated, this is not true for arbitrary permutations, but a weaker condition

does hold – we may saturate the minimal block de�ned on (i; � (i )) and (j; � (j )) if these

points form the �rst two points of our pin sequence.

To convert a saturated pin sequenceto a proper pin sequence,we �rst had to restrict

our attention towards attaining just one of the boundaries of the permutation. Wesaid that

a pin sequencep1; p2; : : : ; pm of � is right-r eaching if pm is the rightmost position of � :

Lemma 2.9. For everysimplepermutation� andpair of pointsp1 andp2 (unless,trivially , p1 is

theright-mostpoint of � ), thereis aproperright-reachingpin sequencebeginningwith p1 andp2.
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We want the same lemma to hold within a minimal block, de�ned as usual by two

points, which will also form the �rst two points of our proper pin sequence.In the minimal

block case,right-r eaching means that the last pin is the right-most point of the minimal

block, rather than of the whole permutation. Hence:

Lemma 8.7. Let � 2 Sn beany permutation,andlet 1 � i < j � n. Thenthereexistsa proper

pin sequencewith starting points p1 = (i; � (i )) and p2 = (j; � (j )) which is right-reachingin

mb(� ; i; j ).

Proof. In the minimal block mb(� ; i; j ), there exists a saturated (non-proper) pin sequence

p1; p2; : : : starting from the pins p1 = (i; � (i )) and p2 = (j; � (j )) . If there were no such

sequence,then some corner of the minimal block, not including either � (i ) or � (j ), would

form an interval by itself, contradicting the minimality of mb(� ; i; j ). Mor eover, we may

assume, by removing unnecessarypins and relabelling, that every pin is maximal in its

dir ection.

The proof then follows the proof in Chapter 2 of Lemma 2.9. Sincethe pin sequenceis

saturated, it includes the rightmost point of � . Label this point pi 1 . Next, take the small-

est i 2 < i1 such that p1; p2; : : : ; pi 2 ; pi 1 is a valid pin sequence,and observe that pi 1 sep-

arates pi 2 from rect(p1; p2; : : : ; pi 2 � 1), as p1; p2; : : : ; pi 2 � 1; pi 1 is not a valid pin sequence.

Continue in this manner, �nding pins pi 3 ; pi 4 ; : : : until we reach pi m +1 = p2, and then

p1; p2; pi m ; pi m � 1 : : : ; pi 1 is a proper right-r eaching pin sequence.

Lemma 2.9is easily recovered from Lemma 8.7by setting � to bea simple permutation,

and observing that all minimal blocks in a simple permutation are the whole permutation.

This is, therefore,a true generalisation of that lemma.

We are now ready to prove our main result.

Theorem 8.8. LetD = Av(B ) bea�nitely basedpermutationclassnot admitting arbitrarily long

pin sequences.ThenCoD is �nitely basedfor all �nitely basedclassesC= Av(D).

Proof. Let b = max� 2 B (j� j), d = max� 2 D (j� j), and � beany permutation in the basisof CoD.

By Theorem 8.3, we have � D =2 C, and so there existssome� 2 D such that � � � D . We will
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be done if we can identify a bounded subsequenceof � order isomorphic to a permutation

! , say, for which � � ! D , as then ! D =2 Cimplies ! =2 CoD, and hence! = � .

First include in our subsequenceof � the set of points order isomorphic to � with po-

sitions d1; d2; : : : ; dk (k = j� j), chosenso that each � (di ) is the leftmost point of a distinct

left greedy D-pro�le block, and the choiceof blocks is also leftmost. For every pair di ; di +1 ,

Lemma 8.6tells us that the minimal block mb(� ; di ; di +1 ) involves some� 2 B , and we in-

clude one such occurrenceof this � in our subsequence.Our aim now is to add a bounded

number of points so that � still lies in the minimal block of the permutation ! on the points

corresponding to � (di ) and � (di +1 ), asthen thesetwo points arepreserveddistinctly in ! D .

We do this by taking a proper right-r eaching and a proper left-reaching pin sequenceof

mb(� ; di ; di +1 ) (which exist by Lemma 8.7), and including them in the subsequence.These

pin sequencesare only guaranteed to be bounded when D doesnot admit arbitrarily long

pin sequences,asthen there existsa number N so that every pin sequenceof length N + 2

involves somebasiselement of D.

Thus ! D still involves a subsequenceorder isomorphic to � , and j! j � d+ (d� 1)(2(N �

1) + b).

We saw in Chapter 7 that it is decidable whether a �nitely basedclassadmits arbitrar -

ily long pin sequencesor not, and therefore given any pattern classwe can tell whether

Theorem 8.8applies.

8.4 In�nitely Based Examples

For a classD which admits in�nite pin sequences,Theorem 8.8gives us no information on

whether the basis of CoD (here for a speci�ed classC) is �nite. However , the proof does

tell us what some of the basis elements look like. A basis element � of a wr eath product

CoD is built around a coreof points order isomorphic to a basiselement of C. To preserve

all the points of this core when taking the D-pro�le of � (as required by Theorem 8.3),

every minimal block between any two points of the core must involve a basis element of

D. If we can embed arbitrarily long pin sequencesin theseminimal blocks, � may itself be
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Figure8.2: The element � 5 in the basisof Av(25134)oAv (321).

made arbitrarily long. For example, the classAv(321) admits the increasingoscillating pin

sequenceencoded RURURU � � � , and so we have:

Theorem 8.9. Av (25134)oAv(321) is not �nitely based.

Proof. We exhibit an in�nite antichain generated by repeatedly taking up and right pins

lying in the basisof Av (25134)oAv(321). The �rst few elementsof the antichain are

� 1 = 2; 5; 1; 3; 7; 6; 4

� 2 = 2; 5; 1; 3; 7; 4; 9; 8; 6

� k = 2; 5; 1; 3; 7; 4 j 9; 6; 11; 8; : : : ; 2k + 3; 2k j 2k + 5; 2k + 4; 2k + 2 (k � 3):

Here, as in [9], the j symbol is used only to clarify the structure of the permutation. See

Figure 8.2for an illustration of a typical member of this antichain. We observe:

(i) The set f � k j k � 1g is an antichain.

(ii) The only occurrenceof 321in each� k is 2k + 5; 2k + 4; 2k + 2.

(iii) The only occurrenceof 25134in each� k is 2; 5; 1; 3; �; 4, and hencethis forms the core.

(iv) Each� k is neither sum nor skew decomposable.

(v) The Av(321)-pro�le of � k is 2; 5; 1; 3; 7; 4; : : : ; 2k + 3; 2k; 2k + 4; 2k + 2 (the only non-

trivial de�ation occursbetween 2k + 5 and 2k + 4). In particular , 25134� � Av (321)
k for

all k, henceby Theorem 8.3 � k =2 Av(25134)oAv(321).
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It only remains to show that � k is minimally not in Av (25134)oAv (321). Consider the effect

of removing any symbol j . If j = 2k + 5; 2k + 4 or 2k + 2 then by (ii) this no longer involves

321so � k � j 2 Av(321) � Av (25134)oAv(321). Similarly , if j = 2; 5; 1; 3 or 4 then by (iii)

� k � j no longer hasa core, so � k � j 2 Av(25134)� Av (25134)oAv(321).

For any other j , � k � j is sum decomposable.Under the Av(321)-pro�le, the �rst (lower)

component de�ates to a single point, and hence(� k � j )Av (321) 2 Av(25134). Thus � k � j 2

Av(25134)oAv(321), completing the proof.

Note that in the above example, the class C = Av(25134) was speci�cally chosen so

that the basis element 25134is not contained in the repeated pin sequenceused to build

the antichain, but it does lie in the classD. This ensures that the core, 25134, acts as an

anchor at the baseof the antichain, but yet the only instance of the basiselement 321is in

the upper anchor.

As a result, for any classD which contains both the in�nite pin sequenceformed by

alternating between up and right pins, and the permutation 25134, the wr eath product

Av(25134)oD will always contain an in�nite antichain similar to the one above.

Example 8.10. (i) The classesD = Av(321; 2341)and D = Av(321; 3412)both avoid the

permutation 321and so the antichain in the proof of Theorem 8.9 lies in the basisof

Av (25134)oD in both cases.

(ii) All of the classesD = Av(�; � ) where the pair (�; � ) is one of

(4321; 4312); (4321; 4231); (4321; 4213); (4321; 3412) and (4321; 3214)

avoid 4321, and so the antichain with terms

� 1 = 2; 5; 1; 3; 8; 7; 6; 4

� 2 = 2; 5; 1; 3; 7; 4; 10; 9; 8; 6

� k = 2; 5; 1; 3; 7; 4 j 9; 6; 11; 8; : : : ; 2k + 3; 2k j 2k + 6; 2k + 5; 2k + 4; 2k + 2 (k � 3)

lies in the basisof Av(25134)oD in eachcase.
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Figure8.3: The element � 5 in the basisof Av(25143)oAv(4321; 4123).

(iii) The classesD = Av(4312; 4231), D = Av(4312; 4213) and D = Av(4312; 3421) all

avoid 4312, so swapping the order of the �nal two points of each� k in case(ii) gives

the required antichain.

Example 8.11. The two classesD = Av(4321; 4123) and D = Av(4312; 4123) both admit

the pin sequenceformed by repeatedly taking up and right pins, but do not contain the

permutation 25134, becauseof the basiselement 4123. However , the classC = Av(25143)

may be used instead. In the �rst case,the antichain is (seeFigure 8.3 for an illustration):

� 1 = 2; 5; 1; 4; 8; 7; 6; 3

� 2 = 2; 5; 1; 4; 7; 3; 10; 9; 8; 6

� k = 2; 5; 1; 4; 7; 3 j 9; 6; 11; 8; : : : ; 2k + 3; 2k j 2k + 6; 2k + 5; 2k + 4; 2k + 2 (k � 3):

All the examples so far have admitted the same“up-right” pin sequence,correspond-

ing to variants of the increasing oscillating antichain. Another commonly found in�nite

pin sequenceis formed by repeating the pattern left, down, right, up, 1 and there are (to

within symmetry) two classesof the form D = Av(�; � ) with j� j = j� j = 4 which admit

this sequence:D = Av(3412; 2413) and D = Av(3412; 2143). Each one must be handled

separately.

Example 8.12. (i) D = Av(3412; 2413) may be paired with C = Av(31542) to produce

1This repeating pattern is the foundation for the “W iddershins” antichain of [97].
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Figure8.4: The basiselement � 3 in Av(31542)oAv(3412; 2413).

the antichain with terms

� 1 = 8; 1; 6; 4; 9; 7; 5; 2; 3

� k = 4k + 4; 1; 4k + 2; 4; 4k; 6; : : : 2k + 6; 2k j

2k + 4; 2k + 2; 2k + 7; 2k + 5; 2k + 3 j

2k + 9; 2k + 1; : : : ; 4k + 5; 5 j 2; 3 (k � 2):

SeeFigure 8.4 for an illustration. Note that the occurrenceof 3412in any � k is not

unique, but every occurrencerequires the �nal two symbols 2; 3 of � k , and so these

points still behave in the sameway as in previous examples.

(ii) D = Av(3412; 2143) may be paired with C = Av(412563)to produce the antichain

with terms:

� 1 = 10; 1; 8; 4; 6; 9; 11; 7; 5; 2; 3

� k = 4k + 6; 1; 4k + 4; 4; 4k + 2; 6; : : : ; 2k + 8; 2k j

2k + 6; 2k + 2; 2k + 4; 2k + 7; 2k + 9; 2k + 5; 2k + 3 j

2k + 11; 2k + 1; : : : ; 4k + 7; 5 j 2; 3 (k � 2):
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8.5 Concluding Remarks and Conjectures

The above examples suggest, to some extent, a general method for �nding in�nite bases.

However , these examples rely on just one method for constructing antichains, and there

is no reason why this method should always work. For example, a somewhat dif ferent

construction was used by Atkinson and Stitt [12] to demonstrate an in�nite antichain in

the basisof Av(21) oAv(321654), relying on the sum decomposability of the basiselement

321654. The other dif �culty in �nding in�nite basesis that, for each given class D, the

search for a suitable classCis very speci�c, and rarely seemsto be applicable to more than

a handful of other classes.

In fact, it is unlikely that we can always �nd such a classC. For example, we saw in

Proposition 7.8 that the closure of the increasing oscillating sequence416385� � � is given

by Av(321; 2341; 3412; 4123). This class,of course,admits the in�nite proper pin sequence

alternating between up and right pins, but, there are no other permutations in this class

which can be used to anchor an in�nite antichain basedaround this pin sequence,so the

method described hitherto doesnot work here. We therefore pose the following question.

Question 8.13. Is there a �nitely basedclassC for which C oAv(321; 2341; 3412; 4123) is not

�nitely based?

The Other Direction. Given a �nitely basedclassC, can we tell if CoD is �nitely based

for all �nitely basedpermutations classesD? Noting that even C= Av(21) doesnot satisfy

this (as witnessed by the in�nite basis within Av(21) oAv(321654)), it might be that there

are no classeswhich satisfy this. However , we must not be deceived into thinking that the

more well-behaved a classC is, the more likely CoD is to be �nitely based,as there is no

real evidence to support this. We will, however, offer the following conjecture anyway.

Conjecture 8.14. Forany�nitely basedclassC, thereexistsa �nitely basedclassD suchthat CoD

is not �nitely based.
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Wreath Basis Decidability . The ultimate aim, of course, is to be able to answer the fol-

lowing question: given two �nitely based classesC and D, what is the basis of C oD?

Trivially , if C and D both contain �nitely many simple permutations, then so does C oD

and so the basis is �nite, but this result follows asa special caseof Theorem 8.8. A general

decision procedure is not likely to be straightforwar d, and remains somewhat remote. A

�rst step towards such a result would be a better understanding of the structure of in�nite

antichains.
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[91] M ÖH RIN G, R. H . On the distribution of locally undecomposable relations and

independence systems. In Colloquium on MathematicalMethodsof OperationsRe-

search (Aachen, 1980), vol. 42 of Methods Oper. Res. Athen äum/Hain/Hanstein,
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antichain, 95
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Widdershins, 167

bootstrap percolation, 86

Catalan number, 122
closure, 83

strict, 99
common interval, 9, 65
comparability graph, 8, 78
complement, seepermutation, complement of
containment, 5, 81

asa partial order, 81–107
core, 164
crossing, 40

de�ation
of a relational structure, 16

D-de�ation, 156
disjunctive decomposition, seesubstitution de-

composition
divisibility order, 99

Erd �os-SzekeresTheorem, 22

Fine's Sequence,123
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rational, 150
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asa relational structure, 8
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pin sequence,41, 42
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convergence,43
distinct thir d pins, 43
leaf, 42
proper quickly n-reaching, 43
saturated, 42

simple extension of, 52–56
grid class,88
D-griddable class,89
m � n gridding, 88
ground set,7
growth rate, 94

lower, 94
upper, 94

hereditary property of graphs, 108
speed,109

Higman's Theorem, 100

increasingoscillating sequence,39
basisof, 150

indecomposable graph, 10
asymptotics, 13
decomposition, 41–46
exceptionals, 44

induced subgraph, 8, 108
induced subtournament, 8
in�ation, 17
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of a relational structure, 15
interval, 9

applications to biomathematics, 9
computation in optimal time, 72
generating, 71–72
in a relational structure, seerelational struc-

tur e, interval
lmax(� ; i ), left-maximum, 73
I ` (� ; i ), left-open, 67
I `ud (� ; i ), left-up-down-open, 67
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one-sided, 67, 71
overlapping, 11, 73
proper, 9
rmax(� ; i ), right-maximum, 73

computation in linear time, 74
I r (� ; i ), right-open, 67
I r ud (� ; i ), right-up-down-open, 67
strong, 70, 73

computation in linear time, 75
synonyms, 10
three-sided,66, 68, 71, 73

inverse, seepermutation, inverse of
involvement, seecontainment

juxtaposition, 150
horizontal, 87
vertical, 88

L -structure, 7
left-gr eedy Y -pro�le, seeY -pro�le, left greedy
lenient in�ation, seein�ation, lenient

Maximality condition, seepin sequence,Maxi-
mality condition

maxpos(P), position of rightmost point in P, 68
computation in linear time, 69
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value, 67
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merge, 88
minimal block, 159

relation to D-pro�le, 160
uniqueness,160

minpos(P), position of leftmost point in P, 68
minval(P), position of point in P with minimal

value, 67
computation in linear time, 67

modular decomposition, seesubstitution decom-
position

monotone property of graphs, 108

natural class,103

oscillation, 39
decreasing,39
increasing,39

parallel alternation, seealternation, parallel
partially well ordered, 98

decidability , 98
equivalent conditions, 100

pattern class,seepermutation class
pattern containment, seecontainment
permutation, 4

almost Dumont, 119
alternating, 118, 131
anti-almost Dumont, 120
asa relational structure, 7
barred, 117, 131
blocked, 117, 131
complement of, 6, 141
containment, seecontainment
decreasing,4
dir ect sum, 18
Dumont of the �rst kind, 119, 131
even, 131
graph of, 95
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inverse of, 6
involution, 123, 131
involvement, seecontainment
irr educible, 15
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point of a, seepoint of a permutation
reverseof, 6
run, 15
separable,85, 91, 114, 121, 122, 133
simple, seesimple permutation
simple extension of, 48–52
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sum decomposable,18, 77
sum indecomposable, 18

permutation class,81
atomic, 102
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joint embedding property, 103
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skew complete, 89
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strong completion, 89
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union, 86
wr eath closed,90
wr eath closure, 90

pin, 24, 66
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enumeration, 153
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Externality condition, 35, 137
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Maximality condition, 24
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permutation corresponding to, 37, 38
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strict, 37
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point of a permutation, 4
position, 5
value, 5
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simple extension of, 59–64
prime graph, seeindecomposable graph
pro�le, 156
D-pro�le, 156

block, 158, 159
decomposition, 158
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uniqueness lemma, 156
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EV , even permutations, 119
inverse of, 124
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pattern avoidance, 116
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query-complete, 112, 115

Ramsey'sTheorem, 45
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large Schröder numbers, 114, 121
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simple extension, 47
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simple permutation, 9

asymptotics, 13
simple relational structure, seerelational struc-
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strict pin wor d, seepin wor d, strict
strong interval, seeinterval, strong
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substitution decomposition, 16, 70, 158

computation in linear time, 77, 134
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tree,17

support
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tournament, 8
asa relational structure, 8
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simple extension of, 56–59

transitive orientation, 8, 61, 78
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Wilf equivalent, 93
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