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ABSTRACT

The simple relational structuresform the units, or atoms, upon which all other relational
structur es are constructed by means of the substitution decomposition. This decomposi-
tion appearsto have rst beenintroduced in 1953in atalk by Fra'ssg, though it did not
appear in an article until a paper by Gallai in 1967. It has subsequently been frequently
rediscovered from a wide variety of perspectives, ranging from game theory to combina-

torial optimization.

Of all the relational structures— a set which also includes graphs, tournaments and
posets — permutations are receiving ever increasing amounts of attention. A simpleper-
mutation is one that maps every nontrivial contiguous set of indices to a setof indices that
is never contiguous. Simple permutations and intervals of permutations are important in
biomathematics, while permutation classes— downsets under the pattern containment

order — arise naturally in settings ranging from sorting to algebraic geometry.

We begin by studying simple permutations themselves, though always aim to estab-
lish this theory within the broader context of relational structures. We rst develop the
technology of “pin sequences”,and prove that every suf ciently long simple permutation
must contain either a long horizontal or parallel alternation, or along pin sequence.This
gives rise to a simpler unavoidable substructures result, namely that every suf ciently
long simple permutation contains along alternation or oscillation.

Erdos, Fried, Hajnal and Milner showed in 1972that every tournament could be ex-
tended to a simple tournament by adding at most two additional points. We prove analo-
gous results for permutations, graphs, and posets,noting that in thesethreecaseswe may

need to extend a structure by adding d(n + 1)=2e points in the caseof permutations and
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Vi ABSTRACT

posets,and log,(n + 1) points in the graph case.

The importance of simple permutations in permutation classeshas been well estab-
lished in recentyears. We extend this knowledge in a variety of ways, rst by showing
that, in apermutation classcontaining only nitely many simple permutations, every sub-
setde ned by properties belonging to a nite “query-complete set” is enumerated by an
algebraic generating function. Such properties include being an even or alternating per-
mutation, or avoiding generalised (blocked or barred) permutations. We further indicate
that membership of a permutation classcontaining only nitely many simple permuta-
tions can be computed in linear time.

Using the decomposition of simple permutations, we establish, by representing pin se-
guencesas a language over an eight-letter alphabet, that it is decidable if a permutation
classgiven by a nite basiscontains only nitely many simple permutations. We also dis-
cusspossible approachesto the samequestion for other relational structures,in particular
the dif culties that arisefor graphs. The pin sequencetechnology provides a further result
relating to the wr eath product of two permutation classesnamely that CdD is nitely based
whenever D does not admit arbitrarily long pin sequences.As a partial converse,we also

exhibit a number of explicit examples of wr eath products that are not nitely based.
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INTRODUCTION

This thesis consists of two parts: In Part | we study the structure of simple permutations
in the context of relational structures,while in Part Il we apply this structural knowledge
of simplicity to permutation classes. This division re ects the fact that the study of per-
mutations — and particularly simple permutations — lies in an areaof research extending
beyond the subjectof permutation classes.However, that thesetwo topics are covered un-
der the single title of this thesisre ects the importance in studying simple permutations for
the further understanding of permutation classes.Many of the major permutation-based

results in this thesis may be found published or available aspreprints [28, 29, 30, 31].

In Chapter 1 we begin by intr oducing permutations and the containment partial or-
der. We then take a more broad view by de ning the general construction of relational
structures, and demonstrate how permutations, graphs, tournaments and posets may all
be described in this language. We then commenceour discussion in Sections1.4and 1.5of
intervals, simplicity and the substitution decomposition in the context of relational struc-

tures,at eachstagealso translating back to the permutation case.

In Chapter 2 we intr oduce the new technology of pin sequencesand show how suf-
ciently long simple permutations must contain either a long proper pin sequence,or a
long wedge or parallel alternation. We also intr oduce the language of pins, a necessary
prerequisite for the decidability result of Chapter 7. We close the chapter with a specula-

tive discussion on possible analogues of this decomposition theory for graphs.

Motivated by a result of Erdos, Fried, Hajnal and Milner in 1972 for tournaments,
Chapter 3 considersthe problem of embedding a given relational structure inside a larger

simple structure. We demonstrate that a general approach may be used relying on the sub-
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Xii INTRODUCTION

stitution decomposition, but that the outcome for eachtype of relational structure may be
somewhat unique. To demonstrate this, we look at the simple extensions of permutations,

graphs, tournaments and posets.

Much emphasis has been placed in recentyears in developing optimal algorithms for
computing intervals and the substitution decomposition. In Chapter 4 we review a recent
paper by Bergeron, Chauve, Montgol er and Rafnot who give alinear-time algorithm to
compute the intervals in a given permutation. It follows directly from this work that the
permutation substitution decomposition may be computed in linear time. We also review

some algorithmic resultsin the caseof graphs.

Permutation classeshave been intensively studied in recentyears, and in Chapter 5
we review some of the results in this area, manifested primarily in constructions between
permutation classestheir enumeration and special properties including partial well order
and atomicity. Permutation classescontaining only nitely many simple permutations
have received particular attention, and we cover the most important results concerning

these.

One particular property of permutation classescontaining only nitely many simple
permutations is that they are enumerated by algebraic generating functions. By means of
“nite query-complete setsof properties”, we show in Chapter 6 that many different sub-
sets of such permutation classesare also enumerated by algebraic generating functions.
We closethe chapter with some further enumerative results coming from the decomposi-
tion of simple permutations in Chapter 2, and note how, using the linear-time substitution
decomposition algorithm of Chapter 4, we may establish in linear time whether a given
permutation liesin aspecied classknown to contain only nitely many simple permuta-

tions.

Chapter 7 answers af rmatively the natural question arising from the studies of Chap-
ters 5and 6: is it decidable if a permutation classgiven by a nite basiscontains in nitely
many simple permutations? This is done using the decomposition results of Chapter 2, in

particular showing that the language of pins lying within aspeci ed classforms aregular
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language, and henceits in nitude is decidable.

Finally, in Chapter 8, using the technology of pin sequencesin aslightly different con-
text we derive ageneral suf cient result concerning the basiselementsof the wr eath prod-
uct between two nitely based permutation classes,relying on whether one of the per-
mutation classescontains arbitrarily long pin sequencesor not. In the casewhere a given
classcontains arbitrarily long pin sequenceswe demonstrate in a number of caseswr eath
products which are not nitely based. This suggeststhat the nite basisresult is, to some

extent, necessarythough we also presentsome evidence to the contrary.
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CHAPTER 1

PRELIMINARIES

XPRESSING an objectin terms of smaller, indecomposable objects,is a goal aimed at in
anide variety of subjectareas.The rst example one nds in mathematicsis the Fun-
damental Theorem of Arithmetic, which demonstrates how any positive integer greater
than 1 may be written uniquely (up to ordering) as a product of prime factors. It is a
property that is not true for elements of an arbitrary collection, however; take for exam-
ple the elements of aring, which in general are not uniquely factorisable (unless the ring
is speci cally shown to be a Unique Factorisation Domain). When a given collection of
objectscan be uniquely factorised, emphasis is often placed on the study of the prime or
indecomposable elements, asit is thesewhich form the “building blocks” of the collection.

One such family of objectsis the family of relational structures— objectsgoverned by
a given set of relations —whose most notable members include graphs, tournaments, per-
mutations and posets. Their “factorisation” is relatively straightforwar d, and will be re-
ferred to asthe “substitution decomposition”, though is known also asthe modular de-
composition, disjunctive decomposition and X -join. The elemental building blocks of this
decomposition are the “simple” structures. This term is used primarily in the context of
permutations, while in other contexts thesestructuresare called prime or indecomposable
(note in particular that “simple” usually has a different meaning in the context of graphs).

The notion of substitution decomposition dates back at leastto a 1953talk of Fra'ssg,
but only the abstract of this talk [55] survives. The rst article using the substitution de-

composition seemsto be Gallai [58] (for an English translation, see[59]), who applied them
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4 1 PRELIMINARIES

particularly to the study of transitive orientations of graphs. Somework on the substitu-
tion decomposition in the general context can be found in Mdhring [92]. It has proved to
be a useful technique in a wide variety of settings, ranging from game theory to combi-
natorial optimisation (seeMohring [94] or MOhring and Radermacher [95] for extensive
references).

Our relational structure of choice is the permutation. It has suf cient complexity to
be worthy of extended study, but also is easily represented graphically. In this setting,
much of the motivation for studying the substitution decomposition is for the purposes
of enumeration, particularly of permutation classes,and Part Il is primarily dedicated to
demonstrating the enumerative consequencesof this study.

Adapting the permutation-speci c theory we will develop to other relational struc-
tur esis not necessarily obvious; much of the theory depends, aswe have indicated, on the
graphical representation of permutations, and so, for example, nding a graph-theoretic
analogue will not follow immediately. Thus throughout Part | we will discussthe success

(or otherwise) of existing attempts in this avenue.

1.1 Permutations, Containment and Order Isomorphism

We begin by introducing the terms we need to study permutations; the de nition of a
general relational structure will follow after this is established. For n 2 N denote by [n]

the setfl;2;:::;ng,and for i | let [i; j] correspond to the setfi;i + 1;:::;]g. We may

In our context, a permutation of length n is an ordering of the elements of [n]. For
example, = 918572364s a permutation of length 9. Two particular families of permu-
tations to which we will refer relatively often are the increasingpermutationsdenoted by
n = 12 n,and the deceasingpermutations , = n(n 1) 1.

Fori 2 [n]denote by (i) the image of the number i under ,and, by extension, ([i;j])

corresponds to the image of the segment [i; j]. The pair (i; (i)) representsa point of ,
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and in this pair i is the positionand (i) the valueof the point. Viewing as a set of
points immediately indicates the graphical interpr etation which will prove invaluable in
our forthcoming study. We will, however, postpone this viewpoint momentarily while we
intr oduce some further de nitions.

Two nite sequencesof the samelength, = aja, a,and = bhb, b,, aresaid
to be orderisomorphidf, for all i; j, we have a; < a; if and only if b < Iy. As such, each
sequenceof distinct real numbers is order isomorphic to a unique permutation. For a
sequence and setof permutations C, with a slight abuse of notation we will sometimes
write statementslike * 2 C’, meaning “the permutation order isomorphic to liesin C.".
Similarly, any given subsequence(or pattern) of a permutation is order isomorphic to a
smaller permutation, say, and such a subsequenceis called a copyof in . We may
also saythat contains (or, in sometexts, involves ) and write . If, on the other
hand, doesnot contain acopy of somegiven ,then issaidto avoid . Forexample, =
91857234@&ontains = 51342becauseof the subsequenced1572(= (1) (2) 4) (5) (8)),
but avoids = 3142

The pattern containment order forms a partial order on the setof all permutations, and
in Part 1l we will belooking at setsof permutations closed under taking subpermutations.

A book intr oducing the study of thesepermutation patterns hasbeenwritten by Bona[22].

1.2 Graphical Representation and Symmetries

As mentioned above, we may think of a permutation as a set of points (i; (i)), and
immediately we can form a graphical representation. We can go further, however, and
give a pictorial description of order isomorphism. Two setsS and T of points in the plane
are said to be order isomorphic if the axescan be stretched and shrunk in some manner to
map one of the setsonto the other, i.e., if there are strictly increasingfunctions f;g: R! R
suchthat f (f (s1);9(s2)) : (s1;S2) 2 Sg= T. (As the inverse of a strictly increasingfunction
is also strictly increasing, this is an equivalence relation.)

The plot of the permutation is the point setf(i; (i))g, and every nite point setin the
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Figurel.1: The plot of the permutation = 934826715

plane in which no two points share a coordinate (often called a genericor noncoectilinear
set)is order isomorphic to the plot of a unique permutation; in practice we will simply say
that a point setis order isomorphic to a permutation. SeeFigure 1.1for an example. Steve
Waton's PhD thesis [11§ extends this graphical interpr etation of containment to consider
the setsof permutations that can be drawn by taking points lying on a given geometrical

shape.

This geometric viewpoint indicates several of the symmetries of pattern containment.
Themaps (x;y) 7! ( x;y), (X;y) 7! (x; y)and (x;y) 7! (y;x), when applied to generic
point sets,correspond to “r eversing”, “complementing” and “inverting” permutations re-
spectively. Formally, the reversef a permutation  of length n is the permutation obtained
by reading the sequenceof symbols of in reverseorder, i.e. from right to left. For each
i 2 [n], the ith component of the complemenbf is assignedvalue n + 1 (i), while the
inverseof isdenoted !andisdened by (j) = i,wherej = (i). For example, the

reverseof = 934826715s 517628439its complement is 17628439%nd ! = 852396741

Of thesethreesymmetries, one of the reverseor complement mappings, together with
the inverse mapping generatethe dihedral group with eight elements. It is clear to check,
either graphically or otherwise, that each of these symmetries preservespattern contain-
ment (for example, if and only if ! 1). That these are the only symmetries
is lessimmediate but follows directly from the work on permutation reconstruction by

Smith [111].
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1.3 Relational Structures

The most general objects we will consider are the relational structures, which we now
introduce as a precursor to handling simplicity and the substitution decomposition. For
any setA, a k-ary relationR is a subsetof AX. An ordered sequenceof relations over A is
then called arelationalstructure

Mor e speci cally, de ne a relationallanguage L, to be a set of relationalsymbolsR to-
gether with positive integers ng denoting the arity of the symbols R. A relational structure
A whose relational symbols are those of L is then de ned by its groundsetdom(A) and a

set of subsetsR” dom(A)"r for eachR 2 L. Such a structure will also be called an

an ng-ary relation.

We will be working primarily with relational structureswhose ground setsare nite,
though many of theseprinciples may be applied to in nite relational structures.In partic-
ular, the substitution decomposition is readily extended to include in nite structures, as
shown in [95].

We now briey review how some well-known objects may be viewed as relational

structures.

Permutations. A permutation on n points may be viewed as the relational structure
A with ground setdom(A ) = [n], on alanguage containing two binary linear relations,
L=1f<; ;nc=2;n = 2g. The rst relation, <A | is the normal ordering on [n], while
i A jifandonlyif (i)< (j). Forexample, = 93482671%orrespondsto the relational

structure A on [9] with
1<2<3<4<5<6<7<8<9

and

8 5 2 3 9 6 7 4 L
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Graphs. A graph G is arelational structure Ag on the language L = fE;ng = 2g, where
E is a binary symmetric relation, dom(Ag) = V(G), and EAc(x;y) if and only if x vy
in G. The analogue to containment in graphs is the notion of the inducedsubgrapht an
induced subgraph of G is a graph formed on any subsetof vertices from G, with x  yin

the subgraph if and only if x yin G.

Tournaments. A tournamentis a complete oriented graph. A tournament T therefore
corresponds to the relational structure At on the languageL = fl ;n, = 2g, but where
I is now atrichotomous binary relation, i.e. for eachx;y 2 dom(At) = V(T), precisely
oneof x = y,x! AT yory! AT xistrue. The name “tournament” derives from its use
to denote a competition where every pair of players x; y must meet eachother in a match,
the outcome being either that x wins, denoted y ! x, or that x loses, denoted x ! .
The containment order on tournaments is not surprisingly the sameasgraphs; an induced
subtournamenbf a tournament T is a tournament formed on any subset of vertices of T

with x ! yin the subtournament if and only if x ! yinT.

Posets. By de nition, aposetis arelational structure on the language containing a single
binary relation, <, which isre exive, antisymmetric and transitive. The comparabilitygraph
G(P; <) of aposet (P; <) is agraph with vertex setP, and edgep qif and only if either
p < gor g< p. Conversely, if G is acomparability graph for some poset (P; <), then the
order < is called a transitive orientationof (the edgesof) G. This connection between posets

and graphs arisesin anumber of combinatorial problems —seeM o6hring [93] for a survey.

1.4 Intervals and Simplicity

Before we can discuss the substitution decomposition, we must rst de ne how we can
nd “factors” of a given relational structure, and hence de ne the elemental relational

structur es—those structureswith no nontrivial factors.

1This is sometimes called the “vertex induced subgraph”, to distinguish from edge induced subgraphs.
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Following Foldes [54], we saythat asetX  dom(A) is an interval if for every R 2 L

Informally , aninterval correspondsto asubsetX of the ground setdom(A) for which every
pair of elements of X have exactly the same relations with the elements of dom(A) n X.
Accordingly, every singleton setfxg dom(A) is an interval, asis all of dom(A). Every
other interval is said to be a properinterval, and a structure is simpleif it has no proper
intervals.

Simplicity has,to some extent, beenstudied for relational structuresin general, for ex-
ample, by Foldes [54] and Schmerland Trotter [107]. Much greaterattention has, however,

beendiverted to particular structures,the most pertinent of which we will now review.

Permutations. In the permutation case,anintervalof correspondsto asetof contiguous
indices I = [a;b] such that the set of values (I) = f (i) : i 2 Igis also contiguous.
Intervals are clearly identied in the plot of a permutation as a set of points enclosedin
an axis-parallel rectangle,with no points lying in the regions above, below, to the left or to
the right (seeFigure 1.2for an example). Intervals of permutations are interesting in their
own right and have applications to biomathematics, particularly to genetic algorithms for
sequencing problems, and modelling the genomesof prokaryotes as permutations allows
the matching of gene sequences? SeeCorteel, Louchard, and Pemantle [37] for extensive
references.

It then follows that a simplepermutation is one whose only intervals are of length 0, 1
and n. Figure 1.3shows threesimple permutations of length 12. Note that the eight order-
isomorphism preserving symmetries also preserve intervals, and hence simplicity. The
number of simple permutations of length n = 1;2;:::is 1;2;0; 2; 6; 46; 338 2926 28146; : : :
(sequenceAl111110f [110Q), the rst few being 1, 12, 21, 2413and 3142 We will look at

the asymptotics of this sequencein Subsection1.4.2

2In these contexts, the term “common interval” is used, indicating a segment upon which two or more
permutations agree;we will encounter this de nition again in Chapter 4.
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Figurel1.2: An interval in a permutation.

Figure 1.3: The plots of threesimple permutations of length 12.

Graphs. An interval in a graph? is a set of vertices X V(G) suchthat N(v) n X =
N (w) nX for all v;w 2 X, where N (v) denotesthe neighbourhood of vin G. A graph onn
vertices therefore hasseveraltrivial intervals (;, V (G), and the singletons); agraph with no
nontrivial intervals is then often called primeor indecomposablghe word simple meaning
something completely different in this context). These graphs have been the subject of
considerable study, seefor example Ehrenfeucht, Harju, and Rozenberg [47], llle [71], and
Sabidussi [105. A survey of indecomposability and the substitution decomposition in

graphs can be found in Brandstadt, Le, and Spinrad [27].

Tournaments. An interval in atournament T isasetA  V(T) suchthat for all v 2 A,
eitherv! Aorv A. Clearly the empty set, all singletons, and the entire vertex setare
all intervals of T, and T is said to be simple if it has no others. Crvenkovi ¢, Dolinka, and

Markovi € [40] survey the algebraic and combinatorial results concerning simple tourna-

3Theseare also called autonomous sets, blocks, bound sets, clans, closed sets, clumps, committees, con-
gruences,convex sets,externally related sets,factors, modules, parties solidair es,partive sets,stable sets,and
strong intervals.
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ments.

Posets. An interval of aposet(P;<) correspondsto asetA P which for everyp 2 PnA
satis es oneof p< A, p> A or pisincomparable to every point of A. Intervals in a poset
correspond to “convex” intervals in its related comparability graph. A subsetofB P is
called (P; <)-convexif the setfr 2 P : thereexistp;q2 B suchthat p< r < ggis asubset

of B. The following lemma is then easily deduced:

Lemma 1.1 (Buerand Mohring [32]). Givenaposel(P; <), thesetofintervalsof (P; <) isequal

to the setof (P; <)-convexintervalsof G(P; <).

1.4.1 Interacting Intervals

In the general context of relational structures,intervals interact with eachother in a pleas-
ing way. Two intervals are said to overlapif neither interval is contained in the other and

their intersection is nontrivial.

Proposition 1.2. Foranytwo overlappingntervalsl andJ oftheL -structure A,
(@) 1\ Jisaninterval of A (Foldeq54, Propositionl]),
(b) I [ J isaninterval of A (Foldeq 54, Proposition2]), and
(c) I nJ isaninterval of A.

Proof. We will prove only Case(c) in the casewhere L consistssolely of ak-ary relation R

(k  2);theresult for agenerallanguage L follows immediately. If | and J are overlapping

Sincel is aninterval and x1;y 2 |, we are nished if, for somei 2 [2;K], X; lies in

dom(A)nl, sosupposethat every x; 2 I \ J. Sincel and J overlap, there existsat leastone



12 1 PRELIMINARIES

Figure1.4: Two intervals and their intersection.

For two setsX and Y, let X4 Y denote the symmetricdifferenceof X and Y, namely
(X[ Y)n(X\ Y).Providing arelational structure A is de ned by alanguage consisting
only of binary symmetric relations and relations with arity at least 3, then the symmetric

differenceof two intersecting intervals is also an interval.

Proposition 1.3 (Mohring and Radermacher [95, Theorem 4.1.1]) LetA bean L -structure
forwhichng  2foreveryR 2 L. Thenif | andJ are overlappingintervals,|4 J is alsoan

interval if everybinaryrelationR 2 L is symmetric.

In the permutation case, Proposition 1.3 clearly does not apply. However, Proposi-

tion 1.2is easily seenby considering the graphical representation,asin Figure 1.4

1.4.2 Asymptotics

The asymptotic enumeration of simple structures has been studied variously for permu-
tations, tournaments, graphs, and indeed in a more general setting. We will presently
review the problem for permutations and graphs, with aview to showing that although
both thesestructuresfall within the category of relational structures,the solutions are sig-
ni cantly different (although the approach is essentially identical). One the one hand, the
dominant term in the asymptotic enumeration of simple permutations is n!=€? (a fraction
1=¢ of the total number of permutations of length n), while on the other hand almost all
graphs are indecomposable.

This differenceindicates the caveatthat must be added when attempting to study rela-

tional structuresin their full generality: that certain resultsdo hold for every structure (e.g.
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the substitution decomposition), but many other results are only true in certain cases.We
will encounter further differencesaswe progressthrough this study of simplicity — rst
in the dif culties of adapting the permutation-speci ¢ simple decomposition to the graph
casein Chapter 2, and then again in the widely varying bounds on simple extensionsin

Chapter 3.

Graphs. Let us begin with the graph case,which turns out to be fairly straightforwar d.

Let the random variable X i denote the number of intervals of size k in arandom graph G
n k

(%)
of then kvertices outside the interval must look at every vertex inside the interval in the

on n vertices. The probability that a given setof k verticesis aninterval is , Sinceeach

sameway. As thereare || ways of choosing the setof k vertices, we have

rI: on k
2(3)

Thus the probability that G is decomposable may be bounded above by the sum of the

E[Xk] =

expected number of proper intervals, i.e. it is bounded by E[X, + X3 + + Xn 1]- By
linearity of expectation, this yields

n X1n
i k.
2G) .,

Pr(G is decomposable)

Observing that the sum is the binomial expansion of (1 + %)” lessthe rst two and nal

terms, we obtain

2" n 1
@) g 1 n ! Qasn! 1;
2\2

Pr(G is decomposable =
( p ) > o
and hencealmost all graphs are indecomposable. Mdhring [91] shows this is also true for
several other cases,ncluding tournaments, posetsand structuresde ned on single asym-

metric relations. For the tournament version, seealso Erdos, Fried, Hajnal and Milner [51].

Permutations. Proceedingaswe did with graphs, let the random variable X i denote the
number of intervals of sizek in arandom permutation  of length n. An interval of length

k may be viewed asa mapping from a contiguous set of positions to a contiguous set of
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values. The setof positions must begin at one of the rst n

k+ 1positions of ,and atthe

sametime the lowest point in the setof values must be one of the lowest n  k+ 1values of

. Of the |

setsof values to which the contiguous setof positions may be mapped, only

one maps to the chosencontiguous setof values. Thus we have

EX«] =

(n k+1)2=(n k+ 1)(n k+ 1)k!

n
k

n!

Alr eady we can see some dif culties may arise; whereasin the graph caseit was clear

that the denominator (being an exponential in n?) would always dominate the numerator,

here we seethat this will not always hold. In particular, E[X ] =

M! 2asn !

1, implying in fact that, asymptotically, we expectto nd two intervals of size two in a

random permutation. Seekingthe asymptotics of the other terms in

thecasesk = 3, k=4,k=n

E[X3]

E[X4]

E[Xn 2]

E[Xn 1]

The remaining terms form a partial sum, which converges providing

plifying this equation gives 2k?

two roots. The smaller of thesesatises 0 < k

2 (assuming n

K 1
E[X k], we consider
k=2
4)andk = n 1separately:
6h 2) 6, 0
nin 1) n°’
4i(n  3) 24 0
nn 1)(n 2) n2°
3 3! 24 0
n(in 1) n2°
ﬂ! 0:
n
E[Xk+1] ,
< 1. Sim-
E[X«]

(3n+ 1)k+ n?+ n+ 1> 0, aquadratic in k, which yields

n, the larger k* > n. Thus for k k

E[X] is decreasing, while for k < k < n, E[X\] is increasing, and hence E[X]  24=n?
ford k n 2 Thus
X 2 24 24
E — =1 O
Xd (85 10
k=4
K 1
Subsequently, the only term of E[X ] which is non-zero in the limit n! 1 isk = 2
k=2

Ignoring larger intervals, occurrencesof intervals of size 2in arandom permutation

can

roughly be regarded as independent events, and as we know the expectation of X, is 2,
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the occurrence of any speci c interval is relatively rare. Heuristically , this suggeststhat
X is asymptotically Poissondistributed with parameter 2. Using this heuristic, we have
Pr(X, = 0)! e 2asn! 1 ,and sothere are approximately 2—2' simple permutations of
length n.

A formal argument for this is implicitly given in Uno and Yagiura [116], and was made
explicit by Corteel, Louchard, and Pemantle [37]. The method, however, essentially dates
back to the 1940swith Kaplansky [74] and Wolfowitz [121], who considered “r uns” within

permutations — a run is a set of points with contiguous positions whose values arei; i +

A non-probabilistic approach (but one still relying on the work of Kaplansky) produc-
ing more preciseasymptotics is given by Albert, Atkinson, and Klazar [3]. They obtain
the following theorem, and note that higher order terms are obtainable given suf cient

computation:

Theorem 1.4 (Albert, Atkinson and Klazar [3]). Thenumberof simplepermutationsoflength

n is asymptoticallygivenby

1 2y i+O(n 3)

n!
e n n(n 1)

1.5 Inations and the Substitution Decomposition

With the notion of simplicity established, we may now describe how all relational struc-
tures can be decomposed and written in terms of these simple objects. This is easierto
establish by rst de ning the reverse process. Given an L-structure S, an in ation of S
by the L-structures Ag for eachs 2 dom(S) — denoted S[As : s 2 dom(S)] — is the L-
structur e obtained by replacing eachelement s of dom(S) with a setof elementsdom(A )

that form an interval in the L-structure A = S[As:s2 dom(S)],i.e.for everyR 2 L:

“Atkinson and Stitt [12] called permutations containing no runs stronglyirr educible Note that this is equiv-
alent to a permutation containing no intervals of size two.



16 1 PRELIMINARIES

A de ation (or decompositiorof an L -structure A is the reverse.Wewrite A = S[Ag:s52
dom(S)] to mean any de ation of A by disjoint intervals As. We are primarily interested
in the casewhere S is simple —the following theorem gives the uniqueness of such an S,

which will be called the skeleton

Theorem 1.5(The Substitution Decomposition). LetA beanL -structurefor somdanguagd. .
Thenthere existsa uniquesimpleL -structure S suchthat A = S[As : s 2 dom(S)]. Moreover

whenjdom(S)j > 2, everyAs is de neduniquely.

Proof. Let M denote the setof all intervals, exceptdom(A), which are contained in no other
proper intervals.

If two intervals |;J 2 M intersect, then Proposition 1.2(b) shows that | [ J is also
an interval, which, unless| [ J = dom(A), contradicts the de niton of M. If I [ J =
dom(A), then Proposition 1.2(c) shows that J n1 is an interval, so A can be written as
the in ation of a two-element L-structure, all of which are simple. If A = S[Ag,;As,] and
A = T[Ay,;A,] aretwo different two-element decompositions, then we may assumethat
in A we have Ag, \ A, 6 ; and Ag,\ A, 6 ;. Thusrelationsin S between s; and s, must
agreewith the relations in A between elements of the disjoint intervals A, and As,. Since
As;\ Ay, Ag and Ag,\ Ay,  Asg, areintervals, the relations between elementsof Ag,;
and A, correspond to the relations between the elementsof A, \ Ay, and As,\ A¢,, which,
by a similar argument must correspond to the relations between the elements of A, and
At,, and these are none other than the relations between t; and t, of dom(T). Similarly,
relations involving just s; (respectively, s,) correspond to relations involving just ti (t»),
and soS and T are isomorphic.

Otherwise, the setsin M partition dom(A). For eachl 2 M choosea representative
X; 2 1, and de ne the L-structure S on fx;g by Ajty, g = S. Clearly A is the in ation
of S by the structuresAj, for I 2 M. The simplicity of S follows from the observation
that if S contained a proper interval K, then Sx|2K | would be a proper interval of A
contradicting the de nition of M. Furthermore,if A = T[A; : t 2 dom(T)] for any other

simple L-structure T, then eachdom(A;) is an interval of A and so is contained in an
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interval in M . O

The non-unique caseswhich occur when jdom(S)j = 2 may be dealt with in a number
of ways, some of which are speci ¢ to particular types of structure, aswe will seelater. In
the general setting, however, we canstill nd aunique substructure of A that is essentially

from one of threegroups.

Proposition 1.6 (Mohring and Radermacher [95, Theorems 3.4.3,4.1.2and 4.1.3]) If A is
an L -structure whoseskeletorS satis esjdom(S)j = 2, thenthere existsa uniqgue maximalL -
structure T for whichA = T[A; : t 2 dom(T)] and,foreveryR 2 L, RT is linear, completer

empty

Once we have established the substitution decomposition A = S[As : s 2 dom(S)],
we may repeat the processon the substructures A for eachs 2 dom(S). Iterating this
decomposition, we may continue until we are left only with substructures on singleton
ground sets. We may representthis iterated substitution decomposition as a rooted tree
— the substitution decompositiotree Each node corresponds to a substructure of A whose
ground setis aninterval, with the root of the treebeing A and the leavesbeing the singleton
ground sets.For agiven node with corresponding non-singleton structure A © the childr en
of A%are the substructures A2 in the decomposition A°= SYA% : s 2 dom(S)]. If Sis a
unique simple with jdom(S)j 4, label the node corresponding to A°with the symbol P
(short for “pr oper™); if the (binary) relations in the language of S are linear and all other
relations are complete or empty, label the node with the symbol L; if all the relations in the

language of S are complete or empty, label the node D (short for “degenerate”).
1.5.1 The Permutation Case

Restricting our attention to the permutation case,the substitution decomposition is some-
what easierto describe. Given a permutation  of length m and nonempty permutations

1,0, m, theination of by 1;:::; m —denoted [ 1;:::; m]—isthe permutation
obtained by replacing eachentry (i) by an interval that is order isomorphic to ;. For

example, 2413[1 132 321; 12] = 479832154seeFigure 1.5. Conversely, a de ation of is
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any expressionof asanination = [ 1; 2;:::; m], and we will call a skeletorof

Theorem 1.5then specialisesto become:

Proposition 1.7 (Albert and Atkinson [2]). Everypermutationmay bewritten asthein ation
of auniquesimplepermutation.Moreoverif canbewritten as [ 1;:::; m]where issimple

andm 4, thenthe ;sareunique.

The degeneratecasesoccur when a permutation canbewritten asanin ation of either
12 or 21, and we may choosea unique decomposition in these casesin a variety of ways.
The principal decomposition that we will usefor the substitution decomposition, however,
is asdescribed in Proposition 1.6.

The directsum of two permutations and is the ination 12[; ], and is usually
denoted . Similarly, the skewsumis the in ation 21[; ], and is denoted . The
direct sum operation acts as a dichotomy on the set of all permutations — dividing them
into those that are sum decomposablge. they can be represented as a direct sum), and
those that are sum indecomposableSimilarly, the skew sum operation leads to the skew
decomposabjermutations, while those that cannot be representedasa skew sum are skew
indecomposahle

With thesede nitions, if canbewritten asadirectsum (i.e. anin ation of the simple
permutation 12), then we may write = [ 1;:::; m] uniquely where m is maximal,
and each ; is sum indecomposable. Similarly, if is an ination of 21, we may write

= m[ 1;:::; m]whereeach ;isskew indecomposable.

Alternatively , we may prefer to express asthe in ation of 12or 21, in which casewe

will specify which de ation we want; the one that follows will be the decomposition we
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452398167
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45 23 9 8
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67
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Figure1.6: The substitution decomposition treeof = 452398167

mostly use.

Proposition 1.8(Albert and Atkinson [2]). If isanin ation of12, thenthereis auniquesum
indecomposable; suchthat = 12[ ;; 2] for some », whichis itself unique. Thesameholds

with 12 replacedy 21 and“sum” replacedy “skew”.

The substitution decomposition treefor a permutation then follows immediately. For

example, consider the permutation = 452398167 This is decomposed as

452398167 = 2413[341221;1;17]

2413[21[1212] 21[1; 1]; 1; 12[1; 1]]

2413[21[12[11]; 12[1; 1], 2101; 1] 1; 12[1; 1]]

and its substitution decomposition treeis given in Figure 1.6.






CHAPTER 2

DECOMPOSITION

2.1 Background

NCE simple permutations may be used to construct all other permutations via the
Ssubstitution decomposition, it would be useful to know how simple permutations are
themselves constructed. In particular, our aim is to nd smaller “fundamental” simple
permutations of somespeci ed sizewithin agiven simple permutation. Someapproaches
to this question canbe found in Schmerland Trotter [107], in which the following is proved
for all irre exive binary relational structures! Here, however, we will state only the per-

mutation case,for which thereis another proof by Murphy [97].

Theorem 2.1(Schmerland Trotter [107]). Everysimplepermutationoflengthn 2 containsa

simplepermutationoflengthn l1orn 2.

We will prove that long simple permutations must contain two long almost disjoint

simple subsequences.Formally:

Theorem 2.2. Theris afunctionf (k) suchthat everysimplepermutationoflengthat leastf (k)

containstwo simplesubsequencesachoflengthat leastk, sharingat mosttwo entries.

(The proof of Theorem 2.2follows after establishing Theorem 2.14 found on Page34.)

The second“two” in the statement of Theorem 2.2is best possible, asis demonstrated by

A version of this theorem for k-structures— structuresde ned on a single k-ary relation in which every
relation (ai1;:::;ax) hasa; 6 a for somei 6 j —canbefound in Ehrenfeucht and McConnell [48].

21
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Figure2.1: The plots of awedge simple permutation. Note that every simple subsequenceof length
at least4 must contain its rst two entries.

the family of simple permutations of the form
m2m)(m 1)(m+ 1)(m 2)(m+ 2) 1(2m 1),

the permutation in Figure 2.1is of this form. On the other hand, no attempt hasbeenmade
to optimise the function f ; our proof gives anf of order about kK.

This result alone, however, gives no real indication as to the underlying structure
within the simple permutation; rather it is the method by which we arrive at Theorem 2.2
We give a Ramsey-type description of simple permutations in terms of some unavoidable

substructur es,similar to the Erdos-SzekeesTheorem asapplied to arbitrary permutations:

Theorem 2.3 (Erdos and Szekeres[53]). Every permutationof length n containsa monotone

increasingor monotonadeceasingsubsequenad lengthat Ieastp n.

In particular, we will demonstrate how a suf ciently long simple permutation contains,
in the rst instance, a “parallel alternation” of length k, a “wedge alternation” of length k
or a“pin sequence”of length k. By studying the decomposition of pin sequenceswe can
go further to provide a more straightforwar d result, namely every suf ciently long simple
permutation contains either an “alternation” or an “oscillation”.

A major motivation of this study is the enumeration of particular permutation classes.
Although we will delay an in-depth discussion of this until Part Il, it is worth noting that
establishing a method of classifying the simple permutations brings us much closer to

establishing what simple permutations lie in a given class.
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Figure2.2: A pin sequence.

2.2 Pin Sequences

The core of the simple permutation decomposition is in understanding pin sequences.Em-
pirically , they encapsulate precisely what it meansto be simple: in the plot of a simple
permutation, any set of points enclosed by an axis-parallel rectangle must be separated
by at least one point lying outside the box above, below, to the left or to the right, and
formalising the method of nding such a point is the motivation for de ning pins, and
subsequently sequencesof pins.

While the viewpoint above will regard pins in their motivational setting as points
within the plot of a permutation, when we cometo discussing our nal “unavoidable sub-
structures” result, we are going to need to decompose these pin sequences. To do this,
we will shift our viewpoint to building pin sequencesfrom scratch by placing points in a
plane, eachof which will correspondto apin. We will also need to consider subsequences
of agiven pin sequence,for which we will needto intr oduce “pin words”.

Let us begin, however, with a more detailed motivational de nition of pin sequences
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in our original setting. Recallthe graphical representation of a permutation asdescribed in

axes-parallel rectangle containing them.

Choose two points p; and p, in the plot of a permutation . If thesetwo points do
not form an interval then there is at least one point which lies outside rect(p1;p2) and
slicesrect(py; p2) either horizontally or vertically. (This discussion is accompanied by the
sequenceof diagrams shown in Figure 2.2) We call such a point a pin. Choose a pin
and label it p3. Now consider the larger rectangle rect(ps; p2; p3). If this also does not
form aninterval in then we can nd another pin, ps, which slicesrect(ps; p2; p3) either
horizontally or vertically. Again, if rect(p1; p2; p3; p4) is not an interval then we can nd
another pin ps. We refer to a sequenceof pins constructed in this manner asa pin sequence

Formally, a pin sequenceis a sequenceof points pi, p2, ::: in the plot of such that for

eachi 3,

We describe pins as either left, right, up, or down based on their position relative to the
rectanglethat they slice. Thus in the pin sequencefrom Figure 2.2 p3 and py areright pins,
ps and ps are up pins, pg is aleft pin, and pg is adown pin (p; and p, lack dir ection).

A properpin sequences one that satis es two additional conditions:

Maximality condition each pin must be maximal in its direction. For example, if
rect(pe;:::;pi 1) = [a;b]  [c;d] and p; = (X;y) is aright pin, then it is the right-most
of all possible right pins for this rectangle,or, in other words, the region (x; n] [c;d]

is devoid of points.
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Figure2.3: The two casesin the proof of Lemma 2.6.

For example, in the pin sequenceshown in Figure 2.2, the choice of p4 violates the maxi-
mality condition, while the choicesof ps, p7, and pg violate the separation condition. The
ultimate goal of the following successionof lemmas is to show (in Theorem 2.7) that all or
all but one of the pins in a proper pin sequencethemselvesform asimple permutation. We

begin by observing that proper pin sequencestravel by 90 turns only.

Lemma 2.4. In aproperpin sequencepi+1 cannotlie in the sameor oppositedirectionasp; (for
alli  3).

Proof. By the maximality condition, pj+; cannotlie in the samedir ection asp;. It cannot lie

in the opposite dir ection by the separation condition. O
Lemma 2.5. In aproperpin sequencqy; doesot separatanytwo member®ffps;:::;pi 20

Proof. If p; did separaterect(py;:::;pi 2) into two parts then p; 1 would lie on one side of
this divide, violating the separation condition. O

Lemma 2.6. In a properpin sequencep; and pj+1 are separateckitherby p; 1 or by eachof

Proof. Thelemma is vacuously truefori = landi = 2,soletusassumethati 3. Without
loss we may assumethat p; 1 is aright pin and p; is an up pin. By Lemma 2.4, pj+1 must
be either aright pin or aleft pin. The remainder of the proof is evident from Figure 2.3

O
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We are now ready to prove our main result about proper pin sequences.

permutation.

Proof. We are interested in the possible intervals in the subsequencegiven by the pins

if j  4thenseparationgivesp; 12 M, asdesired,while ifj 3, we have already found a
minimal non-singleton interval of pins of the desired form. In the former case,the proof is

completed by iterating this process.Only the caseM = fpj;pmgremains. If3 i m 1

pm does not separatethese points; thus at least one of them must lie in M, a contradiction

which completes the proof of the claim.
isomorphic to a simple permutation and that m 5. Thus, by the claim, at least one of
of pins. The latter two casesgive us a simple of the desired form, so now assume either

fp1;pmgor fp2; Pmgis an interval of pins. (Note that we cannot have both intervals since

ps3 separatesp; from p,.) We assumethe former asthe latter is analogous. Consider the pin
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was fp1; pmg, and hencethe points that p; separated are the same as those separated by
Pm. Thus it remains to eliminate the casesf p2; pmg and fps; pmg. Since p3 separatesp;

from p, and f p1; pmgis an interval, ps also separatesp, from py,, sofp2; pmg cannot form

intervals of pins and is therefore order isomorphic to a simple permutation, completing

the proof. O

As acorollary of this theorem, we seethat Theorem 2.2(in fact, a stronger result) is true

for simple permutations with long pin sequences.

Corollary 2.8. If containsa properpin sequenceflengthat least2k + 2 (with k  4) then

containstwo disjoint simplesubsequencesachoflengthat leastk.

two points p1 8 py in the plot of a simple permutation can be extended to a saturated pin
sequence,aswe are forced to stop extending a pin sequenceonly upon nding aninterval
or when the rectangle contains every point in

It is important to note that two points in a simple permutation need not be extendable
to a proper saturated pin sequence. For example, the permutation in Figure 2.2 does not

have a proper saturated pin sequencebeginning with p; and p,. For this reasonwe work

the right-most point of

Lemma 2.9. For everysimplepermutation and pair of pointsp; andp; (unless trivially, p;1 is

theright-mostpoint of ), thereis a properright-reachingpin sequencbeginningwith p; andp,.
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Figure2.4: A horizontal alternation (left) and its inverse, a vertical alternation (right).

Proof. Clearly we can nd a saturated pin sequenceps;pz;::: in that satis es the maxi-

mality condition. Sincethis pin sequenceis saturated, it includes the right-most point; la-

2.3 Simple Permutations without Long Proper Pin Sequences

It remains only to consider those simple permutations without long proper pin sequences.
Lemma 2.9 shows that in such a permutation, any two points p1;p2 can be extended to
a short proper right-r eaching pin sequence. Our goal in this section is to use several of
these short right-r eaching sequencesto prove that such permutations contain long “alter -
nations”.

We use the term horizontal alternationto refer to a permutation in which every odd
entry lies to the left of every even entry, or the reverse of such a permutation. A vertical
alternationis the group-theoretic inverse of a horizontal alternation. Examples are shown
in Figure 2.4 Every suf ciently long vertical alternation contains either a long parallel

alternationor along wedgealternation(seeFigure 2.5for de nitions):
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Figure2.5: Thetwo permutations on the left are wedge alternations, the two on the right are parallel
alternations.

Proposition 2.10. Every alternation of length at least2k* containseither a parallel or wedge

alternationoflengthat least2k.

Proof. Let be a vertical alternation of length 2n 2k*. By the Erdos-Szekees Theo-

rem 2.3 the sequence (1); (3);:::; (2n 1) contains amonotone subsequenceof length
atleastk?, say (i1); (i2);:::; (ix2). Applying the Erdos-SzekeesTheorem to the subse-
quence (i1+ 1); (i2+ 1);:::; (ix2 + 1) completesthe proof. O

Note that every parallel alternation of length 2k + 2 10 contains two disjoint simple
permutations of length at leastk. Thus Theorem 2.2follows in the casewhere our simple
permutation contains along parallel alternation.

Returning to pin sequencesthe pin sequencesps; p2;::: and th; p;::: aresaid to

be initially-nonoverlappingif rect(ps1; p2) and rect(q; i) are disjoint,

A collection of pin sequencesconverges or is initially-nonoverlapping if they pairwise
converge or are pairwise initially-nonoverlapping. Note that it is always possible to nd
a collection of bn=2c initially-nonoverlapping proper pin sequencesin a permutation  of
length n by taking proper pin sequencesbeginning with the rst and second points, the

thir d and fourth points, and soon, reading left to right.

Lemma 2.11. If 16k initially-nonoverlappingproperpin sequencesf convegeatthesameoint,

then containsanalternationoflengthat least2k.
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Proof. Suppose that 16k initially-nonoverlapping proper pin sequencesconverge at the
point x. Note that x canbethe rst or secondpin for at most one of thesesequencesbecause

they are initially-nonoverlapping. Thus one of the following two possibilities must occur:
at least 8k of the sequenceshave x astheir third pin, or
at least 8k of the sequenceshave x astheir fourth or later pin.

Supposethat at least 8k of the sequenceshave x astheir third pin. This point could be
variously functioning asa left, right, down, or up pin for eachof these 8k sequencesbut
x plays the samerole for at least 2k sequences. Suppose, by symmetry, that x is a right
pin for at least 2k sequences.Sincex is the third pin for these sequences,one of their rst
two pins lies above x while the other lies below and becausethese sequencesare initially-
nonoverlapping, an alternation of length at least2k can be obtained by choosing one point
from eachsequence.

Now supposethat at least8k of the sequenceshave x astheir fourth or later pin. Again
we may assumewithout lossthat x is aright pin for at least 2k of these sequences.Now
consider the immediate predecessorsto x in these sequences. These pins are either up
pins or down pins (by Lemma 2.4). By symmetry we may assumethat for at least k of

these sequencesthe immediate predecessorto x is an up pin. Reading left to right, label

which p( is apin. Note that eachR(") lies completely below x, asotherwise the separation
condition would preventx from following p(") in the corresponding pin sequence.We now
have the situation depicted in Figure 2.6.

It suf ces to show, for eachi, that contains apoint lying horizontally between p) and
p(*1) and below x sincethesepoints, together with the p()'s and x, will give an alternation
of length 2k. However, if there is no such point then p{) and p(i*}) could each function
as up pins for both R® and R(*D  and thus one of these choiceswould contradict the

maximality condition, completing the proof. O
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Figure2.6: The situation that arisesin the proof of Lemma 2.11

Lemma 2.12. Every simplepermutationof lengthat least2(16k*)?¢ containseithera properpin

sequenceflengthat least2k or a parallelor wedgealternationoflengthat least2k.

Proof. Supposethat a simple permutation  of length n contains neither a proper pin se-
guence of length at least 2k nor a parallel or wedge alternation of length at least 2k. In
particular, does not contain a proper right-r eaching pin sequenceof length 2k, and it
follows from Proposition 2.10that hasno alternations of length 2k*.

It follows from our earlier observations that contains a collection of bn=2c initially-
nonoverlapping proper right-r eaching pin sequences.As these sequencesare right-r each-
ing, they all have the same nal (right-most) pin which we denote by p. By Lemma 2.1],

fewer than 16k* of these pin sequencesconverge at p; equivalently, there are fewer than

fewer than 16k* pin sequencesconverge at eachof the p()'s, sothere are fewer than (16k*)?
immediate predecessordo thesepins. Continue this processuntil we reachthe sequences
of length 2k, of which we have assumedthere are none. We have thus counted all bn=2c of

our sequencesand have obtained the bound

bn=2c < 1+ 16k*+ (16k*)2+ (16k*)3+  + (16k*)@k D:
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Figure2.7: The two types of wedge simple permutations, type 1 (left) and type 2 (right).

so, simplifying,
n < 2(16k*)%: O

We are left to deal with simple permutations which do not have long proper pin se-
guenceshbut do have long wedge alternations. We prove that these permutations contain
long wedgesimplepermutations of which there are two types (up to symmetry). Examples

of thesetwo types are shown in Figure 2.7.

Lemma 2.13. If asimplepermutationcontainsa wedgealternationof length 4k ? thenit contains

eithera pin sequenceflengthat least2k or awedgesimplepermutationoflengthat least2k.

Proof. Let be a simple permutation containing a wedge alternation of length at least
4k?. By symmetry we may assumethat this wedge alternation opens to the right (i.e.
it is oriented as <). We call these the wedgepointsof . Label the two left-most wedge

points p; and p; and by Lemma 2.9 extend this into a proper right-r eaching pin sequence

Let R; denote the smallest rectanglein the plot of containing ps, p2, and p; that is not
sliced by a wedge point outside the rectangle. De ne the wedgesum of the pin pi, ws(p;),
to be the number of wedge points in R;. Fori 2 de ne the wedgecontribution of p; by
we(pi) = ws(pi) ws(pi 1) and setwc(p;) = 1. Regarding these quantities we make four

observations:

(W1) the wedge sum of pn, is equal to the total number of wedge points and also to

we(pi),
i=1
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Figure2.8: The threecasesin the proof of Lemma 2.13 the solid points form simple permutations.

(W2) it is not hard to construct examples in which pins have negative wedge contribu-

tions; indeed,
(W3) left pins cannot have positive wedge contributions, and nally ,
(W4) if p; is an up pin, then the right-most wedge point in R; is an upper wedge point.

We now claim that eachp; lies in awedge simple permutation of length at leastwc(p;) +
2. This claim implies the theorem, becauseif no pin lies in awedge simple permutation of

length at least2k then we(p;) 2k 3, soby (W1),

X0
4K? we(pi) m2k  3);
i=1

and thus m 2Kk, giving the long pin sequencedesired.

The claim is easily observed for i = 1 and, by (W3), vacuously true if p; is a left pin.
Thus by symmetry there are only three casesto consider: an up pin followed by a right
pin, aright pin followed by an up pin, and aleft pin followed by an up pin. Thesethree
casesare depicted in Figure 2.8

Let us consider in detail the caseof an up pin followed by aright pin. By (W4), the
left-most wedge point in Rj nR; 1 lies below p;. By separation, p; 1 lies above p;j, which is
itself the right-most point in R;. Therefore the wedge points in Rj nR; ;1 together with p;
and p; 1 constitute atype 1 wedge simple permutation. The other casesfollow by similar

analysis; in the right-up casethe wedge points in R;j nR; 1 together with p; and p; give a
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wedge simple permutation of type 2, while in the left-up caseawedge simple permutation

of type 2 can be formed from the wedge points in Ri nR; 1,p;i 1,and p;. O
We have therefore established the following theorem.

Theorem 2.14. Every simple permutation of length at least2(2568)2¢ containsa properpin
sequenceflength 2k, a parallelalternationof length 2k, or a wedgesimplepermutationof length

2k.

The proof of Theorem 2.2 now follows by analysing each of these casesin turn. A
parallel alternation of length 2k + 2 10 contains two disjoint simple permutations of
length k. A type 1 wedge simple permutation of length 2k contains two type 1 wedge
simple permutations of length k with only one entry in common, and a type 2 wedge
simple permutation of length 2k contains two type 2 wedge simple permutations of length
k which share two entries. Finally, Corollary 2.8 shows that a permutation with a proper

pin sequenceof length 2k + 2 contains two disjoint simple permutations of length k.

2.4 Pin Words

To explain how to expatiate Theorem 2.14into a simpler “unavoidable substructures” re-
sult, we must rst changeour viewpoint sowe canconsider arbitrary proper pin sequences
and their subsets,rather than pin sequenceswithin agiven simple permutation. This treat-
ment will also be of usein Part Il. To this end we extend the pin sequencede nition to

allow usto place points in the plane asthey are required. While the precisecoordinates of

eachpin will befar from unique, we do not encounter any dif culties astwo setsof points

in the plane constructed by the samepin sequencewill be order isomorphic.

The changing viewpoint requiresthat we replace the maximality condition with the
“externality” condition. Formally, a properpin sequences a sequenceof points in the plane

satisfying:
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Note that, aswe are now building proper pin sequencesfrom scratch, the externality and
separation conditions together imply the maximality condition.

Proper pin sequencescan essentially be described naturally by wor ds over a four -letter
alphabet consisting of the directionsfL; R; U;Dg (standing for left, right, up and down).
This does not, of course, precisely de ne how the pin sequencebegins, a detail which we
will deal with shortly.

A subsequenceof a proper pin sequence,viewed in the sameorder asthe original pin
sequence,consists of some points which still satisfy the separation condition and some
that do not. (Note that externality is always satis ed.) The points that do still separate
can be described by one of the letters L, R, U or D as before, since they are still proper
pins. Each point p not satisfying separation arose becauseits immediate predecessorpin
in the proper pin sequencewas not included in the subsequence.By externality, however,
p must lie in one of the four quadrantsasde ned by the axis-parallel rectangle enclosing all
points of the subsequencecoming before p (seeFigure 2.9). We may now representp with
a numeral corresponding to the quadrantin which it lies, and so to encode subsequences
of proper pin sequences,we append to the alphabet fL; R; U; D g the set of four numerals
f1;2; 3;4g, indicating a point is to be placed in the appropriate quadrant.

Before our formal de nition of a pin word, it remains to give an informal description
of how to representthe start of a pin sequence. This may be done in a variety of ways,
but the most effective method for our purposes will beto x the placement of the origin,
and regard it asa pin coming before the rst pin of the original sequence. We can then
representthe rst pin with a numeral denoting its quadrant in relation to the origin, and
thereafter proceedasalready described.

Formally,theword w=w; wy 2f1;2;3;4;L; R;U;Dg isapinwordif it satis es:

(W1) w beginswith anumeral,

(W2) ifw; 12fL; Rgthenw; 2 f1;2;3;4,U;Dg, and
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Figure2.9: The point plies in quadrant 2.
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Figure 2.10: The proper pin sequenceps;:::;pis shown corresponds to the strict pin word w =

SRDRDLULURDLD RD. The lled points correspond to the pin word u = 4RDL21DL, the
permutation corresponding to this word, i.e., the permutation order isomorphic to the lled points,
is 27453618
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(W3) ifw; 12 fU;Dgthenw; 2 f1;2;3;4;L; Rg.

Pin words with precisely one numeral, which we term strict pin words correspond to
proper pin sequencesand it is this correspondencewe formalise rst. Letw = w;  wp
denote a strict pin word and begin by placing a point p; in quadrant w;. Next take p, to
be a pin in the direction w, that separatesp, from the origin, denoted 0. Continue in this

manner, taking pj+1 to be a pin in the direction w;.; that satis es the externality condi-

sequence,and more importantly , p1;:::;pm is aswell; it is the latter pin sequencethat we
say correspondso w. Note that not only is this sequenceunique up to order isomorphism, 2
but also the quadrant that point p; liesin is determined by w (indeed, for i 2, this quad-

rant is determined by w; ; and w;). We say that the permutationcorrespondingo w is the

example. Conversely, we have the following result.

Lemma 2.15. Everyproperpin sequenceorrespondso a strict pin word.

symmetry, let us assumethat p; lies below and to the right of p, and that p3 is a left or
right pin. Hence p3 lies vertically between p; and p», and by the separation condition, p3
is the only such pin. We place po vertically between p; and ps and minimally to the left of
P2, i.e., so that no pin lies horizontally between p, and pg. Clearly p, separatesp; from pg

while p3 separatesp, from f pp; p1g. Mor eover, our placement of pp guaranteesthat no later

pi from fpo;py;:iiipi 10 ]

It remains to construct the permutations that correspond to nonstrict pin words. Let-

tingw = w; W denote suchaword, we begin asbefore. Upon reachingalater numeral,

21t is for this reasonthat we refer to it astheproper pin sequencecorresponding to w.
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w is again the permutation order isomorphic to this setof points. Again, Figure 2.10gives
an example of a nonstrict pin word.

We can now de ne anorder, ,on pin words. Let u and w be two pin words. De ne
a strongnumeral-ledfactorto be a sequenceof contiguous letters beginning with a numeral
and followed by any number of directions (but no numerals) and begin by writing u in
terms of its strong numeral-led factorsasu = u®  ul), Wethen write u  w if w canbe

chopped into a sequenceof factorsw = v@Ow®  viwi)vi+D) sychthat for all i 2 [j]:
(01) if w() beginswith anumeral then w() = u®) and

(02) if wl) beginswith adirection, then v(!) is nonempty, the rst letter of w(') corresponds
(in the manner described above)to a point lying in the quadrant speci ed by the rst

letter of u®), and all other letters (which must be dir ections)in u( and w() agree.

(Itistrivial to checkthat isre exive and antisymmetric; transitivity requiresonly slightly
more effort.) Returning a nal time to Figure 2.1Q the division of uinto strong numeral-led
factorsis (4RDL)(2)(1DL), while w canbewritten (3R)(DRDL)(U)(L)(U)(RDL)(DRD).
We now match factors. Sincews correspondsto ps which lies in quadrant 4, (4RDL) can
embed as (DRDL); becausepsg lies in quadrant 2, the (2) factor in u can embed as (L);
lastly, p1g lies in quadrant 1, so the (1DL) factor in u can embed as (RDL) in w. This
veries thatu w.

This order is not merely atranslation of the pattern-containment order on permutations
(consider the words 11; 13;1L; 1D; 21; 23, 2R; 2U;: ::, which areincomparable under vyet

correspond to the samepermutation), but and are closely related:
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Lemma 2.16. If the pin word w correspondgo the permutation and thenthereis apin
wordu correspondingo with u  w. Converselyif u  w thenthe permutationcorresponding

to u is containedn the permutationcorrespondingo w.

P1;:: P 1;P+1;:::;Pm corresponds to the pin word w;  w 1w9+1 Wy W W,
where W9+1 is the numeral corresponding to the quadrant containing p-+1 . lterating this
observation provesthe rst half of the lemma.

The other dir ection follows similarly . Write u in terms of its strong numeral-led factors
asu = u®  ul) and suppose that the expressionw = v@Dw@®  vOwyi+D) satis es
(O1) and (O2). Now delete every point in the sequenceof points corresponding to w that
comesfrom aletter in av(!) factor. By conditions (O1) and (02) and the remarks in the pre-
vious paragraph, it follows that the resulting sequenceof points correspondsto u. There-
fore the permutation corresponding to u is contained in the permutation corresponding to

W. O

2.5 Unavoidable Substructures in Simple Permutations

With the representation of pin sequencesand their subsetsin terms of pin words estab-
lished, we may derive the promised unavoidable substructuresresult. De ne the increasing

oscillatingsequenct bethe in nite sequence

A plot is shown in Figure 2.11; note that the sequencecan be represented,for example, by
the proper pin sequencelRURU

We de ne an increasingoscillationto be any simple permutation that is contained in
the increasing oscillating sequence,deceasingoscillationto be the reverse of an increasing
oscillation, and an oscillationto be any permutation that is either an increasing oscillation

or a decreasingoscillation.
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Figure2.11: A plot of the increasingoscillating sequence.

Theorem 2.17. Everysuf ciently long simplepermutationcontainsan alternationof lengthk or

an oscillationoflengthk.

Proof. By Theorem 2.14 it suf ces to prove that every suf ciently long proper pin sequence

is also a proper pin sequence,where 0 denote the origin.

We say that this sequencecrossesan axis whenever pj.; lies on the other side of the x-

at least 2k crossings, and so crossessome axis at least k times; suppose that this is the y-
axis. Each of thesey-axis crossings lies either in quadrants 1 and 2 or in quadrants 3 and
4. We refer to these as uppercrossingsand lower crossingsrespectively. By the separation
and externality conditions, both pins in an upper crossing lie above all previous crossings,
while both pins in a lower crossing lie below all previous crossings. Thus we can nd
among the pins of thesecrossingsan alternation of length at leastk.

Thereforewe are done if the pin sequencecontains at least2k crossings,so supposethat
it does not, and thus that the pin sequencecan be divided into at most 2k contiguous sets
of pins sothat eachcontiguous setlies in the samequadrant. Eachof thesecontiguous sets
is restricted to two types of pin (e.g.,acontiguous setin quadrant 3 canonly contain down
and left pins) and thus sincethesetwo types of pin must alternate, thesecontiguous setsof

pins must be order isomorphic to an oscillation (e.g.,a contiguous setin quadrant 3 must
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be order isomorphic to an increasing oscillation). Thus we are also done if one of these
contiguous setshaslength at leastk, which it must if the original pin sequencecontains at

leastm 2k pins, proving the theorem. O

2.6 Other Contexts

Although our proof is highly permutation-centric, theseis no reasonwhy analogues of
Theorem 2.2 cannot exist for other types of objects: we will shortly discussthe decompo-
sition problem in the graph case.In the context of general relational structures,however,
any analogue of Theorem 2.2would needto allow for more intersection between the two
simple substructures. For example, let L consist of a 2-ary relation < and a k-ary rela-
tion R. Take A with dom(A) = [2n] where < is interpr eted as the normal linear order on
[2n] and R(1;3;5;:::;2k  3;i) precisely for eveni 2 [2k 2;2n]. This structure is sim-
ple, but all simple substructures (with at leasttwo elements) of A must contain each of
1;3;5;:::;2k 3, and then to prevent theseelementsfrom containing a nontrivial interval,

the simple substructure must also contain 2;4;6;:::;2k 4.

2.6.1 Pin Sequencesin Graphs

Our approach for indecomposable graphs? follows the same principles aswe used in the
caseof permutations. We want to de ne pin sequencesand a setof “exceptional indecom-

posable graphs” (analogousto parallel and wedge simple alternations) in order to prove:

Conjecture 2.18. Every suf ciently long indecomposablgraph containseithera properpin se-
guenceforderk, or oneofa nite numberoffamiliesof exceptionaindecomposabtgaphswith k

vertices.

We begin our discussion with somethoughts on pin sequences.Taking two vertices, p1
and p of an indecomposable graph G, f p1; p2g cannot be an interval and so there must be
avertex p3 which is adjacentto precisely one of p; or p2, corresponding to a pin. Now since

fp1; p2; p3gis not aninterval, we may nd avertex ps adjacentto some but not all of py, p2

Recallthat “simple” graphs are more usually called indecomposablgraphs.
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graph may be extended to form asaturatedpin sequence that is, onein which every vertex

appears. Note that here our de nition differs slightly from the permutation case;there we

, While here we have no graphical representation where such an argument makes sense.
As an immediate consequenceof saturation, however, we may state our equivalent to

“right reaching” pin sequences:

Lemma 2.19. Givenany threedistinct verticesp;, p2 andw in anindecomposabliraphG, there

It remains to de ne proper pin sequencesfor graphs. In the permutation case,we
speci ed two conditions, namely separation and maximality (or externality in some view-
points). Sincemaximality is essentially a feature arising from the pictorial representation
of permutations, nding anequivalent for graphsisthe rst problem that arises. However,

separation is easily converted into the leafcondition for all i 3, p;j is either a

It is worth noting that a similar construction called “r educing pseudopaths” can be
found in the recentwork of Zverovich [122). Delaying the issue of maximality for the time
being, we may proceedto derive results that look very similar to the permutation case.

First, we have an analogue of Theorem 2.7.

graph?

“Note that we still requirem 5 asin the permutation case,aswitnessed by the sequencef p1; p2; p3; pag
with p1  p2, ps aleaf and ps an antileaf, whence f p1; psgis aninterval, but sois f p1; ps; psg.
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We may also strengthen Lemma 2.19in the desired way:

Lemma 2.21. Givenany threedistinct verticesp;, p2 andw in anindecomposabliraphG, there

Both proofs follow in the same (in fact, somewhat easier)way asthe permutation ver-
sions (Theorem 2.7and Lemma 2.9, respectively), noting that maximality may beremoved
without signi cant effect. However we now nd that, without maximality , progressgrinds
to a halt. If an indecomposable graph contains a long proper pin sequence,then we can
produce our sought-after substructure for Conjecture 2.18 On the other hand, if all the
pin sequencesare short, we must explore convergenceof pin sequencesand hencederive
the set of “exceptional indecomposables”, but it is in convergencethat maximality plays
its crucial réle. We now presentthe current most promising de nition of maximality , and
approachesto the question of convergence.

Given an indecomposable graph G on n vertices, we may x a labelling of V(G) by

quickly n-reachingpin sequencd, for all i 3, pj hasthe greatestlabel of all vertices v such

strengthen Lemma 2.19yet further:

Lemma 2.22. In an indecomposablgraph on n verticeslabelledby [n], for any two vertices

we saw in the permutation case,however, convergencealone is not suf cient; we had to
use initially-nonoverlapping pin sequencesto seethat those converging at their third pin
still led to one of the exceptional simples. In the graph case,we may replace “initially-

nonoverlapping” with distinct third pins — i.e. we must nd pin sequencesthat do not

converge until after their third pin. If this can be done, then together with the existing
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KnorK, KporK, KnorK, KporK,

Figure2.12:Forming exceptional indecomposable graphs from converging pin sequences.

maximality de nition we should be ableto rule out the type (iv) graphs we will encounter
shortly in Figure 2.14 in which caseConjecture 2.18 would hopefully follow. Unfortu-
nately, there remains the question of whether or not we can nd suf ciently many pin

sequenceswith distinct third pins:

Question 2.23. In anindecomposablgraphon n vertices,how many properquickly n-reaching

pin sequencewith distinct third pins canbeformed?

The problem that distinct third pins is needed to solve is that convergence does not
immediately lead us to exceptional indecomposables. In the permutation casewe usethe
points in the pin sequencesprior to convergenceto construct an alternation, knowing by
maximality that thesesequencescannot “overlap”. In the graph case,this ceasedo betrue,
and even with our new notion of maximality we cannot rule out edgesbetween vertices
of different pin sequences.Thus either we need to adjust the de nition of maximality, or
intr oduce some further constraints on which pin sequenceswe selectbefore any further

progresscan be made.

The Exceptional Indecomposables. Considering how the “well behaved” pin sequences
converge, we may begin to describe the exceptional indecomposable graphs which contain
only short pin sequences.Suppose a (large) set of pin sequencesconverges at the vertex

X. By symmetry we may assumethat for at least half of these sequencesx is a leaf, so x
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Figure2.13: The four interactions between pin sequences.

is adjacent to the preceding pin of each of these pin sequencesbut to none of the earlier

pins. Selecting these pin sequences,we now consider the set of immediate predecessor
pins, eachof which was either a leaf or an antileaf. We pick, using Ramsey's Theorem, the
largest subsetof these pins which forms a complete or independent subgraph, and which

are all leavesor antileaves.

We now consider the pins occurring immediately before the predecessorpins in our
chosenuniform subset. Again using Ramsey's Theorem, we may nd a uniform subset
of these vertices, and again we restrict our attention to the pin sequencescorresponding
to these vertices. Momentarily ignoring edge interactions between pin sequencesat the
predecessorand pre-predecessorlevels, we now have one of the situations depicted in
Figure2.12

We now consider the possible interactions between each pair of pin sequences,again
with an aim to choosing a uniform subset. Listing these sequencesin some order (in Fig-
ure 2.12we view the order asgoing from top to bottom), there are essentially four dif ferent
interactions between two pin sequencestypes (i) — (iv) asshown in Figure 2.13

A Ramsey-type argument may now be used to obtain a subsetof these pin sequences
whose pairwise interactions are uniform. The resulting graph needsto be either indecom-
posable or nearly so — asin the permutation case,we allow the removal of one or two
points. In some casesthe graph is immediately indecomposable (for example, the “double
star” in Figure 2.14, while in others the removal of one or two points is suf cient (the
“down and to the right” graph in Figure 2.14 the lled nodes form an indecomposable
graph). However, in certain casesno exceptional indecomposable seemsto be obtainable,

and these structures are the ones that need to be ruled out by an appropriate de nition
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Figure 2.14: From left to right, the “double star”, a “down and to the right” graph and atype (iv)
highly decomposable graph.

of maximality (the type (iv) interaction graph in Figure 2.14). Note that, if we have also
taken pin sequenceswith distinct third pins, we could, instead of looking at the penulti-
mate pins before convergence,look at the antepenultimate pins and there perhaps rule out

the existenceof alarge number of type (iv) interactions.



CHAPTER 3

SIMPLE EXTENSIONS

3.1 Introduction

UR AIM in this chapter is to establish how we may embed any given L-structure A
Ointo a simple L-structure B containing asfew extra elements as possible. Formally,
we say that B is a simpleextensiorof A if B is simple, jdom(A)j < jdom(B)j and Bjgom(a) =
A. Our aim then is to minimise jdom(B)ndom(A)j, writing it asafunction of n = jdom(A)j.

This work is partly motivated by the result for tournaments dating backto 1972,when
Erdos, Fried, Hajnal and Milner [51] showed that every tournament may be extended to
a simple tournament requiring at most two extra vertices (we will review this result in
Section 3.4). Clearly, however, it will not be suf cient to consider just the two-point exten-
sions for every relational structure. Nor do we needto look far to nd an example: there
is clearly no two-point simple extension of an arbitrary complete graph K ,. The permuta-
tion caseis different again, while posetsfall somewhere between the two. Thus asking for
a solution for an arbitrary relational structure is somewhat meaningless—aswe will see,
even the well-known binary relational structuresdemonstrate a wide variety of results.

We may, however, follow a general approach by recalling the substitution decompo-
sition (Theorem 1.5 on Page 16) of A, and using induction. When the skeleton S of A
de nes a unique deation A = S[As : s 2 dom(S)] into maximal intervals (i.e. when
jdom(S)j 3), we canembedA into B inductively by embedding eachAs into B in apre-

scribed way. The degenerateand linear casesmust in general be dealt with more carefully,

47
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although induction canstill be used to produce the required result.

3.2 Permutations

We begin our study with the permutation case. Recall that, when viewing permutations
graphically, an interval of a permutation can be seenas a set of points enclosed by an
axis-parallel rectangle with no other points above, below, to the left or to the right. To em-
bed agiven in asimple permutation, therefore, we must ensure that every axis-parallel
rectangle containing at least two points of may be extended by a pin from the simple

extension.

Lemma 3.1. An increasingpermutationof sizen hasa simpleextensionwith d%e additional

points.

Proof. For n = 2 the increasing permutation 12 is embeddable in the simple permutation

2413 sonow supposen 3. Let =12 n.Forn = 2k, we claim the permutation

is simple and contains 12 n. Forn = 2k + 1, we claim

is simple. That both of thesepermutations are simple follows easily by checking Figure 3.1

O

Note alsothat m = d%eis the bestpossible bound. Every adjacentpair i; i + 1 must be
“separated” either horizontally or vertically by one of the additional points, and the points
(1) = 1and (n) = nof must not lie in the “corners” of the simple extension — a total
of n+ 1gapsto be lled. The bound on the number of additional points is then obtained
by observing that eachcan Il at most two gaps (one horizontally , one vertically).

By symmetry, decreasing permutations may be extended in the sameway:
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Figure3.1: Simple permutations containing 12 n, for n = 12 (left) and n = 13 (right).

Lemma 3.2. A deceasingpermutationof sizen hasa simpleextensionwith d%e additional

points.
We are now ready to state the result in the general case.

Theorem 3.3. Every permutation on n symbolshasa simple extensionwith at mostd%e

additionalpoints.

Proof. We proceedby induction onn 2, claiming that for eachpermutation  of length n

we may construct two extensions, M) and (™ satisfying:

Viewed asextensions,both (M) and (™ have anew leftmost point which is neither

anew maximum nor anew minimum, called the entry point.

Both (M) and (M have anew exit point; for (M) this is a new maximum while for
(M) this is a new minimum, and in both casesit is neither a new leftmost point nor

a new rightmost point.

The only minimal non-singleton intervals of M) and (™ contain the new exit

point.

At leastoneof M) and (M js simple.
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In the basecasen = 2, either = 12or = 21 When = 12, (M) = 2413is simple,
and the only minimal non-singleton interval of (™ = 3124is 12, which contains the exit
point. Thecase = 21lisdealt with by symmetry.

Sonow supposen 3. If isanincreasing(respectively, decreasing)permutation, then
Lemma 3.1 (resp., Lemma 3.2) proves the existenceof a simple extension of the required
size. Note further that the simple extension satis es the requirementsto actas M) (resp.,

(M)), using symmetry if required. When is an increasing permutation, we obtain (™

from (M) by changing the new maximum for a new minimum using the mapping
M@y= M)+ 1 modj M

For decreasing permutations, (M) is created similarly .
We may therefore assumethat is neither an increasingnor a decreasing permutation.
Write asthe substitution decomposition, = [ 1; 2;:::; m]wherethe simple skeleton,
,isoflength m 2,and 1; 2;:::; m arepermutations of sizej ;j = p; for eachi. First
suppose m > 2 so that the substitution decomposition is unique. If p; = 1 for all i, then
= isalready simple. We construct (M) and (™ by adding precisely two points. The
rst is a new leftmost point, which may be inserted vertically anywhere exceptasa new
maximum, minimum, or adjacentto (1). The new maximum or minimum is inserted
similarly , preserving simplicity .

Sonow suppose that at least one ; contains at least two points. For every such i,

M)
|

the inductive hypothesis allows us to extend to either or i(m) by adding at most

M) or (M is made according to the location of the

d%e points. Our choice between ; i

next leftmost non-singleton block, j say(i.e.j > i and no k with j > k > i and  non-
(m)

i . In

singleton); if (j) > (i), then we choose M) while if (1) < (i), we choose

|
M) . (m)
|

either case,the exit point of ™’ or is simultaneously used asthe entry point for the

extensionof  to J-(M) or j(m). In this way, we work left-to-right through connecting the
non-singleton blocks ; (seeFigure 3.2). For the rightmost such block , we use ™M) to
form ™) and (™ toform (M the exit point being used asthe new maximum for (™M)

or the new minimum for (M) respectively.
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Figure 3.2: Connecting entry and exit points in the substitution decomposition.

These extensions will fail to be simple if the rightmost non-singleton block ; is also
the maximal or minimal block by value in the cases M) and (™ respectively, and only
then if ﬁM) or ﬁm) was not simple. Since , canonly satisfy at most one of these,we may
turn to the other for our simple extension. By symmetry, therefore, let us suppose that the

rightmost non-singleton block  was not maximal in value.

Letting | be a non-singleton interval of (M) rst consider the casewhere | contains
points from two distinct original (non-extended) blocks ; and ;. In this casethe original
simple skeleton of forcesus to include every such block, and subsequently all the ex-
tended points too. If on the other hand | contains two points in some extended block i(M)
or i(m), then it must contain the exit point of that block and a point of the original ; (else

(M) (m)

i or

did not satisfy the minimal proper interval property). Unless ; was the right-
most non-singleton block, this exit point acts asthe entry point of the extension of some
other block j, which then requiresus to include at leastone other point of this extended
block, and hencea point of the original block j, returning usto the previous case.Finally,
if ; was in fact the rightmost non-singleton block, then it was not the maximal block by
value, and sothe exit point of i(M) forcesus to include the entirety of someother ; block

(note that sucha j canbe asingleton), again reducing to our rst consideration.
In the casewhere m = 2 the substitution decomposition is not unique. Without loss
we may assumethat = 12 and sowe may write = 12[ 1; »], where iand , may be

chosenin anumber of different ways. We begin by choosing 1 to be aslarge aspossible.
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Unless » is now a singleton, we will use this decomposition and proceed by extending

1 to &M) and > to éM) or g"‘), and connecting the exit point of the rst to the entry

point of the second. If , is asingleton and 1 is not sum decomposable,we continue as

above but with the exit point of gM)

placed above ». When 1 is itself decomposable as

1 = 12[ $;1], we look at the decomposition = 12[ 2;12] If again § = 12[ $91], then
we repeat,sothat = 12[ 99123] Repeatthis process,noting that it must terminate before
we reachthe end of , asotherwise isincreasing, and at termination proceedas before.
Simplicity follows in a similar manner to the unique decomposition case.

P _
The number of points added in every one of the above casesis at most |, p'gl

P
(m 1) d%e noting that [, pi = n. O

3.3 Graphs

Recallthat, in a graph G, an interval is a setof vertices X  V(G) suchthat N(v) nX =
N (w) n X for every v;w 2 X, and instead of “simple” we use the word indecomposable
describeagraph containing no proper intervals. We begin by specialising the Substitution

Decomposition Theorem 1.5for the context of graphs:
Proposition 3.4. LetG beany graph. Thenoneofthefollowing holds:

(1) G = H[Jy : v 2 V(H)] wheeH is the simpleskeletorof G, and this decompositions

unique.
(2) G isdisconnectedndcanbewritten possiblynon-uniquelyasG = K ,[J1; J>].
(3) G isdisconnectedindG canbewritten possiblynon-uniquelyasG = K 5[J1; Js].

Our approachnow follows the samepattern asthe permutation case.We rst consider
simple extensionsof the complete graph K ,, which is once more the “worst case”scenario.

This result rst appearedin Sumner's Ph.D. Thesis[115].

Lemma 3.5(Sumner [115 Theorem 2.45]). K, hasasimpleextensiorwith dog,(n + 1)e addi-

tional vertices.



3.3 GRAPHS 53

1) ()

Figure3.3: The two casesof Lemma 3.5.

Proof. We proceed by induction on n. The casen = 1is trivial. Forn = 2, we must
add two new vertices. Regardless of whether the subgraph formed by the new vertices is
connectedor not, there is away to add edgesbetween the new and old vertices to form a
graph isomorphic to P4, the path of length four.

Now supposeG = K, for n > 2. There are two cases(thesediscussions are accompa-

nied by Figure 3.3):

(1) dog,(n + 1)e = dog, ne. Chooseavertex v 2 V(G), and useinduction to add a setof
vertices B with edgesto G v sothat (G v)[ B issimple. The remaining vertex v
canbe assigneda neighbourhood in B different to the neighbourhood of every other
vertex in G v, and sothat N(v)\ B 6 B. Sincev has a different neighbourhood
to every other vertex, it cannot lie in an interval with any other vertices, and so the

graph is simple.

(2) dog,(n + 1)e = dog, ne+ 1. Choosea vertex v 2 V(G), and useinduction to add a
setof vertices B with edgesto G v sothat (G v)[ B issimple. For the remaining

vertex v, we add anew vertex b and connectit to v.

Since(G v)[ B issimple, any proper interval in the extended graph G[ B[ fb gwill
need to involve either v or b (or both). We claim that any interval | in the extended
graph of size 2 containing v alsocontainsb . If | containsavertexx 2 G v, then

b 2 N(x),sob 2 I. The other caseis where | contains a vertex b 2 B, and then



54 3 SIMPLE EXTENSIONS

thereissomex 2 G v not connectedto b, sox 2 |, reducing to the previous case.

Now supposewe haveaninterval I  fx;b gforx 2 (G v)[ B. Sincethe only vertex
in G connectedto b is v, and x is connected to at least one other vertexy 2 G v,
we havey 2 |,and x;y 2 | implies (G v)[ B |.Thevertexv, if not already in I,

must beincluded asN(v)\ B = ;.
U

Note that the above proof does not specify the internal edgesof B, nor edgesbetween
any vertex in B and b , and sowe may use any graph of size dog,(n + 1)ethat we choose.

Furthermor e, by taking the complement, this immediately implies the following:

Lemma 3.6. K, hasasimpleextensiorwith dog,(n + 1)e additionalvertices.

The bound m = dog,(n + 1)eis also the smallest possible, for if we wereto add asetB
of m vertices,with n > 2™ 1, then either two vertices in G have the sameneighbourhood
in G[ B, or one vertex of G is connectedto every other vertex in G[ B, both of which give

an interval.

Theorem 3.7. Every graph G hasa simpleextensionwith at mostm = dog,(jV(G)j + 1)e

additionalvertices.

Proof. We proceedby induction onn = jV(G)j. The basecasesn = 1and n = 2are covered
by Lemmas 3.5and 3.6, so now supposen 3. Write G = H[J, : v 2 V(H)] whereH is
the simple skeleton of G. There are two caseswhen jV(H)j = 2; we will assumewithout
lossin this casethat H = K », i.e. that G is disconnected. Further, we will choosethe Jysso
that at least one of them is connected and has at leasttwo vertices (having establishedthe
result for independent setsin Lemma 3.6).

If H = G then the graph is already simple, but for the induction to work we must
be able to extend to a larger simple graph. This we do by adding a single vertex, noting
that the only intervals that needto be avoided in this caseare either all of the old graph or

intervals of sizetwo involving the new vertex. The new vertex cannot therefore be adjacent
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to all or none of the old vertices, and it must also not have the sameneighbourhood asany
other vertex, but any other set of adjacenciesis permitted (giving 2" 2n 2 possible
one-point simple extensions).

Now assumethat at least one interval J, is non-trivial. Suppose rst that jV(H)] 4
so the substitution decomposition is unique. For eachJ, we may add a setof vertices B,
which are connectedto verticesin J, sothat J, [ By is simple by induction. Fixanx 2 H
for which By is of maximal size (notethat 2 jV(Bx)j m). For every other interval J,,
identify By with any subsetof By, unlessjV (Jy)j = 1, in which casewe setB, = ;. Then

we specify the edgesbetween J, and By n B, such that:

(G1) Every pair of verticesa 2 J, and b 2 B4 n B, disagree on at least one vertex of

Jx[ Jv[ Bxnfa;bg.

First consider the casewhere J, is not a singleton. If there is a vertex in J, that is
adjacentto every other vertex in Jy, then we can satisfy (G1) by adding none of the edges
between J, and By nB,. Otherwise we can satisfy (G1) by adding all of the edgesbetween
Jy and By nB,.

If J, = fagis asingleton, let us supposev 6 x in H by symmetry. Here we achieve
(G1) by connecting a to no vertex of By; if b2 By is connectedto at least one vertex of Jy
then a and bdisagreeon Jy, while if b2 By is connectedto no vertex of J, then, to prevent
Jx [ Bx nfbg from being an interval of Jx [ By, there must be a vertex of By to which bis
adjacentand on which aand bwill disagree.

We claim the resulting graph is simple. Consider aninterval | with atleasttwo vertices

aand b. There are four cases:

a;b2 Jx[ Bx: simplicity implies that Jx[ Bx |. Thenfor any J, suchthat Vv (Jy)j
2, there are at leasttwo vertices of By in the interval, which forcesJ,[ B, |.When
iV(@Jv)j = 1, by (G1) the single vertex is adjacentto some but not all of Jx [ Bx and

somust beincluded in |.

a;,b2 J,[ By, Vv 6 x: by the construction jV(Jy)j 2, and by simplicity J, [ By
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| . There are now two verticesin | from By By, a casewhich has already been

considered.

a2Jyandb2 J,,u6 v: rst, if V(H)] 4then the simplicity of H implies that
V(G) |I,andin particular Jx 1, reducing to the rst caseabove. Thus we have
H = K, and (say) J, connectedwith at leasttwo vertices, by our assumptions at the
beginning of the proof. We then get that a has a neighbour in J, while b does not,

leading to the caseabove.

az2Jy,v6 x,and b2 By nBy: by (G1) there must be at least one more vertex in |,

and thus one of the other casesapplies.
U

Although we know this bound is necessarilytight for complete or independent graphs,
there does remain the question of whether or not we can do any better for an arbitrary
graph G on n vertices, i.e. is there a smaller simple extension? Letting ! (G) denote the size
of the largestclique (complete subgraph) of G, and (G) the size of the largestindependent

setof G, we pose (without further discussion here) the following conjecture:

Conjecture 3.8. EverygraphG hasa simpleextensiorwith at mostdog,(m + 1)e additional

verticeswheem = max[! (G); (G)] isthesizeofthelargestcliqueorindependensetin G.

3.4 Tournaments

Recallthat atournament is a complete oriented graph, and aninterval of atournament T is
asetA V(T)suchthatforallv2A,eitherv! Aorv A.Givenatournament, we may
de ne anabstractalgebra (for aformal de nition of abstractalgebras,seeSubsection5.3.])
with two idempotent binary operations At = hl'; ;7 ,sothatif x! y,thenx_y=y x=
xand x™y=y” x =y.A tournament is simple if and only if its corresponding abstract
algebra is also simple, i.e. the kernel of every homomorphism of an abstract algebra is

either the whole structure or a single element. Simple extensions in tournaments have
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thus received some attention, and in particular it is known that at most two vertices are

required in every case,while one vertex is suf cient in all but a certain family of cases.

Theorem 3.9(Erdos, Fried, Hajnal and Milner [51]). Everytournamenthasa simpleextension

with at most2 additionalvertices.

Proposition 3.10(Erdos, Hajnal and Milner [52]). A tournamentT hasa one-vertexsimple

extensiorunlessjTj = 3 orit hasan oddnumberofverticesandis transitive.

Note that theseresults hold for tournaments of arbitrary cardinality , though they had
previously beenproved for nite tournaments by Moon [96]. We give here a proof of the
nite caseusing the substitution decomposition. Observe that the non-unique decompo-
sitions correspond precisely to transitive tournaments, i.e. tournaments for which x ! vy

andy! zimplies x! z.

Proof. First observe that there are no simple tournaments on 4 vertices, and so a simple
extension of a tournament on 3 vertices requires at least two vertices. There are, up to
isomorphism, only two 3-vertex tournaments, and checking each casein turn shows that
two vertices is suf cient.

Now supposeT is a nite transitive tournament, sowe may label the vertices of T as
1,2;:::sothati ! jif and only if i < j. We add a single vertex x to the tournament
satisfying x ! iifiisodd andi! xifiiseven.UnlessT hasan odd number of vertices,

it is straightforwar d to check that the resulting tournament is simple. In the casewhere

asthey all look at the vertex labelled 2n + 1 in the sameway. If alternatively we added

avertex y satisfyingy ! iifiisevenandi ! vy ifiisodd, then we nd that the set

say, there must exist a label i for which z! iandz! i+ lori! zandi+ 1! z,
and in either casefi; i + 1gis aninterval. Thus T hasno single vertex simple extension. A
2-vertex simple extension is easily formed by, say, adjoining both the vertices x and y, as

in Figure 3.4.
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Figure3.4: A 2-vertex simple extension of a transitive tournament on 7 vertices.

Having covered the transitive and 3-vertex cases,we claim that any other nite tour-
nament T may be extended by a single vertex x to form a simple tournament. The substi-
tution decomposition allows usto write T = S[As : s 2 S], where the skeleton S is either
simple or transitive.

Where S is simple, if every Ag contains just one vertex then T = S. Unless|Tj = 3 (a
casethat hasalready beencovered), the addition of x will preservesimplicity providing it
doesnot have the sameconnections asany existing vertex of T. (Note that if jTj = n, there
are 2" n different ways of choosing x.) Where there is at least one non-singleton block
As, we still attach x to every singleton block as before, ensuring x does not end up with
the sameadjacencyasany of them.

This leaves just the non-singleton blocks, which we attach to x asfollows. Any such
As which is neither transitive of odd degree nor satis es jAsj = 3 may, by induction, be
connectedto x sothat Ag[ fxgis simple. If, however, Ag is transitive and jAgj = 2n + 1,
then, labelling the vertices of Ag with 1;2;:::;2n + 1 asbefore,setx ! iifi is odd and
i I xforieven. This makesthe setfl;2;:::;2n;xg a candidate to be an interval, but
we may checkthat either (1) there is another non-singleton block A g satisfying As ! Ag
or A ! Ag, but x looks at elements of Ag differently, or (2) all the other blocks of the
substitution decomposition are singletons, but sincex is already attachedto all such blocks
preserving simplicity there is a singleton block on which x and Ag disagree. A similar
argument applies to the casewherejAsj = 3. The simplicity of the skeleton S now ensures
this one-point extension is simple.

If the skeleton is transitive then we may take S maximally sothat eachAg is uniquely

de ned. Moreover, at least one such Ag is not a singleton (as T is not transitive), and no
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non-singleton block can be transitive. The vertices of S may be labelled 1;2;::: asbefore,
but let us further identify the unique vertex s of S for which s! s foralls2 Snfs g.

We attach x to every non-singleton block in any way so that:
If A1 isasingleton, thenx! Aj.
If As isasingleton, then Ag ! x.
The vertex x looks at every pair A; and A;j;1 of adjacentsingleton blocks differently.

This leaves the non-singleton blocks, which, by induction, are attached to x so that the
resulting extension of eachsuch block is simple. It is then easily checkedthat the resulting

one-point extension of T is simple. O

3.5 Posets

Posetsagain give a different result, arising from the non-unique casesof the substitution
decomposition —we encounter a “mix” of the results in the non-unique casesof permu-
tations and graphs. For the former, recall that these casescorrespond to the increasing
and decreasing permutations, which (viewing them asrelational structures)occur when
the two linear orders agree — i.e. they correspond to a single linear order. For the latter,
the non-uniqueness comesin the form of complete and independent graphs, arising from
complete or empty edge sets—theseare degenerate cases.Posetscan be decomposed non-
uniquely either through linearity or through degeneracy, and the simple extensionin each
caseis signi cantly different.

We begin with the casewhere a poset (P; <) is a linear order. This caseis essentially
identical to the increasing permutation caseof Lemma 3.1 Indeed, there is a mapping
between permutations and posets: letting  be a permutation on [n], we may form the
poset(P; )whereP = [n],andi j ifandonly if bothi < jand (i) < (j). While poset
intervals do not always correspond to permutation intervals, simple permutations do map

to simple posets:
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N

Figure 3.5: Simple extensions of short linear orders.

Lemma 3.11. A permutationis simpleif andonly if its correspondingposets simple.

Proof. Suppose rst that is asimple permutation, that (P; ) is its corresponding poset
and that A is an interval in the poset. The corresponding set of points A of cannot
form an interval, sothere must exist some point (i; (i)) of notin A which separates
the points in rect(A ) either horizontally or vertically. However, the elementi of the poset
corresponding to (i; (i)) must then disagreeon the elementsof A, a contradiction since A
was an interval.

Conversely, suppose (P; ) is a simple poset corresponding to the permutation , but
that contains some proper interval |. The set of elements|p of P corresponding to |
cannotform aninterval, sothere existssomeelementp 2 P nlp for which pis not related to
every elementof | p in the sameway. However, the point (p; (p)) of (which corresponds

to p 2 P) must then separatesome points of |, a contradiction sincel was aninterval. [

Observe that, although this mapping is not injective, increasing permutations map

uniguely to linear orders, and thus:

Lemma 3.12. A linear order (P; <) on n elementshasa simple extensioncontaining at most

n+1 .
m = > additionalelements.
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Figure3.6: A 3-element simple extension of a 7-element antichain.

Proof. The linear order (P; <) correspondsto an increasing permutation. By Lemma 3.1,
n+1
2
additional points. By Lemma 3.11the corresponding poset is also simple, completing the

an increasing permutation on n points has a simple extension with at most m =

proof. O

SeeFigure 3.5for examples of the rst few casesof this construction. Note that, asin
Lemma 3.1, the casen = 2 must be handled separately, the resulting simple poset corre-
sponding exactly to the permutation 2413

Meanwhile, the degenerate caseis an antichain, i.e. a poset containing no non-trivial
relations. Recalling that every poset has a corresponding comparability graph, we may

proceedin the sameway asthe graph case.

Lemma 3.13. An n-elementantichain hasa simple extensionrequiring at mostdog,(n + 1)e

additionalelements.

Proof. The comparability graph of the poset (P; <) is the independent graph K, which,
by Lemma 3.6, has a simple extension with dog,(n + 1)e additional vertices. Furthermor e,
the edgesbetween these additional vertices are unspeci ed, sowe may chooseany set of
edgesthat is transitively orientable. The extension for the graph was indecomposable, so

by Lemma 1.1 (on Page11l) the corresponding posetwill be simple. O

For example, Figure 3.6 shows a three-elementsimple extension of an antichain with
seven elements, where the additional elementswere taken to be incomparable. By the re-
sult for graphs, it follows that this is the best possible bound. Note also that the linear

caseof Lemma 3.12is not easily solved by considering the corresponding comparability
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graph (equal to K ) since any extension of the graph would need to be transitively ori-
entable. Of course, the bound in Lemma 3.12is also the best possible by its connection to
the permutation case.

Wenow consider simple extensionsof an arbitrary poset. Our approachtakesmuch the
same form asthe permutation case,inductively “connecting” entry and exit points from
the simple extensionsof the intervals in the substitution decomposition.

n+1
2

Theorem 3.14. A poset(P; <) onn elementdhasa simpleextensiorwith at mostm =

additionalelements.

Sketchof proof. We proceed by induction on n, using the substitution decomposition. Our
claim is that we may form three extensions P (M) pMMM) gnd p(MM) of a poset (P; <),

satisfying:

Each of the three extensions hastwo new distinguishedelementsFor P (M) theseare
both new minima, for P(MM) new maxima, and for P(M™) there is one maximum

and one minimum.

The only minimal non-singleton intervals of P (M) pMm) ang p(MM) contain one

of the distinguished elements.

At leastone of P(MM) p(Mm) gnd p(MM) is simple.

The basecaseis n = 2, in which casethe poset is either linear or an antichain. Sim-
ple extensions have already been exhibited in Lemmas 3.12and 3.13 and the extensions
pmm) pMm) and P(MM) are easily formed in eachcase.

Sonow supposen > 2 and, by the Substitution Decomposition Theorem 1.5, our poset
may be expressedasade ation P = S[As : s 2 S]where (S;<) is simple, linear or an
antichain. When S is simple, we proceedin essentially the sameway asthe permutation
case. If every Ag is a singleton, then (P; <) is already simple, but for the purposes of the
induction we can add two elements to form P(™M) and P(MM) in any way we choose,

noting that any minimal non-singleton interval will necessarilyinvolve at leastone of the
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Figure3.7: A 2-element simple extension of an arbitrary simple poset.

distinguished elements. Meanwhile, we may ensure that P(M™) is a simple extension by
adjoining two elementsto any chosenelement of P in the way shown in Figure 3.7.
When at least one A has more than one element, induction may be used on eachsuch
interval to form the threeextensionsA™™) AM™ and AMM) We choosethe appropriate
extension according to the following setof rules. Fix an order on the elements s of S for
which the corresponding block Ag is not a singleton, labelling them as 1;2;:::;k. For

1 i< k,we pick the distinguished elements of the extension of A; asfollows:

One of the distinguished elementsis predetermined (for i > 1) by the extension of
Ai 1. When i = 1, the distinguished element will act as one of the distinguished

elementsin the extension of P, and so must be chosenaccordingly .

If Aj > Aj+1, createadistinguished element that is both a new minimum for A; and

anew maximum for Aj4q .

If Aj < Aj41, createadistinguished element that is both a new maximum for A; and

anew minimum for Aj+1 .

If Aj and A;j,1 are incomparable, create a distinguished element that is either a new

maximum or anew minimum for both A; and A+ .

The nal distinguished element of A forms the other distinguished elementin the exten-
sion of P, and so must be chosenaccordingly. An argument similar to the permutation
caseproves that one of the extensions P (M) p(Mm) or p(MM) i5 simple and of the re-
quir ed size. In the non-unique casespick S maximally sothat S de ates P uniquely, and

proceedasabove. O
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In the way that simple extensionsof posetsseemto lie somewhere between the solution
for permutations and graphs, we may be tempted to posearesult similar to Conjecture 3.8
Certainly the above bound can be improved when the skeleton turns out to be a linear
order or an antichain by connecting morethan two distinguished points together at atime,
asdictated by Lemmas 3.12and 3.13 Precisely howthis impr ovesthe bound, though, is not
clear. Evenwhen the skeleton is not degeneratethere are times when several distinguished
points can be combined, but the rules for this seemdif cult to establish. All we cando at

this stageis to ask the following question:

Question 3.15. How is the sizeof a minimal simpleextensiorof a posetaffectedy the length of

thelargestchainor antichainin theposet?



CHAPTER 4

SUBSTITUTION DECOMPOSITION
ALGORITHMS

UCH OF THE EMPHASIS in the study of the substitution decomposition has been
I\/I placed in its computation in optimal time. Finding an algorithm that is optimal
for an arbitrary relational structure is possibly a worthy goal, though one that is likely
to be dif cult to achieve. For example, aswe will shortly seethe method used to derive
an optimal algorithm to decompose permutations relies very heavily on their graphical
presentation, which really is not extendable to more general structures. Although this
doesn't rule out the discovery of an all-encompassing algorithm, it doesindicate that such

amethod would be overly-complicated and most probably unenlightening.

We thus restrict our attention predominantly to the permutation case,though we will
later discussthe same problem for graphs. The rst algorithm which could compute the
substitution decomposition of a permutation in linear time was given by Uno and Yag-
iura [116. Wewill presentamore recentand straightforwar d algorithm rst published by
Bergeron, Chauve, Montgol er and Rafnot [17], and here rewritten to t our treatment of

permutations better.

In addition to the linear time substitution decomposition, Bergeron etal. [17] provide
an optimal algorithm to compute the “common intervals” of a set of permutations on n
elements, where a commoninterval is a set of (not necessarily contiguous) integers that,

in each permutation , is the image ([i;]) of a contiguous set of positions. Our notion

65
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of interval is recovered from this de nition by considering the common intervals of the
setf ; g, and our treatment here will be restricted just to this variety of interval. Note
that, astherecanbeN = n(n 1)=2intervals in a permutation of length n (consider, for
example, the intervals of anincreasingpermutation), we cannotexpectto nd analgorithm
to compute all of theseintervals in linear O(n) time. Instead, the best-possible algorithm
which we presentworks in O(n + N) time. Despite it not being computable in linear time,
this algorithm is interesting becauseof the importance intervals play in biomathematics,
asmentioned in Chapter 1.

However, in order to compute the substitution decomposition of a permutation, we
do not actually need to compute all the intervals; it is suf cient to compute the “strong
intervals” (de ned in Section 4.3 though essentially they may be viewed asthe intervals
occurring in the substitution decomposition tree),and there canbe at most 2n 1 of these.
Thus we are able to hope for a linear time O(n) algorithm, which is precisely what we

obtain.

4.1 One- and Three-sided Intervals

We begin by considering an alternative way to view intervals; we may think of an interval

of apermutation asa setof points fp1;:::;png which may be enclosedby the rectangle

dir ection (left, right, up or down).

If we weaken this second restriction by allowing pins to extend only in specied di-
rections, we can obtain setsof points that are not intervals but look like intervals on the

sidesout of which pins are forbidden. For example, we may obtain athree-sidedright-open

linear-time algorithm commencesby rst determining particular left-up-down- and right-
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Figure4.1: The shaded region denotesrect(l;,q( ;4)) of = 289576314

up-down-open intervals and using theseto nd the related right- and left-open intervals,
which canthen be used to “generate” the four-sided intervals.

Denote by I,,q( ;i) the largest right-up-down-open interval of for which i is the
smallest (i.e. leftmost) position, i.e. (i; (i)) de nes the left edge of rect(l ;yq( ;i)). For ex-
ample, if = 289576314then | q( ;4) = f(4;5);(5;7);(6;6); (7;3);(9; 4)g (seeFigure 4.1).
Also, denote by I, ( ;i) the largestright-open interval of for which i is the smallest po-
sition. Returning to the previous example, | ( ;4) = f(4;5); (5;7); (6; 6); (7; 3)g. Similarly,
I-wa ( ;i) is the largest left-up-down-open interval, and I-( ;i) the largestleft-open inter-
val of for which i is the greatesposition. Sincethroughout this sectionwe will be dealing
only with asingle permutation , we will write 1,,q( ;i) morebriey asl,u(i), I,( ;i) as
I, (i) and soon.

Our algorithm begins by computing |yq(i) and I-q (i) for eachi. Sincethe values of
the points in eachof I, q(i) and I- 4 (i) form acontiguous set, it is suf cient to compute the
points whose values are maximal and minimal for each. For a setof points P, denote by
maxval(P) the positionof the point in P whose value is maximal, and by minval(P) the posi-
tion of the point whose value is minimal. Thus, our rst stepisto compute minval(l yq(i)),
maxval(l ;4q(i)), minval(l-yq (i)) and maxval(l-yq(i)). The rst of theseis done using Algo-

rithm 4.1, the others may be determined similarly .

Proposition 4.1 (Bergeron etal.[17, Proposition 4]). Let beapermutationoflengthn. Then

Algorithm 4.1 computesninval(l ,yq(i)) foralli 2 [n]in O(n) time.

Proof. Weassumethat 1 hasbeenprecomputed —a processwhich is easily done in O(n)
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Algorithm 4.1 Computing minval(lyq(i))

S astackrecording point values, with topmost element s
oy o

push Oon S

for i from 1to n do
while (i) < 1(s)do

pop sfrom S
end while
minval(lrua( (i) Ys+ 1)
pushion$S
end for

time. At the beginning of the ith iteration of the for loop, the stack S contains, from top
to bottom, a decreasing sequenceof values whose sequenceof corresponding positions as
points in is also decreasing. Among this sequenceof values must be the largest value
j < isuchthat 1(j) < (i), asthe only way j could have been popped is if there
were somejOwith j < j%< iand (9 < 1(j), contradicting the de nition of j.
Furthermor e, minval(l,,q( 2(i))) = (j + 1), and so after popping all the values on top
of j in the stack, the algorithm can return the position of the point whose value isj + 1.
SinceS storesevery value i 2 [n] precisely once, it immediately follows that the algorithm

has complexity O(n). O

The next stepisto nd the three-sidedintervals I,(i) and I-(i) for eachi 2 [n]. Note
rst that the set of positions in eachl, (i) forms a contiguous set with smallest position
equal to i, so for eachi we only needto nd the point in I, (i) whose position is greatest
(i.e. the rightmost point). Similarly, the setof positions in | -(i) also forms acontiguous set,
with maximum equalto (i), sohereit is suf cient to nd the point in I -(i) whose position
is minimal.

Thus, for a setof points P let minpogP) denote the position of the minimum (i.e. left-
most) element, and maxpogP) the position of the maximum (rightmost) element. Given
the four bounds minval(lyq(i)), maxval(l,yq(i)), minval(l-yq(i)) and maxval(l-yq(i)), we

now seek maxpoql,(i)) and minpogl-(i)). The rst of theseis computed using Algo-
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rithm 4.2 while the secondis done similarly .

Proposition 4.2(Bergeron etal.[17, Proposition 3]). Let beapermutationoflengthn. Then,
givenminval(l,yq(i)) andmaxval(l,yq(i)), Algorithm 4.2computesnaxpos(l, (i)) foralli 2 [n]

in O(n) time.

Algorithm 4.2 Computing maxpodl(i))
for i from 1to ndo
I i
end for
(20) 10
for i from nto 1do
while  (minval(l ;yq(i))) (ri+ 1) (maxval(lyq(i))) do
ri Mri+1
end while
maxpog(l,(i)) i
end for

Proof. Note rst that |, (i) consistsprecisely of those points of | 4(i) whose positions form
the longest contiguous sequenceli; maxpogl(i))] for all i 2 [n]. At the beginning of the
ith iteration of the secondfor loop, we have found maxpodl,(i%) = rjofor all i°> i, and
ri is still setto i. At all stages,r; denotesthe position of apoint in I (i), and hencel[i; ri]

[i; maxpog(l,(i))]. We next test whether the point with position immediately following r;
(i,e.ri + Dliesin I,yq(i). If so,thenr; + 1alsoliesin I,(i), asindeed doesall of the right-
open interval 1(ri + 1). Thus we may now replacer; with maxpos(,(ri + 1)) = r,+1 and
consider the new r; + 1 at the start of the while loop. If, on the other hand, rj + 1 2 I, 4(i),
then r; is the rightmost point of I, (i) and we have found maxpos((i)) whence we may
move on to consider the (i 1)th iteration. The complexity follows by observing that the

contents of the while loop must be executedpreciselyn 1times in total. O

289576314our list of bounds looks like:

In the caseof our ongoing example,

i|1 2 3 456 7 8 9
minpogI-(i)) | 1 2 4 5 2
maxpos((i)) |9 7 3 7 6 6

N

7 7 1
7 8 9
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There remains one nal prerequisite before we can show how to nd intervals. For a
permutation  of length n and position i 2 [n], de ne the r-supportof i, denoted supp, ( ;i),
to be the largest position j < i such that I,(i) I+(j). Similarly, de ne the “-support
supp ( ;i), to bethe smallest position j > i suchthat|-( ;i) 1-( ;j). Again we will use
the more brief notation supp, (i) and supp (i) since we are always working with the single
permutation . The r-and "-supports will play acentral role in nding the “strong inter-
vals” of Section4.3 and in Section4.2the r-support will reduce the number of candidate
setswhich we need to inspect in listing all the intervals. Given the bounds minpogl-(i))
and maxpoqg,(i)), we may compute supp, (i) for all i 2 [n] using Algorithm 4.3, which

clearly achievesthis in O(n) time.

Algorithm 4.3 Computing supp, (i)
S astackrecording positions, with topmost element s
push 1on S
supp (1) 1
for i from 2to ndo

while maxpodl,(s)) < i do
pop sfrom S
end while
supp (i) s
pushion$S
end for

The algorithm to nd supp (i) is analogous. For the example = 289576314we obtain:

i|1 23 456 7 8 9
supp() |7 3 6 6 6 9 8 9 9
supp()[1 1 2 2 4 5 4 1 4

There are now two avenuesof exploration, eachof which we will consider in turn. Sec-
tion 4.2 computes all the intervals of a permutation  on [n], which, if there are N such
intervals, we show can be computed in O(n + N) time. Section 4.3 shows how to search
for the “strong intervals” of (the intervals that de ne the substitution decomposition)
showing that it canbe done in O(n) time, and from there compute the substitution decom-

position of



4.2 GENERATING INTERVALS 71

Figure4.2: The intersection of |, (4) and |- (6) forms an interval of = 289576314

4.2 Generating Intervals

We have shown how to compute certain one- and three-sided intervals in linear time; it
remainsto show how thesemay be used to compute the (four-sided) intervals. Essentially,
this is done by intersecting pairs of the three-sidedintervals we computed in the previous

subsection,and showing that what resultsis an interval (seeFigure 4.2).

Proposition 4.3 (Bergeron etal. [17, Proposition 2]). Let bea permutationoflengthn, and
leti < j 2 [n]. Thenthesetof pointswith contiguouspositions]i; j ] isaninterval of if andonly

ifi  minpodql-(j)) andj maxpos((i)).

Proof. Suppose rst that [i; j] is a set of positions whose points in  form an interval P.
SinceP is aninterval, we have both [i; j] [i; maxpos(,(i))] and [i;j] [minpogI-(j));jl,

whence it follows that

i3] [i; maxpos(; ()] \ [minpos(I-(j));]l:

Conversely, suppose that for somei < j 2 [n] we have i minpogl-(j)) and j

maxpos(l (i)). The setof points P with contiguous positions [i; j ] cannot be separatedby a
left pin since(i; (i)) de nes the left edgeof I,(i), and it cannot be separatedby aright pin
since (j; (j)) de nes theright edgeof I-(j). Finally, (j; (j)) 2 I.(i) and (i; (i)) 2 1-(j),
and so, by the de nitions of I (i) and I-(j ), P cannot be separatedby up or down pins and

henceforms afour-sided interval of . O

Proposition 4.3 alone will let us compute the intervals by examining the points with

positions [i; j] for every i;j with 1 i | n. We can reduce the number of thesethat
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need to be inspected, however, by making use of the r-support, a consideration which

yields the sought-after O(n + N) complexity.

Theorem 4.4(Bergeron etal.[17, Theorem 2]). TheN intervalsofapermutation oflengthn

canbecomputedn O(n + N) time.

Proof. For brevity, let us rst set (i) = minpogI-(i)), r(i) = maxpos(,(i)) and s(i) =
supp; (i) for eachi 2 [n]. We must show that the output of Algorithm 4.4is a complete list
of the intervals of . Suppose rst that for somei < j 2 [n], the algorithm hasprinted [i; j].
This was output during the j th iteration of the for loop, and and within a while loop that
ensuresi  “(j). Hence we only needto show thatj r(i), asthen Proposition 4.3tells us
that the points whose setof positions is [i; j Jwill form aninterval. This follows by studying
how i evolved within the jth iteration before it was output; it was initiated by being set
equal to |, and then was successivelyreplaced by s(j) nitely many times (possibly zero).

Thusiisoneofj,s(j),s(s(j));:::;;andj r(i) then follows by considering the chain

o) r(sG)  r(s(s(i))

Conversely, for i j, given the setof positions [i; j] de nes an interval of , Proposi-
tion 4.3implies that we havei  “(j) andj  r(i). Note that if i = j then Algorithm 4.4
is guaranteed to return [i; j ] at the very start of the j th iteration, sowe now assumei < j.
Moreover, sincei (), the algorithm will print [i; j] providing we encounter the posi-
tion i in the j th iteration of the for loop (assuchani will satisfy the while loop). Let i%be
the smallest position suchthati < i® | and [i%]] was printed by the algorithm. By the
minimality of i% we have s(i% i. Now observethat I, (i% 1,(i) asi < i° r(i), and
sor(i% > r(i) would contradict the maximality of I, (i). This implies that s(i% i, and so
s(i9 = i, completing this part of the proof.

Finally, the complexity follows immediately since Algorithms 4.1, 4.2, and 4.3 have
complexity O(n), and the O(n+ N) complexity of Algorithm 4.4follows by noting that the

while loop will operate preciselyN times. O
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Algorithm 4.4Computing the intervals of
for j from nto 1do

r
while i  minpoql-(j)) do

print [i;j]
i supp (i)
end while
end for

4.3 Strong Intervals and the Substitution Decomposition

Although we cannow nd all the intervals of in optimal O(n + N) time, we may prefer
instead to nd an O(n) algorithm that is capable of telling us all that we really need to
know, namely the substitution decomposition of , and hencewhether it is simple. To this
end, de ne astronginterval of a permutation to beaninterval | of for which every other
interval J satis es preciselyoneofJ I,1 JorJ\ | =; (i.e.l doesnot overlap with
any other interval). The strong intervals of are then precisely the intervals arising in the
substitution decomposition, including both the whole of and all the singleton intervals.

Note that a permutation of length n hasatmost 2n 1 strong intervals.

Up to now we have beenworking primarily with the three-sided intervals |-(i) and
I (i) for eachi 2 [n] of a permutation  of length n. We have seenthat they can be used to
nd all theintervals of ,butin order to restrict our attention to the strong intervals, we are
going to want to replaceour three-sidedintervals with four-sided ones. De ne, therefore,
the left-maximuminterval of aposition i 2 [n]to bethe largestinterval of whose rightmost
point hasposition i, and write the leftmost position of this interval asImax( ;i). Similarly,
let rmax( ;i) denote the rightmost position of the largestinterval of whose leftmost point
has position i (the right-maximuminterval). Again we will abbreviate theseto Imax(i) and
rmax(i).

Trivially , we have Imax(i) minpogl-(i)) and rmax(i) maxpogl,(i)), and this sug-
gestsa starting point for nding the left-maximum and right-maximum intervals. How-

ever a direct search through the sets1-(i) and I, (i) cannot necessarily be performed in
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optimal time, so again we rely on the "- and r-supports to reduce our search.

Proposition 4.5 (Bergeron etal. [17, Theorem 3]). For a permutation of lengthn, rmax(i)

canbecomputedn O(n) time.

Proof. Note rst that Algorithm 4.5begins by setting rmax(i) = i for eachi, with the ex-
ception of rmax(1) which is setto n, as expected. Note next that the if statement simply
checksto seewhether [supp, (i); rmax(i)] is a setof positions corresponding to an interval.
If true, then rmax(j) for j = supp, (i) is changed to rmax(i) if it is larger than the existing
rmax(j ). In either case,the setof points with positions [j; rmax(j)] will still correspond to
an interval, sowe need only checkthat the algorithm at some stage encounters the largest
interval of whose leftmost point isj.

Supposefor j 2 [n] that the setof points with positions [j; j 9 correspond to the largest
interval with leftmost point j, and that the algorithm has correctly found rmax(i) for all
i such that supp(i) > j. We may assumej® > j as otherwise it is easyto seethat Al-
gorithm 4.5 correctly outputs rmax(j) = j. By the maximality of j© we have I,(j9 =
fG% (9 gand rmax(j9 = j° sowe are done if supp,(j9 = j. (Note supp,(j9 < j isim-
possible since [j; j 9 corresponds to an interval.) Let us therefore assumethat supp, (j9 =
j%°> j, and note that the rightmost point in I,(j°y has position j°, giving rmax(j%§ = j°
(since I, (j ° cannot be extended by a right pin). If supp,(j° = j then we are done, so
instead suppose supp(j % = j%°% j, and observethat again we must have rmax(j °f = j°
This processcanonly berepeatedalimited number of times beforewe nd somei > j with

supp(i) = j and rmax(i) = j° The complexity of Algorithm 4.5follows immediately . O

The computation for Imax(i) is similar, and for our running example = 289576314
this gives:
i1 2 3 45 6 7 8 9
Imax(i) |1 2 2 4 5 2 7 8 1
rmax(i) |9 6 3 6 6 6 7 8 9

Moving from the left-maximum and right-maximum intervals to the strong intervals

is now a fairly straightforwar d process. We begin by listing the leftmost and rightmost
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Algorithm 4.5Computing rmax(i)

rmax(1) n
for i from 2to n do
rmax(i) i
end for
for i from nto 2do
if supp,(i) minpogl,(rmax(i))) and rmax(i) maxpodl,(supp,(i))) then
rmax(supp, (i))  max(rmax(i); rmax(supp, (i)))
end if
end for

positions of the left-maximum and right-maximum intervals, marking right bounds with

abar, i.e. the setfi; i;Imax(i);rmax(i) : i 2 [n]g containing 4n bounds.

right bounds, noting that this can be done in linear time since there are only 2n possible
values that the entries can take, eachbeing either i or i for somei 2 [n]. The sort can be
further simplied by alsonoting that for eachi 2 [n] we are guaranteed to seeboth i and i

at leastonce. For our example ( = 289576314 this list is

We now work from left to right through this list, storing left bounds on a stack asthey
appear, and when we seearight bound r we take the top element s off the stackand return

[s;r] asasetof positions corresponding to a strong interval.

Theorem 4.6 (Bergeron etal. [17, Proposition 8]). Thestrongintervals of a permutation of

lengthn canbecomputedn O(n) time.

Proof. If Algorithm 4.6 outputs an interval of the form [i; rmax(i)], then every interval
whose positions are of the form [Imax(j );j] must have trivial intersection with [i; rmax(i)]
(either [Imax(j);j] [i; rmax(i)] or [Imax(j);j]1\ [i; rmax(i)] is empty). Subsequently,
[i; rmax(i)] must intersecttrivially with every interval of sinceevery interval is contained

within aleft-maximum or aright-maximum interval, and so [i; rmax(i)] is a strong inter-
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Algorithm 4.6 Computing the strong intervals of

S astackrecording positions, with topmost element s
for i from 1to 4n do
if a is aleft bound then

push @ on S
else
print [s;a;]
pop sfrom S
end if
end for

val. A similar argument can be applied if the algorithm outputs an interval of the form

[imax(j);j]-

Now suppose the algorithm outputs the set of contiguous positions [i; j] for which
neither Imax(j) = i nor rmax(i) = j. It follows that [i; j] = [Imax(j);j]\ [i; rmax(i)], and so
[i; j] correspondsto a setof points of forming an interval. If [i; j] doesnot correspond to
a strong interval, then there exists a k for which eitheri < k | < rmax(k) or Imax(k) <
ik < j. Inthe former case,every interval [k%rmax(k9] with i < rmax(k®  k must
satisfy k%  k, and so the algorithm would only permit the output of j asa right bound
when paired with left bounds at least as big as k, a contradiction, proving that [i; j] was

strong.

Conversely, let [i; j] correspond to a set of positions forming a strong interval of
so there are no intervals of whose positions have non-trivial intersection with [i;j]. To
ensure the algorithm outputs [i; j], we must nd aleft bound i and aright bound j in the
ordered list of 4n bounds between which every left bound is matched by a right bound.

Let x denote the number of positions k for which Imax(k) = i and k < j, and y the number

arey x more left bounds than right between the last occurrence of the left bound i and
the rst occurrenceof the right bound j. There are, however, at leastx + 1 left bounds i

and y + 1right bounds | in this list, and so Algorithm 4.6will output [i; j]. O
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289576314

P AN

2 89576 3 1 4

Figure4.3: The substitution decomposition treeof = 289576314

For = 289576314after removing duplicates the output is
[1;1];[2; 2 [3; 3 [2; 3]; [4; 41; [5; 5]; [6; 6]; [5; 6]; [4; 6]; [2; 6]; [7; 71; [8; 8]; [9; 9; [1; 9I:

We obtain the substitution decompaosition tree by reading from right to left through
our list of positions of strong intervals asoutput by Algorithm 4.6, noting that the strong
intervals have been ordered as they would be output by a depth rst search algorithm,
working from right to left. Figure 4.3 shows the tree obtained for = 289576314 Note
that, by the de nition of the strong intervals, in the caseswhere our permutation is sum
or skew decomposable,eachsum or skew component will occupy a separatenode. Where

is not sum or skew decomposable,the simple skeleton of is easily obtained by taking
the permutation order isomorphic to any chosensetof node representativesfrom the rst

level of the tree.

4.4 Graph Substitution Decomposition

The substitution decomposition has probably beenstudied most intensively in the context
of graphs. It should come therefore asno great surprise that much time has beendevoted
to nding efcient algorithms to compute the substitution decomposition. Sincel1972algo-
rithms that can compute the substitution decomposition treefor a graph with avariety of
complexities ranging from O(jVj#) [73] to O(jVj + jEjlogjVj) [38] have beenfound, while
linear O(jVj + JEj) complexity algorithms were found in 1994 by McConnell and Spin-

rad [88] and Cournier and Habib [39]. The former of these was later presentedin more
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detail in [90]. A simpler divide-and-conquer algorithm was given by Dahlhaus, Gustedt
and McConnell [41].

A related problem, and one that often appears alongside the substitution decomposi-
tion, is the transitive orientation of comparability graphs. The rst O(jV]j + JE]) algorithm
appears in McConnell and Spinrad [89], with a second algorithm by the same authors
given in [90]. Armed with linear-time substitution decomposition and transitive orienta-
tion, one cansolve many combinatorial problemsin linear time. For example, the recogni-
tion of permutation graphs and two-dimensional posets(posetswhich are the intersection
of two linear orders), and nding the maximum clique or minimum vertex colouring in

comparability graphs. For further examplessee[90].
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CHAPTER 5

CONTAINMENT ASA PARTIAL ORDER

SMENTIONED in Chapter 1, the pattern containment order is easily shown to be re-
A exive, transitive and antisymmetric, and henceforms a partial order on the set of
all permutations (seeFigure 5.1). Downsets of permutations under this order are called
permutationclasses In other words, if Cis a permutation classand 2 C, then for any
permutation  with we have 2 C. Thesesetshave in the past also been labelled

closectlassesr patternclasses

Permutation classesmay be traced asfar back as MacMahon [78], where Av(321) was
enumerated by means of the study of “lattice permutations”, though the more popular
origin liesin Knuth [76]. It is not, however, until the last fteen yearsthat their study has
becomemore intense, with awide variety of questions being answered pertaining both to
their structure and to their enumeration. Thesetwo varieties of question are not, of course,
independent; greaterknowledge of how permutation classesare constructed canoften lead
quickly to enumerative consequenceswhile the question of enumeration is frequently the
motivation for the study of their structure. The structural work on simple permutations
in Part | ts, to some extent, this mould; while their study was initially motivated by
an enumeration problem, the consequencesof the study extend well beyond the original

qguestion.

81
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1234 1243 1324 1342 1423 1432 2134 4321

BN/
Ay
N/

Figure5.1: The start of the containment partial order.

5.1 De ning Permutation Classes

Permutation classesarise naturally in a variety of settings, ranging from sorting (see,for
example, Bona's survey [21]) to algebraic geometry (see, for example, Lakshmibai and

Sandhya[77]). Typically, a permutation classis de ned in one of the following ways:

Pattern avoidance. A permutation classC can be regarded as a set of permutations
which avoid certain patterns. The setB of minimal permutations not in Cis known
asthe basisof C. Wewrite C= Av(B) to meantheclassC=f j 6 forall 2 Bg.
Basesneed not be nite —seethe examplesin Subsection5.1.2and the discussion on

antichains in Section5.3

Permuting machines. As already mentioned, permutation classesarise naturally as
a result of machines which permute an input stream of symbols. Indeed, the set of
stack-sortable permutations dates back to the major origin of permutation classes,
Knuth [76]. Their study remains an areaof active interestto this day —seethe discus-

sion at the end of Example 5.3

Constructions. New permutation classescan be formed using constructions involv-

ing one or more old classes(e.g.the union of two classes). SeeSubsection 5.1.2for
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extensive examples.

Closures. We may also de ne a classby taking the closure of some set of permuta-
tions, or even a set of functions that are order isomorphic to permutations. For two
linearly ordered setsA and B and a bijection f : A'! B, we de ne the closue of
f to be the permutation classC = Sub(f : A! B) asfollows.! A permutation
of length n lies in Cif there exists a sequencea; < ap < ::: < an of A for which
f(a1);f (a2);:::;f (an) is order isomorphic (under the linear order of B) to . Simi-
larly, we may de ne the closure of a setof bijections ff; : A; ! Bj;i 2 I gsimply by
taking the union,
Sub(f; :A;! Bji21)= [ Sub(f; : Aj ! Bj):
i2l

Waton [11§ intr oduced a geometrical approach to this notion of closure in his PhD
thesis, whereby a permutation classis de ned by the setof permutations which may

be drawn by taking points that lie on a speci ed geometrical shape.

Once we have speci ed our chosenpermutation class,we may wish to know answers
to one or more of awide variety of properties which the classmay or may not possess.In
all but the rst case,our rst problem is likely to beto nd its basis, or at least whether
the basisis nite or not, asthis is arguably the most convenient way to representa class.
We will presentmany properties in the next two sections,but rst, however, let us review
some speci ¢ examples of permutation classes,the ways in which they may arise, and

compute their bases.
5.1.1 Examples

Example 5.1 (Finite Classes) By the Erdos-Szekees Theorem 2.3 aclassCis nite if and
only if its basis B contains both an increasing permutation and a decreasing permuta-
tion. For example, the classC = f1;12 21;132 213,231, 312; 2143; 2413; 3142, 34129 has
basisB = {123 321g.

This is a special caseof “ages” for classesof relational structur es— seethe discussion on atomicity in the
general setting in Section5.5.
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Figure5.2: Sorting 4213with a stack.

Example 5.2(The setof Increasing Permutations). The “smallest” in nite classis the setof
increasing permutations | = f1;12 123 1234 12345;::.9. It can easily be seenthat every
permutation in | avoids the permutation 21, and also that 21is the only basiselement, so

that | = Av(21).

Example 5.3 (The set of Stack-SortablePermutations). A stackis a one-dimensional array
into which symbols may be “pushed”, one on top of the other, with only the topmost
symbol being available to be “popped” at eachstage. A permutation of length n is stack
sortablef it can be sorted into the increasing permutation 12 n by passing it through a
stack, symbol by symbol (see,for example, Figure 5.2).

The set of stack sortable permutations clearly satis es downwar d closure under the
containment order, and soforms a permutation class.We next seekits basis,and rst note
that 231is not stack sortable, since either the 2 must be popped before the 1 is pushed, or
the 3 must be popped before the 2 canbe popped. It is then fairly straightforwar d to show
that every permutation that is not stack-sortable contains a copy of 231, and so Av(231)
representsthe set of stack sortable permutations.

There are many variants to this problem, several of which are discussedin Bona's sur-
vey [21]. For example, we may connecttwo or more stacksin parallel or in series;we may

restrict the depth of the stack by allowing it to contain at most m symbols at any one given
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time. The answers to some of these questions are immediate, while others remain open,
and, indeed, some varieties do not form closed classes.

For example, in the caseof connecting two stacksin seriesthe general caseis shown
by Murphy [97] to be in nitely basedwith shortest basis elements of length 7, though a
description of the complete basisis unknown. Atkinson, Murphy and Ruskuc[10] provide
the complete but in nite basisfor the subclassformed by imposing the condition that the
stacks must be ordeed—that is, from top to bottom the elementsin each stack must form
an increasing sequence. To achieve a nitely based class, we may restrict our attention
to connecting a stack of depth 2 and an in nite stack in series, which has just 20 basis
elementsvariously of lengths 5, 6, 7 and 8[49].

Considerable study has been devoted to the Westi-stack sortablepermutations[119,
formed by adding a greedy algorithm to a sequenceof ordered stacks: take the earliest
available “push” onto a stackin the seriesif it exists, otherwise “pop” anew output sym-
bol. However, the West-t-stack sortable permutations do not, in general, form a permuta-

tion class—for example, 3524 1is West-2-sortable but 3241is not.

Example 5.4 (The Separable Permutations). We de ne the classS of separable permuta-
tions constructively. A permutation is separablé and only if it can be obtained by repeated

application of directand skew sums, starting with the permutation 1. For example,

354621

1324 21
= (132 1) 1 1
= @1 21 1) 1 1

=1 @1 1 1 1 1

(Note the omission of certain brackets,which follows by the associativity of and .)

It is then clear that the set of separable permutations is closed downwar ds under the
containment order. It was shown by Bose, Buss and Lubiw [24] that the class of sepa-
rable permutations is equal to Av (2413 3142) and we may derive this result easily after

considering Proposition 5.28 (seePage 106). Note that 2413and 3142are the two simple
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permutations of length 4, and that subsequently the only simple permutations in this class
are 1, 12 and 21, which is precisely what we expectto seewhen we consider the substitu-
tion decomposition of a separable permutation.

The separable permutations seemto have made their rst appearanceasthe permuta-
tions that can be sorted by pop-stacks in series,seeAvis and Newborn [13]. Shapiro and
Stephens[10§ showed that the separable permutations are thosethat Il up under boot-
strap percolation.? They are essentially the permutation analogue of series-parallel posets
(seeStanley[113 Section3.2]) and complement reducible graphs (seeCorneil, Lerchs,and
Burlingham [36]).

5.1.2 New Classesfrom Old

There is virtually an endless number of ways to de ne new sets of permutations from
old, and only slightly fewer which construct permutation classes. Besidesthe obvious
constructions given by the intersection and union of two classes,we can look at ways
in which permutations themselves may be combined. For example, we may place per-
mutations next to one another (horizontal juxtaposition) or one above the other (vertical
juxtaposition); we may mix two permutations together (merge), or usein ations to place

permutations inside one another (wr eath product).

The Intersection of two Permutation Classes. Given two permutation classesde ned
by their basesC = Av(A) and D = Av(B), consider their intersection C\ D. It is trivial
to seethat C\ D forms a permutation class,and also that its basisis given by the union
A [ B. If, therefore, Cand D are nitely based,then sois C\ D. Little more needsto be

said —Murphy [97] “awaits questions about intersections that are worthy of attention!”

The Union of two Permutation Classes. Given two classesC= Av(A) and D = Av(B),

the union C[ D is again a permutation class. Its basisis also easily determined; a per-

2Bootstrap percolation is a processde ned on n  n 0-1 matrices, in which at each stage of the process
every zero entry in the matrix becomesone if two or more of its neighbours are non-zero, while entries with
value one remain the same. The processterminates when no more entries can be changed. Given ann n
permutation matrix, it will completely Il up with onesif and only if the permutation is separable.
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mutation in the basisof C[ D must contain a copy of some 2 A and 2 B, and by
its minimality it follows that such a basis element can contain no points other than these
(such a permutation is known asa minimal megeof and ). Thus,if Cand D are nitely
based,then sois C[ D.

For example, letting C= 1 = Av(21) and D = Av(12), then

C[ D=11;12,21,123 321;1234;4321;::: q;

and its basis consistsof the minimal mergesof 21and 12, which are 132 213 231and 312

Thus C[ D = Av(132 213 231 312).

Juxtaposition.  Given two permutation classesCand D, their horizontaljuxtaposition de-
noted C D , consistsof all permutations that can be written as a concatenation
where is order isomorphic to a permutation in Cand is order isomorphic to a per-
mutation in D. In other words, the horizontal juxtaposition of Cand D consists of those
permutations whose plot may be divided with avertical line, sothat the points on the left
are order isomorphic to a permutation in Cwhile those on the right are order isomorphic
to apermutation in D.

The question of nite basisis immediately answerable,and may be derived by follow-

ing a similar argument to the one above for the union of two classes.

Proposition 5.5 (Atkinson [7]). LetCandD bepermutationclassesThebasiselementf the

class C D canall bewritten asconcatenations whereeither:

isempty isorderisomorphido abasiselemenbfC, and is orderisomorphido abasis

elemenbfD, or

j j=1, isorderisomorphido abasiselemenpfC and is orderisomorphido abasis

elemenbfD.

(In particular, if two classegare nitely basedhentheir juxtapositionis also nitely based.)
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There is an obvious symmetry to this operation. The vertical juxtapositionof the classes

. C . . .

Cand D is denoted D and consists of those permutations  whose plot may be di-
vided with a horizontal line, so that the points above the line are order isomorphic to a

permutation in Cwhile those below are order isomorphic to a permutation in D.

Merge. A permutation is a melge of the permutations and if consists of two
subsequences,one order isomorphic to , the other to . This may be written =t

Little is known about the basis of the merge Ct D of two classes— there are no counter
examples to contradict the suggestion that Ct D is always nitely basedif Cand D are
nitely based, but neither are there suf cient results to support such a conjecture. The
merge of two permutations corresponds —somewhat roughly —to connecting permuting

machinesin parallel (seeAtkinson and Beals[8]).

Grid Classes. An m n-gridding of a permutation is acollection of m 1 distinct hori-

zontal linesand n 1 vertical lines that divide the plot of into mn cells.® Givenanm n
matrix M of permutation classesthe grid classofM is the classCof all permutations  for

which ism n-griddable, with the points in eachcell of the gridding being order isomor-
phic to a permutation from the classin the corresponding entry of the matrix. Grid classes
may be considered to be a generalisation of the juxtaposition construction, though they
are not merely compositions of juxtapositions. We may, however, ask the same questions.

Pertinently:

Question 5.6. If M is amatrix of permutationclassesll of whichare nitely basedywhenis the

grid classof M nitely based?

Obviously for matrices of dimensions m 1or 1 n, grid classesare equivalent to
vertical and horizontal juxtapositions, respectively, and so the question of basisis known.

In generalit is not nitely based,consider, for example,the 2 2 matrix

M = ; Av(321654)
~ Av(321654) ;

3Most authors switch m and n to consider vertical lines rst. Here,to avoid rede ning the order in which
the dimensions of a matrix are written for this brief review, we go against this convention.
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The basisfor the grid classof M is in nite — seeMurphy [97]. There is more hope if we
restrict M to contain only the monotone classesf1;12,123:::gor f1;21; 321 :::g, but even
here results canonly be proved for afew specic 2 2 matrices. SeeWaton [11§ for further
discussion.

Conversely, we may ask when a given classmay be gridded. Given two permutation
classesC and D, Cis said to be D-griddableif, for some m and n, Cis a grid classof the
m n matrix M all of whose entries are D. Huczynska and Vatter [70] characterise the
D-griddable classeswhere D is taken to consists precisely of the monotone permutations,

while the following more general result appearsin Vatter [117]:

Theorem 5.7 (Vatter [117]). ThepermutationclassC hasa D-gridding if andonly if it doesnot
containarbitrarily long sumsor skewsumsof basiselement®f D, i.e.there existsa constantm so

that C containsneither 1 m hor 1 m forbasiselements ofDD.

Direct and Skew Sums. There are several ways to use direct and skew sums to de ne
new permutation classes.Na'vely, thereis of coursethesetC D = f . 2GC 2Dg,
though this is only a permutation classif we forcethe empty permutation to be a member
of both Cand D.

Of greateruseis the “sum completion” of a classC, a permutation classCis said to be
sumcompleteéf ; 2 Cimplies 2 C, and the sumcompletiorof a classCis the smallest
sum complete class containing C. Similarly, we may de ne skewcompleteand the skew
completiorby replacing the operation with . We may also mix thesetwo operations; a
classCis said to be strongly completaf Cis both sum and skew complete. Accordingly, the
strongcompletiorof a permutation classCis the smallest strongly complete classcontaining
C

We cantell if a classis sum, skew or strongly complete by looking at its basis.

Proposition 5.8. A classCis sum(respectivelyskew strongly) completéf andonly if everybasis

elemenis sum (respectivegkew strongly) indecomposable.
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Proof. If we wereto nd asum decomposable basiselement of the sum complete class
C, then we could write = for some and , both of which necessarilylie in C. But
then, by its sum completion, Ccontains , a contradiction. Conversely, if all the basis
elements of Care sum indecomposable, then if for some and in Cthereis acopy of a
basiselement in , we would have either or , a contradiction.

The casesfor skew complete and strongly complete classesare similar. O

Computing the basisof a sum, skew or strong completion of a classis not straightfor -
ward —in particular, if the classis nitely basedthen the sum, skew and strong completions

need not be nitely based,examples of which we will seein Chapter 8.

The Wreath Product. The wreathproductof two permutation classesC and D is the set
CoD of all permutations which can be expressedasan in ation of a permutation in Cby

permutations in D, i.e. the setof permutations of the form [ 1; 2;:::; p]with 2 Cand

It is easyto check that the wreath product of two permutation classesis again a per-
mutation class. For example, the sum completion of a classC corresponds to the wreath
product | oC, while the strong completion of Cis the wreath product S oCwhere S =
Av (2413 3142)is the classof separable permutations.

The question of nite basis has been answered in only a few cases—if Cand D are
nitely based,when is CoD nitely based? We take up this question in Chapter 8, estab-

lishing a more general nite basisresult for wreath products.

closedclasscontaining X . (This conceptis well-de ned becausethe intersection of wr eath-
closed classesis wr eath-closed,and the setof all permutations is wr eath-closed.)
Letting Si(C) denote the set of simple permutations in the class C, we observe that

Si(C) = Si(W(C)) and indeed W (C) is the largest classwith this property.* For example,

“While this claim may appear intuitively obvious, there are some technical subtleties. Every permutation
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the wr eath closure of Av(132) is the largest classwhose only simple permutations are 1,
12, and 21, which is precisely the classof separablepermutations of Example 5.4

It is quite easyto decide if a permutation classgiven by a nite basisis wr eath-closed:

Proposition 5.9 (Atkinson and Stitt [12]). A permutationclassis wreath-closed and only if

eachofits basiselementss simple.

One may alsowish to compute the basisof W (C). This is routine for classeswith nitely
many simple permutations (seeProposition 5.28, but much lesssoin general. An example
of a nitely based classwhose wreath closure is in nitely basedis Av(4321) —its wreath
closure contains a variant of the increasing oscillating antichain, which we will de ne in
Example 5.14

The natural question is then:

Question 5.10. Givena nite basisB, is it decidablevhetherW (Av (B)) is nitely based?

5.2 Enumeration

Probably the largestactive areain the study of permutation classess enumeration: given a
classC, how many permutations are there of length n, and is this sequencewell-behaved?
Once these questions are answered, we may be interestedin nding out what other com-
binatorial structuresare enumerated by this sequence,and whether bijections can be es-
tablished between them. In the rst instance, this may be done by looking at the Online
Encyclopaedia of Integer Sequenceq110.

For a permutation classC, we denote by G, the setC\ S, i.e. the permutations in Cof
length n, and we referto f (x) = P jChjx" asthe generatingfunction for C. The generating
function f is algebraidf it solves an equation of the form p,(x)f " + p, 1(xX)f" 1+ +

po(x)f © = 0 for polynomials p;. Similarly, a rational generatingfunction is one that may

in Cis an in ation of a member of Si(C) soit follows (e.g.,inductively) that C W (Si(C)). Thus W(C)
W (Si(C)), establishing that Si(C) = Si(W (C)). As wr eath closed classesare uniquely determined by their sets
of simple permutations, W (C) is the largestclasswith this property.

5The analogous question for graphs was raised by Giakoumakis [60] and has received a sizable amount of
attention, seefor example Zverovich [122.
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be written asa rational function, i.e. a function of the form % where p(x) and g(x) are

polynomials in x over the eld of rational numbers.
As atrivial rst example, consider the classl = f1;12,123:::g9. Thereis precisely one
h S

permutation of eachlength, and soits generating function isf (x) = X" = 1+x+x%+
n=0

or, in other words, f = 1 ~ arational function. Note that here our sum beginsatn = 0,
implying that we are including the single permutation of length zero in the class. This
is a convention that may or may not always be used — there are caseswhere including
the empty permutation is convenient (particularly when considering recursive structur es),
while in other caseswe may speci cally not want it. It will be our convention to include
the empty permutation unlessrequired to do otherwise.

Our next example is somewhat more complicated, and the method employed to derive
the enumeration is a classicrecursive technique relying on knowledge of the structure of
a permutation in the speci ed class. This is, of course, precisely where the réle of simple

permutations and the substitution decomposition will becomeinvaluable.

Example 5.11(The Stack Sortable Permutations). As seenin Example 5.3, the set of stack
sortable permutations is precisely the class Av(231). Within this class,the permutations
of lengths 1;2; 3;4;5::: are enumerated by the sequencel; 2;5;14;42;:::, which looks en-

couragingly like the sequenceof Catalan Numbers (sequenceA000108of [11(), with gen-
(2n)!

n!(n+ 1)!"

We prove this fact by considering a permutation 2 Av(231) of length n. Since

eral term

must avoid 231, every point coming before the value n in  must lie below every point
coming after the value n,i.e. = (3 ) for some and ,which alsoof course must
themselves avoid 231 (seeFigure 5.3). Thus and must lie in Av(231), but there are no
other restrictions on and savethat we must of coursehavej j+j j+ 1= n. Note also
that this decomposition into and is unique, and hence can be used to decompose (or

construct) every permutation in Av(231).

In terms of generating functions, if f (x) is the generating function for C = Av(231),
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2 AV(132)

2 Av (132)

Figure5.3: Generic structur e of a 231-avoider.

then we can use the above consideration to derive the recursion
f=xf?+ 1

Note that here we have included the empty permutation, aswe must allow and/or
to be empty. Note further that the empty permutation cannot be decomposed aswe did
above becauseit has no maximum entry, hencethe appearanceof the “+1” term. Solving

this algebraic equation is then straightforwar d, and gives

P
f= %z 1+ X+ 2x%2+ 53+ 14x% + 1o

asrequired.

Central to the enumeration problem is the classi cation of permutation classeswith the
sameenumeration. We say that two permutations and are Wilf equivalenif jAv( )nj =
JAV( )nj for all n, i.e. the classesAv( ) and Av( ) are enumerated by the same gener-
ating function. We may also say that the permutations and belong to the same Wilf
class For example, the permutations 231 and 123 are Wilf equivalent, a fact which may
be proved using several dif ferent bijections — seeRichards [102, Rotem [104], Simion and
Schmidt [109 or West[12( for various approachesto this problem. Sinceenumeration is
then preserved under symmetry, this proves that all the permutations of length 3 belong
to the sameWilf class. The computation of the Wilf classesup to length 7 were completed
in 2001by Stankova and West[112].
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This term has since been extended in the natural way to sets of permutations — the
permutation setsA and B are Wilf-equivalent if jAv(A)nj = jAV(B)nj. While this may
open up an endlessbut for the most part uninter esting variety of problems, there are some

very surprising results. Notably, Bona [18] shows that the class Av(1342) has generating

32
function f = . This is the same as the classof permutations
82+ 2x + 1 (1 8x)332 P

which may be sorted with two ordered stacksin series,whose basisis in nite:

B=1f(22m 1,4,1,6;3;8,5;:::;2m;2m 3)jm = 2;3;4;::.0:

(This problem was previously discussedat the end of Example 5.3)

Another approach to the problem of enumeration is that of asymptotics — how many
permutations of length n are therein a given permutation classasn approachesin nity?
In other words, we want to be able to say something about nIlign iGhj, or, somewhat more

R

usefully, nIli{n jCaj. As a rst step, we have the “Stanley-Wilf conjecture”, namely that

for agiven classCnot containing every permutation, there existsa constant K such that

limsup " jGj = K:
ni1
This result was proved in 2004by Marcus and Tardos [87]. The constantK is known asthe
uppergrowth rate of the permutation class. We may similarly de ne the lowergrowth rate,
liminfni1 R jCaj = K. This naturally begsthe question whether the upper and lower
growth rates coincide, in which caselimpiy R jCaj = K is called the growth rate of C.
It is conjectured that the growth rate always exists, a fact that has been shown in some
cases.Arratia [6] provesthis for sum or skew complete classesamong which are all of the

permutation classesde ned by a single basiselement.

For example, the growth rate of the stack sortable permutations Av(231) is 4, a fact

|
(2n): T and using Stirling's approximation

easily seenby recalling that j Av(231),j = ni(n+ 1)

Pop- D "
e

n!
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5.3 Antichains, Partial Well Order and Atomicity

In any partial order, an antichainis a set of pairwise incomparable elements. Immedi-
ate from its de nition, the basisof any permutation classis an antichain. As previously
mentioned, there are in nitely based permutation classes,and hence there are in nite
antichains. These have been widely studied — seefor example Atkinson, Murphy and
Ruskuc [9] and Murphy and Vatter [9].

An attempt at the classi cation of “fundamental” antichains was given in Murphy's
PhD Thesis[97], though little progresshasbeenmade since. An in nite antichain A is said
to be fundamentalif its closure, Sub(A), contains no in nite antichains, exceptsubsetsof A
itself. Other authors (see,for example, Gustedt [66]) refer to such antichains as minimal,
becausethey are minimal under the following order on in nite antichains: A B if A
is contained in the closure of B. The need for identifying the fundamental antichains will
becomeapparent when we intr oduce partial well order. Meanwhile, we offer the following

conjecture:

Conjecture 5.12. Everymembeiof a fundamentain nite antichaincontainsat mosttwo proper

intervals.

Example 5.13(The Increasing Oscillating Antichain) . Let us consider the antichain based
on the increasing oscillating sequencefrom Section 2.5. The rst few elements of this an-
tichain are 512344127356412639578;:::, with nth term 4126385 2n + 3;2n 1;2n +
1;2n + 2. The sixth term of this sequenceis plotted in Figure 5.4); note the underlying
pin sequenceconstruction and the pair of points at either end of the sequencewhich form
anchorspreventing its involvement in any other member of the antichain.

To prove that this is an antichain, we must show that no member is contained in any
other. This may be done in avariety of ways, but a particularly neat method can be found
in Klazar [75]. The graphofa permutation of length n is the graph G whose vertex set
isV = [n], with i jifandonly if i < j and (i) > (j) or vice versa(j < i and

(1) > (i), i.e.if and only if thereis a descentin betweeni and j. For example, the
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o

Figure5.4: The sixth term of the increasing oscillating antichain.

Figure5.5: Forming the graph of the sixth term of the increasingoscillating antichain.

increasing permutation 12  n correspondsto the independent graph on n vertices, while
the decreasingpermutation n 21 correspondsto the complete graph K ,.

Although we lose uniqueness (for example, G,13 = Gi3p), the pattern containment
order translatesto graph containment under taking induced subgraphs, that is, im-
plies G G . To show that two arbitrary members of the increasing oscillating antichain
are not comparable under pattern containment, therefore, it is suf cient to show that their
corresponding graphs are incomparable in the graph containment partial order. In some
casesthis may not make the containment problem any easier, but here the required result
follows almost immediately.

The graph of the sixth term of the antichain is shown in Figure 5.5. Note that the nth
member of the antichain will thus correspond to a graph consisting of a path of length 2n

1 with apair of leavesattached to eachend. It is then clear that if we were to superimpose
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Figure5.6: A basiselement of the wr eath closure of Av (4321).

the graph of a smaller member of the antichain onto the graph of a larger one, the end
nodes of the smaller must correspond to the end nodes of the larger, leaving a path which
cannot be superimposed onto the longer path without losing an edge. Thus the graphs are

pairwise incomparable, and hencethe permutations are pairwise incomparable.

Finally, we may observethat the antichain is fundamental since every subpermutation

of an element of the antichain is either sum decomposableor lacks at least one anchor.

We may, of course, vary the anchors of the increasing oscillating sequence— and, in-
deed, most other antichains —to produce a complete variety of different antichains. We
will use this fact in Chapter 8 to exhibit several antichains which lie in the basis of par-
ticular classes.Meanwhile, let us return to considering the basis of the wr eath closure of
Av(4321)

Example 5.14(A Variant of the IncreasingOscillating Antichain) . We presenthere the vari-
ant of the increasing oscillating antichain, which, instead of having a pair of points at the
top of the sequenceto form an anchor, has a single point acting, essentially, as a left pin.
The rst two elementsare542163and 74216385and its nth term is (2n+ 3)4216385 (2n+
4)(2n + 1) (seeFigure 5.6). A similar argument to Example 5.13may be used to prove that

it is an antichain.
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5.3.1 Partial Well Order

While every basisforms an antichain, beit nite or in nite, we may also be interestedin
whether a classcontains in nite antichains. A partial order is said to be a partial well or-
derif it contains neither anin nite properly decreasingsequencenor an in nite antichain.
In the caseof permutation classesthis rst condition is always true (by the existenceof a
smallest element), and so a permutation classis partially well ordeedif it contains no in -
nite antichain. For example, Knuth [76] shows that the set of stack sortable permutations,
Av(231)is partially well ordered.

The decidability problem of whether agiven permutation classis partially well ordered

remains open:

Question 5.15. Isit possibleo decidéf apermutationclassgivenby a nite basiss partially well
ordeed?®

Indeed there has been no recent major progresson the general problem. Alongside
a variety of speci c examples, Atkinson, Murphy and Ruskuc [9] showed that Av( ) is
partially well orderedif and only if 2 f1;12 21,132 213;231; 312g.

Showing that a classis not partially well ordered is simply a caseof spotting an an-
tichain inside it. For example, the class Av(321) contains the increasing oscillating an-
tichain presented above. A non-partially well ordered class may contain many in nite

antichains, but among them there must be at leastone fundamental antichain.

Proposition 5.16(Gustedt [66]). Everynon-partiallywell ordeedpermutationclasscontainsan

in nite fundamentakntichain.

Proof. With an eyetoward applying Zorn's lemma, take an in nite  descending chain A1

A2 of in nite antichains and de ne

Al =f : isanelementof all but nitely many A'sg:

5This question is considered in more generality by Cherlin and Latka [34].
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First observe that Al is an antichain, and that Al A’ for all i. We claim that it is
also in nite. Supposeto the contrary that A is nite. Thus Al is a subsetof all but
nitely many of the A's; without losslet us assumethat it is contained in all the A's. Now
choose 1 2 AlnAl. Foreachi 2 becauseA! A’ 1 we may choose ; 2 Al such
that i 1. This gives a descending chain ; 2 :1:, SO becausepermutation
classeshave no in nite strictly descending chains, there is some 1 and integer | such
that ;= 1 foralli I.However, this implies that 1 = 1 2 Al ALl which
requires (becauseA! is an antichain) | = 1, acontradiction to our choice of ;. Thus
Zorn's Lemma shows that the setof in nite antichains in anon-partially well ordered class

hasaminimal elementunder ,asdesired. O

Note that if A is a fundamental antichain then its strict closue f . < 2 Ag,is
partially well ordered.

On the other hand, showing that a classis partially well ordered is a considerably
harder task. The primary tool here is a result of Higman [67], which we now state. We
say that (A; M) is an abstractalgebraf A is a setof elementsand M a set of operations, for
which each 2 M is ak-ary operation, : Ak ! A, for some positive integer k. Denote
the set of k-ary operations by M, and supposethat M is empty for every k > n for some
n. (Note that we will allow O-ary operations.) The abstract algebra (A; M) is said to be
minimal if no subsetB of A allows (B ;M) to be an abstractalgebra.

A partial order A on the set of elements A is a divisibility orderon (A; M) if every

operation 2 My, k= 0;1;:::;n, satis es,
a a bimplies (x;a;y) a (X;byy),
a a (X&),

where x and y are arbitrary sequencescomprising elements of A whose lengths sum to
k 1. Furthermore, given partial orders y, on My, k = 0;1;:::;n, we say that , is

compatiblavith thesepartial ordersif, for ; 2 My,

m, implies (x) a (x)forallx 2 Ak
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Theorem 5.17(Higman [67]). Supposehat (A; M) is a minimal abstractalgebrafor which, for
somen, thesetM of k-ary operationsn M is partially well ordeedfor eachk = 0;1;:::;n and
emptyfork > n. Then(A; M) is partially well ordeedunderany divisibility orderingcompatible

with theordersofMy.

Higman's Theorem is applied to prove that a given permutation classis partially well
ordered by showing how we may “build” the classfrom a smaller (very possibly nite)

set.

Example 5.18. By our de nition in Example 5.4, the classAv (2413 3142) of separableper-
mutations is precisely the strong completion of the classf1g, i.e. the classformed from
the permutation 1 using the binary operations and . Higman's Theorem may now

immediately be applied to show that Av (2413 3142)is partially well ordered.

A permutation class Cis strongly nitely basedf it is nitely basedand every closed
subsetof Cis also nitely based. Recalling that the basis of a classis an antichain, this
de nition immediately returns us to partial well order, and indeed we have a variety of

equivalent conditions. A formal proof is provided by Atkinson, Murphy and Ruskuc [9].
Proposition 5.19. LetCbea permutationclass.Thenthefollowing are equivalent:

(1) Cisstrongly nitely based.

(2) Chasat mostcountablymanyclosedsubsets.

(3) Ccontainsnoin nite antichain.

(4) Thesubclassesf C satisfythedescendinghaincondition.

Partial well order also plays arole in some enumeration attempts. Klazar [75] shows
that the smallest growth rate which admits uncountably many closed permutation classes
lies between 2 and 2:33529; . : . This growth rate is determined by the smallest growth rate

that a non-partially well ordered classcan have — by Proposition 5.19 such a class will

"Higman [67] refersto this asthe “ nite basisproperty.”
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have uncountably many closed subsets, each of which cannot have a growth rate larger
than the parent class. The lower bound arises by showing all classeswith growth rate
under 2 contain only nitely long alternations and oscillations, and these classes— via
Higman — are partially well ordered. The upper bound arises by considering the class
Av(321;4123 3412 23451), and noting that it contains the increasing oscillating antichain
(henceis not partially well ordered). This classhasrational generating function

f(x) = x5+ x4+ x3+ x2+ x
1 x 22 2x83 x* x°

and the growth rate 2:33529.:: arisesasthe reciprocal of the smallest real root of the de-
nominator (in fact, it is the only real root). Klazar mentions that Vatter and Murphy [pri-
vate communication] canimpr ove the upper bound to 2:20556.::. The classwhich satis-
es this is formed by appending the basiselements 134526 134625 314526and 314625to
Av(321;4123 3412 23451), and its growth rate is the dominant root of x3 2x2 1.

Mor e recently, Vatter [117] proved that the bound is precisely 2:20556. : : by computing
the growth ratesof all partially well ordered classesatask relying on Proposition 5.22 He

also makesthe following conjecture:

Conjecture 5.20. Every growth rate of permutationclassess alsothe growth rate of a partially

well ordeedpermutationclass.

5.3.2 Atomicity

Recallin Subsection5.1.2how the union of two nitely basedclassess again nitely based.
It follows (by considering symmetries, if necessary)that the union of two strongly nitely

basedclassesis again strongly nitely based,and subsequently we have the following.

Proposition 5.21(Atkinson, Murphy and Ruskuc [9, Lemma 2.1]). Theunion ofa nite num-
berof nitely basedgartially well ordeedpermutationclassess partially well ordeedand nitely

based.

Conversely, how can we “break up” partially well ordered classesinto a union of

smaller “unbr eakable” classes?This question motivates the study of atomic classes;a per-
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mutation classis atomicif it cannot be expressedas the union of two proper subclasses.
This de nition then allows us to provide a converse,asintr oduced in [9], though here we
presentan alternative proof based on the descending chain condition, rst seenin Mur -

phy's PhD thesis[97].

Proposition 5.22(Atkinson, Murphy and Ruskuc [9, Theorem 2.2]and Murphy [97, Propo-
sition 188]). Every partially well ordeed permutationclasscan bewritten asa nite union of

atomicclasses.

Proof. Consider the binary tree whose root is the partially well ordered class C, whose
leavesare all atomic classes,and in which the childr en of the non-atomic classD are two
proper subclassesD® D% D suchthat D[ D%= D. BecauseCis partially well ordered its
subclassessatisfy the descending chain condition by Proposition 5.19 sothis treecontains

no in nite paths and thus is nite. Its leavesgive the desired atomic classes. O

In some sense,atomic classescan therefore be considered asthe elemental classesfrom
which all others are constructed by taking unions. In practice, however, outwith the com-
fortable realm of partial well order, atomicity does not behave as elegantly as we might
hope —we can, for example, encounter atomic classesthat are the union of in nitely many
pairwise incomparable atomic classes(see Proposition 170 of Murphy [97]), while there
are non-atomic nitely based classeswhich contain in nitely basedmaximal atomic sub-

classes(Proposition 1860f Murphy [97]). In its defence,however:

Proposition 5.23(Murphy [97, Proposition 171]). Everypermutationclasscanbewritten asa

union of maximalatomicclasses.

The question of unigueness for this decomposition, however, falls short of what we
would like. Toensureaunion ,, C of maximal atomic classess unique, we must ensure

that they are independentthat is, for every i 2 | we have

[d [d;
j6i j

and this is not always obtainable. Meanwhile, there remains the question of decidability:
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Question 5.24.Isit possibleéo decidevhetherapermutationclasgyivenbya nite basids atomic?

As with partial well-or der, a general answer to this seemsfar off, though answers in
speci ¢ casesare often obtainable. Cherlin, Shelahand Shi[33], however, suggestthat the
problem for general relational structur esis not decidable.

Our toolbox for this question consistsof a variety of equivalent de nitions for atomic-
ity. A classCis said to satisfy the joint embeddingropertyif, for any two permutations

and in C, thereexists such that and

Theorem 5.25(Fra’ssé [56]). Thefollowing conditionson a permutationclassC are equivalent:

(1) C= Sub(f : A! B) for somdinearly ordeedsetsA; B andbijectionf .

(2) Ccannotbeexpresseasaunion of two properclosedsubsets.

(3) Csatis esthejoint embeddingproperty

(4) Ccontainspermutations 1 2 ..:suchthatforevery 2 Cwehave n for some

n.

Every sum, skew or strongly complete classis atomic. For example, given and
in a sum complete class C, we have 2 Cand so C satis es the joint embedding
property. Sinceevery permutation must be either sum or skew decomposable, it follows
by Proposition 5.8that every classhaving just one basiselementis sum or skew complete,
and henceatomic. Beyond that, however, decidability is not known —for example, we may
write the classAv(321;2143)asAv(321; 2143 3142)[ Av(321;21432413)

Restricting our view to natural classes- that is, atomic classesde ned via bijections of
the natural numbers f : N ! N — Atkinson, Murphy and Ruskuc [11] proved that it is
decidable whether a nitely basedpermutation classis natural. It may also be decidable
in other special cases;the author tried — and failed — to derive similar conditions for the

“rational” case,namelyf : Q! Q.
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5.4 Permutation Classesand Simple Permutations

By the central rdle which simple permutations take in forming the building blocks of per-
mutations, it is not surprising that they also perform asimilarly crucial job within permu-
tation classes.Clearly every permutation of a classCmay be broken down by meansof its
substitution decomposition, using only Si(C), the simple permutations from C. For exam-
ple, in the classS = Av (2413 3142)of separablepermutations, we have Si(S) = f1;12, 21g,

and every permutation in S canbe formed by repeatedin ations of 12and 21

The converse, of course, is not true in general: we cannot reconstruct a classC by tak-
ing every possible in ation of the simple permutations Si(C) (for example, Si(Av(231)) =
f1;12, 21g, but 231= 21[12 1]). This canonly be done when a permutation classis wreath

closed, assuch a classthen contains every in ation by its very de nition.

When the setof simple permutations is in nite, thereis not a greatdeal more that can
be said. Thereis, however, a seemingly vast array of permutation classesthat contain only
nitely many simple permutations, and in this casethereis much to say. In this sectionwe
will review a number of the known results, before contributing several more new results

in Chapters 6and 7.

Counting Simple Permutations. A rst step towards determining whether a classcon-
tains only nitely many simple permutations is to use the Schmerl-Trotter Theorem 2.1
(found on page 21). By simply counting the simple permutations of sizen = 1;2;:::, if
we encounter two consecutive lengths where there are no simple permutations, then the
classcan contain no longer simple permutations. For example, the number of simple per-
mutations in Av(132421434231) of lengths 1 to 7 is 1;2;0;2;4;0;0, and so the longest
simple permutations in this classare of length 5. We will presenta complete answer to this

decidability problem in Chapter 7.
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5.4.1 Finitely Many Simples

Classeswith only nitely many simple permutations have nice properties. To name the
threemost signi cant: theseclasseshave algebraic generating functions, are partially well

ordered, and are nitely based.We will consider eachof thesetopics in turn.

Algebraic Generating Functions. Albert and Atkinson [2] showed how every classcon-
taining only nitely many simple permutations is enumerated by an algebraic generating
function, and this function is readily computable. This should come asno great surprise —
expressingall permutations in such a classasthe in ation of a simple skeleton gives us a
recursive construction, in much the sameway aswhen we enumerated the stack sortable
permutations (Example 5.11), and such recursionsimmediately suggestthat we should ex-
pect an algebraic generating function. We prove this fact, and a much more general result,

in Chapter 6.

Partial Well Order. Sinceantichains (or, at least,fundamental antichains) rely heavily on
the structure of simple permutations to maintain their incomparability (aswitnessed by
the statement of Conjecture 5.12), we canreasonablyexpecta permutation classcontaining
only nitely many simple permutations to be partially well ordered. Before showing this,

however, we exhibit an observation about partial well order that we will need.

Proposition 5.26. Theproduct(Py; 1) (Ps; ) ofacollectionof partial orderds partially

well ordeedif andonly if eachofthemis partially well ordeed.

Without further ado, we may now proceedto the desired result. Our proof follows
Gustedt [66], although note that Albert and Atkinson [2] give a different proof, using Hig-

man's Theorem 5.17.

Proposition 5.27 (Gustedt [66]). Every permutationclasswith only nitely manysimpleper-

mutationsis partially well ordeed.

Proof. Suppose to the contrary that the class C contains an in nite antichain but only

nitely many simple permutations. By Proposition 5.16 Ccontainsanin nite fundamental
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antichain. Mor eover, thereis anin nite subsetA of this antichain for which every element
is an in ation of the samesimple permutation, say . Let D denote the strict closure of A
and note that A is also fundamental, soD is partially well ordered. It is easyto seethat the

permutation containment order, when restricted to in ations of ,isisomorphic to a prod-

uct order: [ 1;:::; m] 9::::; 91if and only if Ofor all i 2 [m]. However,
this implies that A isanin nite antichain in aproduct D D of partially well ordered
posets,contradicting Proposition 5.26 O

Finitely Based. That aclasscontaining only nitely many simple permutations is nitely
basedarisesby rst considering its wreath closure. Our rst task is to compute the basis
of awr eath closed classcontaining only nitely many simple permutations, which may be

done using the Schmerl-Trotter Theorem 2.1 (Page21):

Proposition 5.28. If thelongestsimplepermutationsn Chavelengthk thenthebasiselement®f

W (C) havelengthat mostk + 2.

Proof. The basis of W(C) is easily seento consist of the minimal (under the pattern con-
tainment order) simple permutations not contained in C(cf. Proposition 5.9). Let besuch
a permutation of length n. Theorem 2.1shows that contains a simple permutation  of
lengthn 1orn 2 Ifn k+ 3 then 2Cso 2 W(CQ andthus cannotlie in the
basisof W(C). O

For example, using this Proposition it can be computed that the wr eath closure of 1,
12 21, and 2413is Av (3142 25314 246135, 362514) —we will encounter this classagain in
Example 6.10Q

By Proposition 5.27, any permutation class—and in particular any wr eath closed class

—containing only nitely many simples is partially well ordered. Subsequently:

Theorem 5.29(Albert and Atkinson [2]). Everypermutationclasscontainingonly nitely many

simplepermutationss nitely based.



5.5 THE CONTAINMENT PARTIAL ORDER IN OTHER STRUCTURES 107

Proof. Let C be a class containing only nitely many simple permutations. By Proposi-
tion 5.28 W(C) is nitely based,and by Proposition 5.27it is partially well ordered. The
classC must therefore avoid all elementsin the basis of W (C), together with the minimal
elementsof W (C) not belonging to C, which form an antichain. By its partial well ordering
any antichain in W(C) is nite, and so there can only be nitely many basis elements of
C O

5.5 The Containment Partial Order in Other Structures

We may, of course, de ne the containment order on any relational structure and treat it
as a partial order. Expanding upon the notion of extensionsin Chapter 3, if A and B are
relational structuresover a common language L then an embeddingf A into B is an injec-
tion ' :dom(A) ! dom(B) sothat Bj: (gom(ay isisomorphic to A. If such an embedding
exists, then we say A B, a quasi order from which we may induce a partial order by
considering the equivalence classesA = B, arising if andonly if A Band B A.

In theory, one may then study any closed classof relational structuresfor a given lan-
guage in the sameway asone might study permutation classes.Formally, a setC of rela-
tional structuresover a common relational language L isan L-classif A 2 Cand B A
implies B 2 C. We might then if we wished de ne an L-classin terms of structure avoid-
anceand try to compute its generating function. We could consider intersections, unions
and, by recalling the de nition of in ation in this general setting, wreath products and
wr eath closures.

Antichains, partial well order and atomicity are notions taken from the theory of posets.
Antichains are merely setsof pairwise incomparable elements;seeGustedt [66] for notions
of minimality in antichains and some considerations on the existenceof in nite antichains.
Sinceevery L-classhasaminimal element on one point, no L-classcan contain an in nite
properly decreasing sequence. Thus an L-classC is partially well ordeedif it contains no
in nite antichains, and Higman's Theorem canbe used in the general setting. Atomicity in

the permutation classcaseis merely a special caseof the “ classes”of Fra'ssé [56]; many
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of the results that are true for permutation classesare also true in the general case. For
example, an atomic L -classC satis es the joint embedding property, and is also expressible
in away analogousto the Sub( : A ! B) notation. SeeFra’'ssé [56], Hodges [68, Section

7.1],and, for a survey of more recentresults, Pouzet[101].

Finitely many Simples. By means of the substitution decomposition, L-classeswhich
contain only nitely many simple L-structureswill have arecursive construction much as
in the permutation classcase.However in the general setting this does not correspond to
an algebraic generating function, since structuresin the partial order are de ned only up
to equivalence. In fact, it seemsthat having an algebraic generating function is special to
the permutation case(for example, it is not true in the graph case).

All such L-classesare, however, partially well ordered. As in the permutation case,
antichains are instrinsically linked to simple permutations, and Proposition 5.27is proved
in the general caseby Gustedt [66].

To answer the question of whether these classesare nitely based, we may obtain a
partial answer by considering the most general setting of the Schmerl-Trotter Theorem 2.1
given in [107], namely that of binary, irre exive relational structures,a setwhich includes
graphs, tournaments and posets. Ehrenfeucht and McConnell [48] show that, for k 3,
a simple structure de ned on a single k-ary relation must contain a simple substructure
with k,k lork 2fewer points, and this wasimprovedto justk 1lork 2fewer points

by Bonizzoni and McConnell [23]. Further generalisations remain unknown.

The Graph Case. The*“graph containment order” isin fact the order de ned by induced
subgraphs, and has been extensively studied. As with many other relational structures,
classesof graphs closed under taking induced subgraphs are more often referred to as
heeditary properties A stronger condition is obtained by considering setsof graphs closed
under taking subgraphs (rather than induced subgraphs), and these are referred to as
monotoneproperties.

Properties need not be hereditary —consider, for example, the property consisting of all



5.5 THE CONTAINMENT PARTIAL ORDER IN OTHER STRUCTURES 109

regular graphs. Examples of hereditary properties include the set of triangle-fr ee graphs,
all graphs of chromatic number at most k and the setof split graphs (graphs which may be
partitioned into an independent setand a clique).

As with permutation classes,much of the study of hereditary graph properties is in
their asymptotic enumeration. For aproperty P, let P, denote the setof graphs in P with
n vertices, whence the function jP,j de nes the speedf the property. While little can be
said about the speed of an arbitrary property, Scheinermanand Zito [106 prove that the
speed of hereditary graph properties must, for suf ciently large n, be constant, polyno-
mial, exponential, factorial or superfactorial. Subsequentstudy — in particular Balogh,
Bollobas and Weinreich [15, 16] — has shown that there are many “jumps” within this al-

ready broken spectrum of speeds.






CHAPTER 6

ALGEBRAIC GENERATING FUNCTIONS

6.1 Introduction

HEN A CLASS is enumerated by an algebraic generating function, we intuitively
Wexpectto nd somerecursive description of the permutations in the class.Suchde-
scriptions may arise in avariety of ways, but one of the most important is the substitution
decomposition.

In a classwhich hasonly nitely many simple permutations, therefore, any long per-
mutation must map nontrivial intervals onto intervals, and henceall the permutations of
the classare constructed recursively via the substitution decomposition. With only nitely
many simple permutations on which to “build”, we expectthe classto have an algebraic

generating function:

Theorem 6.1 (Albert and Atkinson [2]). A permutationclasswith only nitely many simple

permutationshasa readilycomputablelgebraigeneratingunction.

Our aim in this chapter is to establish a generalisation of Theorem 6.1 We do this by
observing that the recursive construction given by the substitution decomposition is not
a feature merely of pattern avoidance in the containment order, but can be extended to
enumerate a wide variety of other setsof permutations. In essenceit can be extended to
enumerate any set of permutations which can be built in the sameway from a nite set
of simple permutations, though we will still require that the setlies within a permutation

classwith only nitely many simple permutations.

111
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Theorem 6.2. Let C bea permutationclasscontainingonly nitely many simplepermutations,
P a nite query-completesetof propertiesandQ  P. Thegeneratingfunction for the setof

permutationsn C satisfyingeverypropertyin Q is algebraicoverQ(x).

The next section establishesthe terminology required by Theorem 6.2 which we will
then prove in Section 6.3. Section 6.4 shows how to describe some common families of
permutations as query-complete setsof properties and hence demonstrates the scope of
Theorem 6.2 with speci ¢ worked examplesgiven in Section6.5. In Sections6.6and 6.7we
adapt these techniques to enumerate two further families, namely involutions and cyclic

closures,respectively. Someclosing remarks are given in Section 6.8

6.2 Properties and Query-completeness

As we saw at the end of Chapter 5, the term “pr operty” has been used extensively in
the study of other relational structures, and particularly in graph theory. It is natural,
therefore, to use this term in the context of permutations in a similar way. To this end,
de ne aproperty P, to be any setof permutations, and say that a permutation  satis esP
if 2 P. Note that a permutation classis now simply an example of a property.

A setP of propertiesis query-complet#, for eachsimple permutation of length m and
property P 2 P, thereis a procedureto determine whether [ 1;:::; m]satises P based
only on the knowledge of which properties of P each ; satis es. For example, the set of
properties consisting of the 132-avoiding permutations, f Av(132)g, is not query-complete,
aswitnessed by the fact that 12[1 1] 2 Av(132) but 12[1;21] 2 Av(132), while both 1 and
12 avoid 132 However, f Av(132); Av(21)g is query-complete:

12[ 1; 212 Av(132) () 12 Av(132)and ;2 Av(21);
21[ 1; 2] 2 Av(132) () 12 Av(132)and , 2 Av(132),
[ ;000 m]2Av(132) if 211,12 21g is simple;
12[ 1; 212 Av(21) () 12 Av(21)and 2 Av(21);
[ 15050 m]lZ2Av(21) if 2f1;12gis simple:
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Note that since [ 1;:::; m]isuniquely determined by andthe ;s,every property
P lies in some query-complete set,e.g.,fPg[ ff g: apermutation gis query-complete
for every P. Thus the niteness condition in Theorem 6.2is essential. Another observation

about query-complete sets,which will be liberally applied, is the following.

Proposition 6.3. A union of query-completsetsof propertiess itself query-complete.

6.3 Proof of Main Result

We begin by recalling the substitution decomposition for permutations, which is encapsu-

lated in two propositions from Chapter 1.

Proposition 1.7. Everypermutationmay bewritten asthein ation ofauniquesimplepermuta-
tion. Moreoveyif canbewrittenas [ 1;:::; m]wher issimpleandm 4, thenthe jsare

unique.

Proposition 1.8 If isanin ation of12 thentheris auniguesumindecomposable; suchthat
= 12[ 1; »] for some 5, whichis itself unique. The sameholdswith 12 replacedy 21 and

“sum” replacedy “skew”.

Given a permutation classCand setP of properties, we write G for the set of permu-
tations in Cthat satisfy every property in P, and write f p for the generating function of G-.
Before beginning the proof of Theorem 6.2we consider the casewhere Cis wr eath-closed
and P = ;, which contains many of the main ideas of the proof in a more digestible form.
(This presentation borrows heavily from Albert and Atkinson [2].)

We begin by intr oducing two properties,

f sum indecomposable permutations g and

f skew indecomposable permutations g:
Note that both f gandf gare query-complete, becausefor simple

[ 1,00 ml2 () 6 12and
[ 1,00 ml2 () 6 21
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We also intr oduce the notation
[Cl::;C" = f [ 1;:::; m]: 1 2Cforalli2 [m]g:

By Propositions 1.7and 1.8and the assumption that Cis wr eath-closed,Ccanbe written
as

C=f1g] 12C :Q] 21C Q] ©  [C:i:c

25i(0)
ii4

while C and C have the expressions

f1g] 21[C ;] ] C:::: ]

c = = Cn12[C ;C];
25Si(0)
iy 4
C = flg] 12[C ;q] [C:::;Q = Cn21[C ;C:
25si(0)
ija
Thesegive the system
8 X
f = x+f f+f f+ f1;
25Si(0)
X jj4 ¢
— i = =
f x+f f+ | f foff 147
25Si(0)
iy 4
f=x+ff+>&f” = f ff o=
. 1+f
- 25Si(0)

ij4
If we now let s denote the generating function for the simple permutations of length at

least4in C,we nd that
2

2f
f = f);
x+1 +s(),

+ f
so if s is algebraic, a fortiori if s is polynomial, f is algebraic. In particular, note that
the separable permutations correspond to s = 0; substituting this value for s leavesf =

x + 2f 2=(1 + ), and sowe have proved that the generating function for the separablesis

P
f:1 . i_ ox + X = X+ 2X2+ 6x3+ 22X+ 90x° +

giving the large Schréder numbers (sequenceA006318of [11(Q).
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The following brief review of algebraic systemsis a specialisation of the more general

The proof of Theorem 6.2now follows, modulo the result of Lemma 6.5.

Theorem 6.2 Let C bea permutationclasscontainingonly nitely many simplepermutations,
P a nite query-completsetof propertiesandQ  P. Thegeneratingfunction for the setof

permutationsn Csatisfyingeverypropertyin Q, i.e.,f o, is algebraioverQ(x).

Proof. Let B denote the basisof C, which is nite by Theorem 5.29(on Page106). Lemma 6.5
shows that for every 2 B, the property Av( ) liesin a nite query-complete set. Thus

the setfAv( ) : 2 Bgiscontained in a nite query-complete set,and we have

C= W(C)fAv( ) 2Bg-

Therefore it suf ces to prove the theorem for wr eath-closed classes. Furthermor e, if P is
query-complete then P [ f ; gis also query-complete, so we may assumewithout loss
that ; 2 P.

Let P( ) denote the set of properties in P satised by and, avoiding inclusion-
exclusion, let gr denote the generating function for the setof 2 Cwith P( ) = R,

SO

fQZ Or-
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As P is query-complete, for eachsimple ,P( [ 1;:::; m])iscompletely determined by
and P( 1);:::;P( m). Thusfor eachsimple of length m, thereis a nite collection of m-
tuples of setsof propertiessuchthat P( [ 1;:::; m]) = R preciselyif (P( 1);:::;P( m))

lies in this collection. If m 4 then Proposition 1.7 implies that the generating function
for all inations of with P( ) = R can be expressednontrivially asa polynomial in
fgs :' S Pgofdegreem. If m = 2 suppose = 12without loss. By Proposition 1.8
all in ations of 12 have a unique decomposition as 12[ 1; 2] where 1 2 . Thus the
generating function for inations  of 12with P( ) = R can be expressedas a sum of

terms of the form gsgr where 2 S.

Therefore gr can be expressedasa polynomial in x (depending on whether P(1) = R)
andfgs : S Pg. Moreover, these polynomials have no constant terms and no terms of
the form cgs for constantc 6 0. Thus they form a proper algebraic system, so Theorem 6.4

implies that eachgs is algebraic. O

6.4 Finite Query-Complete Sets

We exhibit several query-complete setsof properties in this section. The rst of theseis

necessaryfor the proof of Theorem 6.2, the others for Corollary 6.21

Lemma 6.5. Foreverypermutation , thesetf Av( ) : g is query-complete.
Proof. We prove the lemma by induction on the length of . The basecase = 1 being
trivial, let us supposethat is of length at least2. By induction, fAv( ) : gis query-

complete for all < , and thus by appealing to Proposition 6.3 it suf ces to prove that
whether = [ 1;:::; m]satises Av( ) canbe decided entirely by knowing, for eachi,

which permutations satisfy i and

We de ne alenientin ation to beanination [ 1;:::; m]in which the jsareallowed
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to be empty. List all expressionsof asalenient in ation of as

Clearly if we have, for somes 2 [t], i(s) for all i 2 [m], then . Equivalently, to
have 2 Av( ), for every s 2 [t] there must be at leastonei 2 [m] for which ; 6 i(s).

Conversely, every embedding of into gives oneof the lenient in ations in the list above,

which completes the proof. O

In a barred permutation one or more of the entries is barred; for to avoid the barred
permutation  means that every set of entries of order isomorphic to the nonbarred
entriesof canbeextendedto asetorder isomorphic to itself. For example, 24315avoids
213 becauseevery inversion (i.e., copy of 21) can be extended to a copy of 213 (append the
5), but 24315contains 312 becausethe 3 and 1 of 24315are order isomorphic to 32, but there
is no way to extend this to a copy of 312 Barred permutations have arisen severaltimes in
the permutation pattern literatur e. For example, under West'snotion of 2-stack sorting (see
Example 5.3 0n page 84) the permutations that can be sorted are those that avoid 2341and
35241, while Bousquet-Mélou and Butler [25] characterisethe permutations corresponding
to locally factorial Schubertvarieties in terms of barred permutations.

A blockedpermutationis a permutation containing dashes indicating the entries that
need not occur consecutively (in the normal pattern-containment order, no entries need
occur consecutively), or in the caseof the beginning or trailing dashes,entries that need not
occur at the beginning or end of the permutation, respectively. For example, 24135contains
only one copy of -1-23-, namely 235 the entries 245do not form a copy of -1-23- becausethe
4 and 5 are not adjacent. Babsonand Steingrrmsson [14] intr oduced blocked permutations
(although they called them generalised patterns, and implicitly assumedthat their patterns

had beginning and trailing dashes)and showed that they could be used to expressmost
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Mahonian statistics. For example, the major index! of is equal to the total number of
copiesof -1-32-, -2-31-, -3-21-, and -21- in

The proof of Lemma 6.5extendsin a straightforwar d manner to show that the property
of avoiding a blocked or barred permutation (or, for that matter, a permutation combining
theserestrictions) alsoliesin a nite query-complete set,although the setsare not so easily
described.?

The permutation 2 S, is said to be alternatingif for all i 2 [2;n 1], (i) doesnot lie

between (i 1)and (i + 1).
Lemma 6.6. Thesetof propertiesconsistingof
AL = falternatingpermutationsg,
BR = fpermutationsbeginningwith arise,i.e.,permutationswith (1) < (2)g,
ER = f permutationsendingwith ariseg, and
f 1g.
is query-complete.

Proof. Clearly ff 1g; BR; ERg is query-complete:

[ 1;:55 ml2BR () 12BRor ( 1=1land 2BR);
[ i m]l]2ER () m2ERor ( n=1and 2 ER):
For = [ 1;:::; m]to bean alternating permutation, we rst need i;:::; m 2 AL.

Now supposethat the entries of up to and including the (i) interval are alternating (we
have this for i = 1from the above).If (i) > (i+ 1)then containsadescentbetweenits

(i) interval andits (i + 1) interval. Thus ;isallowed tobel(i.e., i 2 flg)onlyifi=1

X
The major index is more commonly de ned asthe sum of the descentsof |, i
(i)> (i+1)
2Consider, e.g., the problem of deciding whether = 3142[ 1; ,; 3; 4] avoids -1-23-. First, each of

the i's must avoid -1-23-. Then we alsoneed 3 and 4 to not contain ascents(i.e., avoid -12-) since ; is
nonempty, and » to avoid -1-2, since otherwise the thir d element of the -1-23- could be chosenfrom 3.
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or (i 1)< (i),while if ; 6 1thenwe must have ; 2 ER, and whether ornot ;is1l
we must have ;1 2 BR[ flg. The casewhere (i) < (i + 1)is analogous, completing

the proof. O

Recall that an evenpermutationis one that can be written as the product of an even
number of transpositions, or (much more conveniently for our purposes) a permutation

with an even number of inversions.
Lemma 6.7. Thesetof propertiesconsistingof
EV = fevenpermutationg and
EL = fpermutationsof evenlengthy
is query-complete.
Proof. We have

[ 1;::5; m]l]2EL () anevennumber of i'sfail tolie in EL;

sofELgis query-complete. To seethat f EV;ELQg is query-complete, we divide the inver-
sionsin [ 1;:::; m]into two groups: inversions within asingle (i) interval and inver-
sions between two intervals (i) and (j). We need to compute the parity of eachof these
numbers. The parity of the rst type of inversions depends only on whether ; 2 EV. For
the secondtype, supposei < j.If (i) < (j) then thereare an even number of inversions
(more speci cally , 0) betweenthe intervals (i) and (j) while if (i) > (j) then the num-
ber of inversions between theseintervals isj ijj jj, which isevenif jor ; liein EL and

odd otherwise. O

We say that the entry (i) beginsa descenif (i) > (i + 1) and beginsan ascentif
(i) < (i+1). A permutation is Dumontofthe rst kindif eachevenentry begins adescent
and eachodd entry either begins an ascentor occurs last (this dates back to Dumont [42]).
For example, 5642137is a Dumont permutation of the rst kind. We further say that a

permutation is almostDumontif every non-terminal even entry begins a descentand every
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non-terminal odd entry begins an ascent,or anti-almostDumont if every non-terminal odd

entry begins a descentand every non-terminal even entry begins an ascent.
Lemma 6.8. Thesetof propertiesconsistingof

DU = f Dumont permutationsof the rst kindg,

AD = falmostDumont permutationsg,

AAD = fanti-almostDumont permutationsg,
E O = f permutationswhichendwith an oddentryg and
EL = fpermutationsof evenlengthy

is query-complete.

Proof. First note that DU = AD \ EO, so it sufces to show that fAD ; AAD ;EO;ELg
is query-complete. By the proof of Proposition 6.7 we have that f ELg is query-complete.
Using the EL property, we candetermine the parity of the number of entries of lesservalue
than any given interval; there are an even number of entries below the (i) interval if and
only if an even number of the permutations 1(1) 12)50 00 1¢ () 1) fail to lie in
EL. From this, it follows readily that the setf EO; ELgis query-complete: [ 1;:::; m]2
EOif ., 2 EO and anevennumber of entries lie below the (m) interval, orif ,, ZEO
and an odd number of entries lie below the (m) interval.

We are reduced to the problem of determining membership in AD and AAD . As

the casesare analogous, we consider only the former. Consider the permutation =

sponding to each (i) interval satisfy the desired properties, and second,we checkthat the
“transitions” between successiveintervals satisfy theseproperties. To resolvethe rst, for

to lie in AD , we must have that each ; liesin AD (resp.,AAD )if and only if thereare an
even (resp.,odd) number of entries below the (i) interval. Forthe second,if (i) < (i+1)

then the (i) interval must end in an odd entry. This requiresthat ; 2 EO if there are an
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even number of entries below the (i) interval, and ; 2 EO otherwise. The (i) > (i+1)

casefollows similarly, completing the proof. O

The imaginative reader should at this point have no trouble constructing many other
properties that lie in nite query-complete sets. Examples include the property of begin-
ning with a1, or more generally of mapping any xed i to any xed j, or of having major

index congruent to 1 mod 3, or of having an odd number of left-to-right minima.

6.5 Examples

While we have already shown how to enumerate the separablepermutations in Section6.3,

here we usethe approach of Theorem 6.2

Example 6.9 (Separablepermutations). With the notation from the proof of Theorem 6.2

we have that for the separable permutations:

8
<g. =X
g = (9. +g)g . +g +g);
9 = (9, +g )9, +g +g);
whereour universe of propertiesP isf ; g. Weareinterestedinf =g . +g +g .By

summing the threeequalities above and simplifying one obtainsf = x + (x + f)f , which

leads, reassuringly, to the generating function for the large Schroder numbers,

1 x p1 Bx + X2

f = >

This system does not change dramatically when another simple permutation is intr o-

duced, asshown by the next example.

Example 6.10(The wr eath closure of 1;12; 21; and 2413. Herewe againtakeP = f ; g

and the systemis

N 00

X+(g . +g9 +9g )%
(9. +g Xg . +g +g);
(9. +g )g . +g +g):

Q «Q «Q
1
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The generating function for this class,f =g . +g +g ,satises
fo+f4+f2+(x 1Df +x=0;
and the rst terms of the sequenceare 1; 2; 6; 23, 102, 492; : : . (sequenceA1203460f [110Q).

Example 6.11(Av(132)). The wreath closure of Av(132) is the class of separable permu-
tations, so to enumerate Av(132) we need to re ne Example 6.9, While Proposition 6.5
shows that f Av(1); Av(12); Av (21); Av(132)g is query-complete, it is suf cient to setP =
f ; ;Av(21);Av(132)g by our remarksin Section6.2 Our systemis then
8
% Avey — X

Ay = 9 aven(@ . oAy T 9 aven)
3 9. aent9 avent9 )9 . avent9 avenpt9d t9 )
g9 (@ . avenyt 9 aen)

Q Q © Q
|

(As we areonly interestedin 132avoiding permutations we have suppressedthe subscript

Av(132), which would otherwise be presentin all theseterms.) Setting

f=9 ., avep*9 aep*t9 *9

and solving vyields D
¢ = 1 2x 1 4x
= o :

the generating function for the Catalan numbers, asexpected.

Example 6.12(Av (2413 3142 2143)). Herewe takeP = f ; ;Av(21); Av(2143)g and our

systemis
8
g ;Av (21) = X
g .avey = 9. aven(@ . oaven T 9 aven):
39 = @ . avent9 avent9 N9 . avent9 avent9 t0 )
g = 0. .aven(@ +9)+9 (9 . Ay t9 aven)

where herewe have suppressedthe Av(2143)subscript. This gives the generating function

1 3x+ 2x2 P BX + Bx2
2x(2  Xx) '
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: . : P
and thus the number of permutations of length n in this classis E Fn k (sequence

A0333210f [110), where F, denotesthe nth term in Fine's sequence?

Example 6.13 (Alternating separable permutations). Lemma 6.6 shows that we need to
intr oduce the properties AL (alternating permutations), B R (permutations beginning with
arise), ER (permutations ending with arise), and f 1g. In the separablecasef1g =\

sowe takeP = f ; ;BR;ER;ALg, and asAL occursin eachof the terms of our system

we suppressit. We then have

8
g . = X
g (9. +9 gr)9 . *09 gr* 9 gRr)
9 BR = 0 grer(9 . +*9 gr*+ 0 gr)
9 Er = (0. +9 gr)N9 BrRERT Y BRER)
9 grer = 9 Brer(9 BreErT 9 BrRER)
g = 9 (9 +9)
9 BR = (9. +9 gr)9 *+9 )
g ER = 49 (g : g ;ER+g ;ER);
"0 grer = (@ . *t9 gr)N9 . t9 grt 0 gRr)

The generating function for thesepermutations satis es
f3 (2x2 Sx+4)f2 (4x3+x% 8)f (2x*+ 53+ 4 =0

and the rst few terms of the sequenceare 1; 2; 4; 8; 20; 48; . . : (sequenceA1217030f [11Q).

6.6 Involutions

Unfortunately , involutionhood lies just outside the scopeof our query-complete-pr operty
machinery: letting | denote the set of involutions we have that 12[ 1; 2] 2 | ()
1;, 221, butwhenis2l[ 1; 2]217?
We begin by considering the effect of inversion on the substitution decomposition. First

observethat

(Lo omD) t= Y S ik

SFine'ssequencis de ned by 2F, + F, 1 = C, forn 1, where C, denotesthe nth Catalan number (se-
quence A0009570f [110).
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Recalling the rst part of Proposition 1.7 (“every permutation is the in ation of a unique
simple permutation”), we have that if is aninvolution then it must bethe in ation of a

simple involution. By the secondpart of Proposition 1.7 we then obtain the following:

Proposition 6.14.1f = [ 1;:::; mlisaninvolutionand 6 21lisasimplepermutationthen

isaninvolution and ; = 11(i) = (1i) foralli 2 [m].

The case = 21must be handled separately but is not any more dif cult.
Proposition 6.15. Theinvolutionsthat arein ations of 21 are preciselythoseof theform
21[ 1; 2] for skewindecomposable; and , with ;= ,* and

321[ 1; 2; 3],where 1 and 3 areskewindecomposable; = 31, and 5 isaninvolu-

tion.

De ne the inverseof the property P by P 1=f 1: 2 Pg, and for asetof properties

P,P 1=fP 1:P2Pg.

Theorem 6.16. Let C bea permutationclasscontainingonly nitely manysimplepermutations,
P a nite query-completesetof propertiesandQ  P. Thegeneratingfunction for the set of

involutionsin Csatisfyingeverypropertyin Q is algebraioverQ(x).

Proof. We assume (without loss) both that ; 2 P andthat P = P 1. Asin the proof
of Theorem 6.2, let P( ) denote the setof propertiesin P satised by and gr denote the
generating function for the setof 2 Cwith P( ) = R. Also let hgr denote the generating
function for the setof involutions 2 Cwith P( ) = R. It suf ces to show that eachhg is
algebraic over Q(x).

As Propositions 6.14and 6.15indicate, we need to count pairs ( ; 1 where and

1 satisfy certain setsof properties. To this end de ne

R = W i+
2C
P( )=R

Note that pg is nothing other than gg (x?).
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Now take to be a simple permutation. We need to compute the contribution to

hr of inations of . If is not an involution, Proposition 6.14 shows that this contri-

all'i 2 [m]. If thereis somej 2 [m]for which R; 6 R then this contribution is 0 by

1
()
Proposition 6.14 Otherwise the contribution is a single term in which each xed point
j correspondsto an hg; factor and each non- xed-point pair (j; (j)) correspondsto a
Pr, factor. A similar analysis of in ations of 12 and 21 — in the latter caseappealing to

Proposition 6.15— allows us to compute their contributions.

Therefore eachhr can be expressednontrivially asa polynomial in x,fhs : S Pg,
andfps:S Pg. Viewing xandfps : S Pgasvariables, Theorem 6.4implies that each
hg is algebraic over Q(x;fps : S Pg). Furthermore,ps = gs(x?),soQ(x;fps:S Pg)

is an algebraic extension of Q(x) by Theorem 6.2, proving the theorem. O

One could adapt the proof of Theorem 6.16to count the permutations in C that are
invariant under other symmetries. For example, the permutations invariant under the
composition of reverseand complement studied by Guibert and Pergola [64]. Egge [43]

considersthe enumeration of restricted permutations invariant under other symmetries.

Example 6.17 (Separableinvolutions) . Wetake P = f ; g. Using the notation from the
proof of Theorem6.16 we wishto nd f = h . +h +h .Thesegenerating functions

are related to eachother and to the p generating functions by

8
<

X,
(p. +p)+(P . +p )h . +h +h )
(h. +h)h . +h +h )

> 5 T
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From Example 6.9it can be computed that

2

p . X = 0
2> + (3x2 1p +x* = O
22 + (3x2 1p +x* = O

Combining thesewith the system above and solving asusual shows that
X2F 4+ 3+ 3%+ x D3+ (Bx3+6x2 x)f2+ B3+ 7x2 x Df +x3+3x%+x =0

and the rst few terms of the sequenceare 1; 2; 4; 10; 24; 64; : : . (sequenceA1217040f [110Q).

6.7 Cyclic Closures

In order to demonstrate that the framework developed here canbe applied in lessobvious
situations, we presentan application which differsin avour from our previous examples.
The permutation is said to be a cyclicrotation (or simply, rotation) of the permutation
both of length n, if thereisani 2 [n] for which = (i+ 1)::: (n) (1)::: (i). Given a
permutation classC, its cyclicclosue, c(C), consistsof all rotations of members of C. This
operation hasbeenstudied by the Otago group [1], who proved several basisand enumer-
ation results. The main result of this section, Theorem 6.19 shows that the cyclic closure
of aclasswith nitely many simple permutations hasan algebraic generating function.
The cyclic closure of the class C can be partitioned into orbits of permutations under
rotation. As the orbit of a permutation of length n has precisely n elements, to enumerate
a cyclic closure it suf ces to count orbits. We do this by distinguishing one permutation
per orbit and then counting these permutations. For us, a distinguishedmember of c¢(C) is

apermutation that satis es:

(1) 2 C(this canclearly be achieved, becauseevery orbit in cc(C) contains at leastone

element of C) and

(2) among all permutations in its orbit satisfying (1), is the one in which the entry 1

lies furthest to the left.
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For example, one orbit in co(Av (132)) is
1253441253 34125, 53412, 25341

Only two of these permutations avoid 132 34125and 53412 Sincethe entry 1 lies further
to the left in 34125 this is the distinguished permutation of its orbit.

Our goal is to show that the property of distinction lies in a nite query-complete set
of properties. We begin by offering a different viewpoint in which instead of rotating per-
mutations we divide them into two parts. A dividedpermutationis a permutation equipped
with adivider j, i.e., 1j 2, and we referto ij » asa division of the concatenation ; ».
We say that the divided permutation 1j »is contained in the divided permutation 1j » if

1 2 contains a subsequenceorder isomorphic to 1 » in which the entries corresponding
to ;comefrom ;and the entries corresponding to , comefrom ». Forexample, 51342
contains 321 becauseof the subsequence532 but 321 is not contained in 51j342

Supposenow that we are given a permutation 2 C= Av(B) and we wish to decide
if is a distinguished member of cc(C). According to (2) above, we need to check all
rotations of in which the 1 lies further to the left. Instead, let us consider all divisions

1j 20f inwhich 1isnonempty and , containsthe entry 1, thinking of such adivision
as corresponding to the rotation , 1. For to be distinguished, each of these divisions
must contain ,j ; for some ; », 2 B, becausethat will imply that the corresponding
rotation contains 1 » and thus fails to lie in C.

For a set of divided permutations , let us therefore de ne the property DPy() to
consistof all permutations  for which every division 1j 2 where ;is nonempty and the
lliesin » contains at leastone of the divided permutations in . Our setof distinguished

permutations for c¢(C) will then consist of those permutations from Cwhich satisfy

DPi(f 2 1: 1 22 Bo):

We also need a similar family: DP() consistsof all permutations  for which every divi-
sion jj 2 of in which 1isnonempty contains at least one of the divided permutations

in . (Note that we allow 5 to be empty.)
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Lemma 6.18. Forany nite setB of permutationsthepropertyDP1(f 2j 1: 1 22 Bg) liesin

a nite query-completsetofproperties.

Proof. The nite query-complete setwe take consistsof

fAV( ) : for some 2 Bg
and the propertiesDP() and DP1() for all fo1: 12 for some 2 Bg.
Let = [ 1;:::; m]. Propositions 6.3 and 6.5 show that the Av properties form a

query-complete set, so it suf ces to prove that membership in the DP and DP; can be
decided basedon and which of theseproperties each ; satis es. Sincetheseproperties
are very similar, we consider only the DP1() case.

Supposethat (7)) = 1, sothat theentry 1in occursin its (°) interval. First, for each
k < °, we need to consider divisions of which sliceits (k) interval (or slice between
this interval and the next). As in the proof of Proposition 6.5we consider lenient in ations
(in ations in which intervals are allowed to be empty), although we now insist that the
divider occurin the kth interval of the lenient in ations (we allow that interval to contain

the divider alone). List all suchlenient in ations of all divided permutations in  as
1 t
[ By O O O

We need to determine whether every division of which slicesits (k) interval contains
one of theselenient in ations. If for somes 2 [tjandj 6 k, ; doesnot contain j(s) (which
can be determined from the Av properties), then none of thesedivisions of can contain

that lenient in ation. Removetheseinfeasible in ations from the list, leaving

Now adivision of slicing its (k) interval contains the ith lenient in ation in this list if
and only if lEUi) is either a lone divider or is contained (asa divided permutation) in the
resulting, divided . Thus every division of which slicesits (k) interval contains a

divided permutation from if and only if
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and this property is in our setof properties. The analysis for divisions of which slice the
(") interval (the block containing the entry 1) is identical, exceptthat DP is replaced by

DP;. O

Theorem 6.19. If apermutationclassC containsonly nitely manysimplepermutationsthenits

cyclicclosuecc(C) hasan algebraigeneratingfunction overQ(x).

Proof. Let C= Av(B) contain only nitely many simple permutations, soby Theorem 5.29
B is nite. Lemma 6.18the shows that the property DP1(f 2j 1: 1 22 Bg)liesin a nite
query-complete set. Thus the distinguished permutations, which are the permutations in
C that satisfy this property, have an algebraic generating function by Theorem 6.2 Call
this generating function f. Since every orbit of length n permutations in cc(C) contains
n elements, precisely one of which is distinguished, the generating function for cq(C) is

xf qx), which is also algebraic. O
We conclude the section with an abridged example.

Example 6.20(The cyclic closure of Av(132)). The distinguished elementsfor cc(Av (132))
are thosethat lie in Av(132) and satisfy

DPl(f 2j 1: 1 2= 13&) = DP1(133;321; 2jl3;jl32):

If any division of a permutation contains 133 or j132then the permutation itself contains
132 since we are only counting 132avoiding permutations, we may write the generating
function for the distinguished elementsasf pp, (321:2j13), Where f g denotesthe generating
function for the permutations in Av(132) which satisfy every property in Q but may sat-
isfy additional properties. In the other examples we have given the complete system of g
generating functions. Owing to the number of properties involved and the labour neces-
sary for their speci cation, herewe only describe how to compute two of the f generating
functions.

Let us begin with the f .5p, (3)1.513) term. Sinceour only simple permutations are 1,

12,21, the -indecomposable permutations are 1 and those that can be expresseduniquely
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as21[ 1; 2]lwhere 12 . First considerdivisions of 21[ 1; 2] which slice 1;for theseto
contain either 321 or 2j13, the divided 1 must contain either 21j, which can be extended
to 3211 by including anentry of 5, or 2j13. All such permutations must contain 21, sothey
arecounted by f .pp 2155139 T .av(21)DP(21j:2i13)- NOW observethat the divisions which
slice , before its entry 1 necessarily contain a copy of 321 where the "3' comesfrom 1
and the "2' comesfrom an entry of , preceding 1 (if there is no such entry, then none of
these divisions need checking), and so every 132avoiding permutation may serveas ».

Thus we have

f obpieztzgim = X+t o ppeijziz T oaven preizis

This leavesusto determine f .5 p (59).5913)- Thesepermutations (exceptfor 1) canbe written
uniquely as = 12[ 1; 2]where ;2 and asthey avoid 132we have ;2 Av(21). The
divisions slicing 1 must create2]j or 2j13patternsin , which will occurif andonly if 12
DP(21j;2j1). Thisrulesout ;= 1, sothesepermutations arecounted by f .5p59j.51) X-
Because 2 DP(2lj;2j1), 1 must contain 21, and thus all divisions which slice 5 will

contain 21j. Thereforethe only restriction on 5 isthat it must avoid 21, giving the equation

f oppeiziz = X+t T ppeiyzy X favey:

Similar reasoning allows one to compute the entire system, which leadsto the solution

1 200 2 PT &)

fopi32j1:213) = XA X

From this we nd that the generating function for cc(Av(132)) is

¢ _ 1 A+ 4 a3 (1 2x)pl ax
XI'pp,(32j1:2j13) = > )2 T ax ;

which agreeswith the results of Albert etal. [1]. The rst few terms of the sequenceare

1,2;6;24,100 :::.
6.8 Applicability and Application

With the results of the paper now established, we conclude by discussing their use. First,

let us summarise the nite query-complete setsthat we have covered in this chapter asa
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corollary of Theorem 6.2

Corollary 6.21. In apermutationclassCwith only nitely manysimplepermutationsthegener-

ating functionsfor the following sequenceare algebraioverQ(x):
thenumberof permutationsn G, (this is theresultof Albert and Atkinson[2]),
thenumberofalternatingpermutationsn G,,
thenumberof evenpermutationsn G,,
the numberof Dumont permutationsofthe rst kindin G,,

the numberof permutationsin G, avoidingany nite setof blockecr barredpermutations,

and
thenumberofinvolutionsin G,.
Moreovertheseconditionscanbecombinedn any nite mannerdesied.

As mentioned previously, Av(132) contains only threesimple permutations, so Corol-
lary 6.21explains, e.g.,why the even permutations in Av(132, ) have an algebraic gener-
ating function for every , rst proved in Mansour [83]. Other results in the literatur e to

which Corollary 6.21applies appear in [44, 45, 46, 50, 62, 63, 79, 80, 82, 84].

Other reasons for algebraicity. Having nitely many simple permutations is a suf -

cient condition for a classto possessan algebraic generating function, but it is by no
means necessary Consider Av(123), which, like Av(132), is enumerated by the Cata-
lan numbers. However, Av(123) contains the in nite sequenceof simple permutations
2n 1;2n 3;::;3L2n;2n 254 2 (one such permutation is plotted in Figure 1.30n
page 10). Indeed, every classof the form Av( ) wherej j 4 contains either this in nite

family or a symmetry of it. Thus our approach cannot be used to derive Bona's result [18]
that Av(1342) has an algebraic generating function. Nor can it be used to prove the fact

that, for a surprising number of length 4 permutations , the -avoiding involutions are
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counted by the Motzkin numbers, ashasbeenestablishedby numerous reseachersinclud-
ing Guibert [61], Guibert, Pergola and Pinzani [65], Jaggad [72] and Bousquet-Mélou and
Steingrmsson[26]. The method also cannot be used to enumerate West-two-stack-sortable

permutations [119.

Derangements. Notably absentfrom our list of nite query-complete setsin Section 6.4
are derangements, despite the fact that the 132-avoiding derangements are counted by
Fine's sequence(Robertson, Saracino,and Zeilberger [103]), which hasan algebraic gener-
ating function. To seethat the set of derangements does not lie in a nite query-complete
set of properties, for 2 Spdene D( ) =f (i) i:i 2 [n]g. Then21[12 |, Jisa
derangementif and only if j 2 D( ). This showsthat ; and , must lie in different sets
of properties whenever D( 1)\ N8 D( »2)\ N,implying that the setof derangementscan

only lie in anin nite query-complete setof properties.

6.8.1 Simple Decomposition Revisited

We have not yet discussedthe consequencesof the decomposition of simple permutations
for our knowledge of permutation classes.In the next chapter we will cover the problem
of decidability for simple permutations, but this is by no means the only use of the de-
composition. Indeed, our initial motivation was to derive the following theorem, whose

importance hasso far beenleft unspoken:

Theorem 2.2 Theris afunctionf (k) suchthat everysimplepermutationoflengthat leastf (k)

containstwo simplesubsequencesachoflengthat leastk, sharingat mosttwo entries.

This result helps us in the enumeration of certain permutation classes,which we will
intr oduce by meansof a motivational example. As we have seen,the simple permutations
of the classAv (132) are precisely 1, 12and 21 Theorems 2.2and 6.1(on Pagel11) combine

to give a short proof of the following result.

Theorem 6.22(Bona [19]; Mansour and Vainshtein [85]). Foreveryr, theclassofall permuta-

tions containingat mostr copiesof132hasan algebraigeneratingfunction.
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For example, the generating function in the r = 1 caseis

1 pl ax 8x3

+ :
2x PTax 1+ 1 4 °

due, originally , to B6na [20].

Proofof Theoem 6.22 via Theoems2.2 and 6.1. We wish to show that only nitely many
simple permutations contain at most r copies of 132 or in other words, that there is a
function g(r) sothat every simple permutation of length at least g(r) contains more than
r copies of 132 Sincethe only simple permutations in Av(132) are 1, 12 and 21, we may
take g(0) = 3. We now proceed by induction, setting g(r) = f (g(br=2c)), wheref is the
function from Theorem 2.2 By that theorem, every simple permutation  of length at least
g(r) contains two simple subsequencesof length at least g(br=2c). By induction each of
these simple subsequencescontains more than br=2c copies of 132 Moreover, because
these simple subsequencesshare at most two entries, their copies of 132 are distinct, and

thus contains more than r copiesof 132 asdesired. O

Indeed, the proof above shows that every permutation classwhose members contain
a bounded number of copies of 132 has an algebraic generating function, whereasTheo-
rem 6.22is concerned only with the entire classof permutations with at most r copies of
132 Thereis of course nothing special about 132 Denote by Av( ,'*; ,"%;:::; K k) the
classof permutations that have at most r, copiesof 1, at mostr, copiesof »,and soon.*

The proof just given can be adapted to prove the following result.

containsonly nitely manysimplepermutations.

The largest permutation classwhose only simple permutations are 1, 12, and 21 is of

course the class of separable permutations, Av (2413 3142) Thus as another instance of

“That this is a permutation classis clear, although nding its basismay be lessobvious. An easyargument
shows that the basis elements of this classhave length at most maxf (r; + 1)j ij : i 2 [k]g; seeAtkinson [7]
for the details. One such computation: Av(132 1) = Av(1243, 1342 1423 1432 2143 35142 354162 461325
465132)
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Corollary 6.23 we have the following.

Corollary 6.24.Forall r ands, everysubclas®fAv (2413 '; 3142 °) containsonly nitely many

simplepermutationsandthus hasan algebraigeneratingfunction.

This chapter has extended the scope of Theorem 6.1to nite query-complete sets of
properties, and we may combine Corollary 6.21with Theorem 2.2to give easy proofs of
severalresultsin the literatur e. For example, the even permutations in Av(132 ") are enu-
merated by an algebraic generating function, due originally to Mansour [81]. (Note that,
when counting even permutations, unlike when counting all permutations, symmetry con-
siderations reduce us to three casesof length three permutations — 123 132 and 231- not
two, and thus there is another result we can state at this point: the even permutations in
Av (231 ") have an algebraic generating function for all r, although this result seemsto
have escapedprint. °)

Other results to which Theorem 2.2 and Corollary 6.21 may be applied can be found

in [35, 80, 86].

6.8.2 Linear Time Membership

Out of some of the machinery developed in this chapter comesan indication that, given a
permutation classCcontaining only nitely many simple permutations, it may be decided
in linear time whether an arbitrary permutation  of length n lies in C. The approach
relies rst and foremost on the fact that we may compute the substitution decomposition
of any permutation in linear time, as per Chapter 4. We begin by rst performing some
precomputations speci ¢ to the classC, all of which may be done essentially in constant

time:

Compute Si(C), the number of simple permutations in C.

SWe cannot say anything about the other case,Av(123), sinceit contains in nitely many simple permu-
tations, and hence so does Av(123 "). The classAv(123 ') was, however, counted by Noonan [99], while
Av(123 2) was counted by Fulmek [57], proving a conjecture of Noonan and Zeilberger [100. No results for
larger values are known, although Fulmek conjecturesformulas for r = 3and r = 4, and that Av(123 ") has
an algebraic generating function for all r.
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Compute the basis B of C, noting that permutations in B can be no longer than

Ensa()c(:)j j + 2 by the Schmerl-Trotter Theorem 2.1
|

For every either lying in B or contained in a permutation lying in B, list all expres-

sionsof asalenient in ation of each 2 Si(C).

(Recallthat a lenient in ation isanination [ 1;:::; m]in which the ;sare allowed to
be empty.)

With these precomputations performed, we now take our candidate permutation  of
length n and compute its substitution decomposition, = [ 1;:::; m]. Now, after rst

trivially checking that the skeleton liesin C, we look at all the expressionsof each 2 B

aslenient in ations of . Note that if , there must exist an expressionof asalenient
in ation = [ 1;:::; m]sothat i foreveryi=1;:::;m.

Thus, taking eachlenient ination = [ 1;:::; m]inturn, we look recursively at each
block, testing to seeif | i is true. Though this recursion makes the linear-time com-

plexity non-obvious, note that the number of levels of recursion that are required cannot
be more than the maximum depth of the substitution decomposition tree,which itself can-
not have more than 2n nodes. The recursion will eventually reducethe problem to making
only trivial comparisons, each of which is immediately answerable in constant time. The
author would be keen to seea more rigour ous treatment of this problem, and indeed an

implementation of any subsequentalgorithm.






CHAPTER 7

DECIDABILITY AND UNAVOIDABLE
SUBSTRUCTURES

7.1 Introduction

AVING DEFINED permutation classesand observedin Section5.4and Chapter 6 how
H simple permutations control many of their properties, it seemsessentialnow to ask
which nitely basedclassescontain only nitely many simple permutations. Our decom-
position of simple permutations and identi cation of their unavoidable substructuresin
Chapter 2 puts us in a strong position to establish whether this question is decidable. Our

main result establishesthat this can be done algorithmically:

Theorem 7.1. It is possibléo decidef apermutationclasggivenbya nite basiscontainsin nitely

many simplepermutations.

We rst begin by reminding the reader of pin sequences,asde ned in Chapter 2. In
particular, here we will be constructing pin sequencesfrom scratch, before studying their
possible subsequences.As we saw in Section 2.4, this treatment requiresus to consider a

slight variant of the original de nition of pin sequencesnamely that a proper pin sequence

p1;:::; pm Must satisfy the following two conditions:
Separatiorcondition pj+1 must separatg; from fpy;:::;p; 10. Thatis, pj+1 must lie
horizontally or vertically betweenrect(ps;:::;p 1) and p;.
Externality condition pj+; must lie outside rect(p1;:::;pi)

137
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grey box. The point x satis es the externality and separation conditions for this pin sequenceand
thus could be chosenaspg; y, however, fails the separation condition.

(SeeFigure 7.1 for anillustration.) To consider subsequencesof a given pin sequence,as
we must, we refer the reader to the discussion on pin words given in Section 2.4.
Proper pin sequencesare intimately connected with simple permutations. In one di-

rection, we recall:

permutation.

While proper pin sequencesare simple or nearly so, we also saw that there were other
“fundamental” types of simple permutation — in particular, we recall the de nitions of
parallel and wedge alternations. Whereasevery parallel alternation contains along simple
permutation (to form this simple permutation we need, at worst, to remove two points),
wedge alternations do not. However, there are two dif ferent ways to add a single point to
awedge alternation to form simple permutations (called wedgesimplepermutationsof types
1 and2). Thesethreefamilies are plotted in Figure 7.2

Werecall that thesefamilies of permutations capture,in a sense the diversity of simple

permutations:
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Figure 7.2: From left to right: a parallel alternation, a wedge simple permutation of type 1, and a
wedge simple permutation of type 2.

Theorem 2.14 Everysuf ciently long simplepermutationcontainseithera properpin sequence
oflengthat leastk, aparallelalternationoflengthat leastk, or wedgesimplepermutationoflength

at leastk.

Theorems 2.7 and 2.14 show that Theorem 7.1 will follow if we can decide when a
classhasarbitrarily long parallel alternations, wedge simple permutations and proper pin
sequences.The rst two of theseconsiderations are straightforwar d, and form the subject
of the next section, while the question for proper pin sequencesrequiresal little more work.
Essentially, the problem of deciding whether a permutation classcontains arbitrarily long
pin sequencesis equivalent to the problem of determining whether a permutation class
admits arbitrarily long pin words. Thus converting the problem to one of languages, we
will review in Section 7.3 the required results from formal language theory before going
on to prove in Section 7.4 that the language of pins is regular, and hence the problem is

decidable.

7.2 The EasyDecisions

We begin by describing how to decide if apermutation classgiven by a nite basiscontains
arbitrarily long parallel alternations or wedge simple permutations. Consider rst the case
of parallel alternations, oriented nn, asin Figure 7.2 These alternations nearly form a
chain in the pattern-containment order; precisely, there are two such parallel alternations

of eachlength, and eachof thesecontains a parallel alternation with one fewer points and



140 7 DECIDABILITY AND UNAVOIDABLE SUBSTRUCTURES

all shorter parallel alternations of the same orientation. Thus if the permutation classC
has a basis element contained in any of these parallel alternations, it will contain only
nitely many of them. Conversely, if C has no such basis element, it will contain all of
thesealternations. Therefore we need to characterisethe permutations that are contained
in any parallel alternation. This, however, is done simply by using the juxtaposition, as
de ned in Subsection5.1.2 The basis of the juxtaposition of two classesis decidable by
Proposition 5.5 (Page87), and this is all we need to solve the parallel alternation decision

problem.

Proposition 7.2. ThepermutationclassAv(B) containsonly nitely many parallelalternations

if andonly if B containsan elemenbfeverysymmetryofthe classAv (123, 2413 3412)

Proof. The setof permutations that are contained in at leastone (and thus, all but nitely

many) parallel alternation(s) oriented nnis

AV(12) Av(12) = Av(123 24133412)

asdesired. O

Like parallel alternations, the wedge simple permutations of a given type and orien-
tation also nearly form a chain in the pattern-containment order, and thus we are able to

take much the sameapproach with them.

Proposition 7.3. ThepermutationclassAv (B) containsonly nitely manywedgesimplepermu-

tationsoftypelif andonly if B containsan elemenbfeverysymmetryoftheclass

Av (1243 13241423 1432; 2431, 3124; 4123; 4132, 4231; 4312):

Proof. The wedge simple permutations of type 1 that are oriented <, asin Figure 7.2 are
contained in

Av(21)

Av(2) 119

Av(132312) Av(12;21)

Av (1324 1423 1432 2431, 3124; 4123, 4132; 4231):
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Figure7.3: The situation in the proof of Proposition 7.3.

It is easyto seethat thesewedge simple permutations also avoid 1243and 4312 and thus
they are contained in the classstated in the proposition, which we call D.

Now take a permutation 2 D of length n. We would like to show that is con-

tained in a wedge simple permutation. If 2 ﬁgg;g then s clearly contained in a
wedge simple permutation, so suppose this is not the case.Thus (1) (n 1)is order
, . L Av(21) , _
isomorphic to a permutation in Av(12) , and it suf ces to show that:

the entries of above (n) areincreasing,and

the entries of below (n) are decreasing.

We prove the rst of theseitems; the secondthen follows by symmetry becauseit can be
observed from its basis that D is invariant under complementation, i.e., if the length n
permutation lies in D then so does the complement of . Supposeto the contrary that
thereis adescentabove (n). Thusthereareindicesi < j < nsuchthat (i)> (j)> (n).
Choosethesetwo indices to be lexicographically minimal with this property. There must
be other entries of asotherwise is simply 321, which lies in the juxtaposition we have
assumed doesnot lie in. We now divide the entries above (n) into 7 regions asshown

in Figure 7.3 About theseregions we can state:

regions (a)—(e)and (i) are empty because avoids 1432 4132 4312 2431 4231, and
4231, respectively;
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the points in region (f) are decreasingbecause avoids 4231%,
regions (g) and (h) are empty by the minimality of i and j, respectively;

the points in region (j) are increasing because avoids 2431

Av(21)

This establishesthat liesin Av(12)

, acontradiction that completesthe proof. O

Proposition 7.4. ThepermutationclassAv (B) containsonly nitely manywedgesimplepermu-

tationsoftype2 if andonly if B containsan elemenbfeverysymmetryoftheclass
Av (2134 2143 3124 3142; 3241, 3412; 4123; 4132, 4231; 4312):

Proof. Let D denote the classin the statement of the proposition. It is clear that the wedge
simple permutations of type 2 that are oriented , asin Figure 7.2 lie in D, and so it
remains to show that every permutation 2 D is contained in one of thesewedge simple

permutations. Thus is contained in

Av(21) Av(12) fig Av(213312) Av(12;21)

Av (2134 2143 3124 3142; 3241; 4123, 4132, 4231);

and so in particular, the permutation obtained by removing the rightmost element of ,
say (n),is containedin Av(21) Av(12) . It sufces to show that (n)isnorn 1
Suppose,to the contrary, that there are at leasttwo entries of above (n). Then we have
one of the two situations depicted in Figure 7.4.

Again, we use the basis elements of D to derive the following about the labelled re-

gions:

regions (a.a),(a.c),and (b.a) are empty because avoids 4312 4231, and 3412 respec-

tively;
the points in regions (a.b) and (b.b) are decreasingbecause avoids 4231

Theseobservations, combined with the fact that the permutation obtained from by re-

moving (n) liesin  Av(21) Av(12) shows that itself liesin Av(21) Av(12) ,
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Figure7.4: The two situations in the proof of Proposition 7.4.

and so is contained in one of the desired wedge simple permutations, completing the

proof. O

7.3 Review of Regular Languages and Automata

The classicresults mentioned here are covered more comprehensively in many texts, for

example, Hopcroft, Motwani, and Ullman [69], so we give only the barest details.

A nondeterministicnite automatonover the alphabet A consistsof a setS of statesone
of which is designated the initial state a transition function from S (A [ f"g) into the
power set of S, and a subset of S designated as acceptstates The transition diagramfor
this automaton is a directed graph on the vertices S, with an arc from r to s labelled by
apreciselyif s 2 (r;a). Theinitial stateis designated by an inwar d-pointing arrow. An

automaton acceptgshe word w;  wy, if thereis awalk from the initial state to an accept

languageacceptethy the automaton. For example, Figure 7.5shows the transition diagram
for the automaton that acceptsstrict pin words (in this automaton, all states are accept

states).

A language that is acceptedby a nite automaton is called recognisableBy Kleene's
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Figure7.5: The automaton that acceptsthe language of strict pin words (V and H are acceptstates).

theorem, the recognisable languages are precisely the regularlanguages and they have
numerous closure properties, of which we use two: the union of two regular languages
and the set-theoretic difference of two regular languages are also regular languages. The

other result we need about regular languagesis below.

Proposition 7.5. It canbedecidedvhetheraregularlanguagegivenby a nite acceptingautoma-

tonisin nite.

Sketchof proof. A regular language is in nite if and only if onecan nd awalk in the given
accepting automaton that begins at the initial state, contains a dir ected cycle, and ends at

an acceptstate. O

A nite transduceris a nite automaton that can both read and write. Transducers also
have states, S, one of which is designated the initial state and several may be designated
acceptstates. The transition function for a transducer over the alphabet A is a map from
S (A[ f"g) (A[ f"g)into the power setof A. In the transition diagram of atransducer
we label arcs by pairs, so the transition r afb s stands for “read a, write b’. Empty inputs
and outputs are allowed, both designated by ", e.g.,r ' smeans‘read nothing, write b’

A wordw 2 A isproducedrom theword u 2 A by the transducer T if thereis awalk

ui,wq Uz W2 Um W
ST ¢ S2 ! S3 e

Sm+1

The reader unfamiliar with formal languages is welcomed to take this as the de nition of regular lan-
guages.
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in the transition diagram of T beginning at the initial state,ending at an acceptstate, and
suchthatu=u; umandw=w; wq (notethat theseu;sand w;sare allowed to be").
We denote the set of words that the transducer T producesfrom the setof input words L

by T(L).

Proposition 7.6. If L isaregularlanguageandT is a nite transducerthenT (L) is alsoregular

anda nite acceptingautomatorfor T (L) canbeeffectivelyconstructed.

Sketchof proof. Let M denote a nite accepting automaton for L. Supposethat the states
of M are R and the statesof T are S. The statesof an accepting automaton for T(L) are
then R S, wherethereis atransition (ri;s;) P (r2; s2) whenever there are transitions

r f ro and s; afb sy in M and T, respectively. O

7.4 Decidability

We are now in a position to prove our main result. We wish to decide whether the nitely
based class Av(B) contains only nitely many simple permutations. Propositions 7.2-
7.4 show how to decide if Av(B) contains arbitrarily long parallel alternations or wedge
simple permutations, so by Theorem 2.14(repeatedin this chapter on page 138 it suf ces
to decide whether Av(B) contains arbitrarily long proper pin sequences.

We rst recall two lemmas concerning pin words that we will require. The rst shows
that we may convert every proper pin sequenceto a strict pin word. The proof is given on

Page37.
Lemma 2.15 Everyproperpin sequenceorrespondso a strict pin word.

The other lemma we must recall shows us how to relate subsequencesof proper pin

sequenceswith pin words, and vice versa. The proof may be found on Page 38.

Lemma 2.16 If thepin word w corresponddo the permutation and thenthereis apin
wordu correspondingo with u  w. Converselyif u  w thenthe permutationcorresponding

to u is containedn the permutationcorrespondingo w.
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Now, consider a permutation that is order isomorphic to a proper pin sequenceand
thus, by Lemma 2.15 correspondsto at leastone strict pin word, sayw. If 62Av(B) then
forsome 2 B.BylLemma 2.1 correspondsto apin word u w. Conversely, if

w ufor someu corresponding to 2 B, then Lemma 2.16shows that . Therefore

the set

f strict pin wordsw : w ufor someu correspondingtoa 2 Bg

consistsof all strict pin wor ds which representpermutations not in Av(B), soby removing
this setfrom the regular language of all strict pin wor ds we obtain the language of all strict
pin words corresponding to permutations in Av(B). In the upcoming lemma, we prove
that for any pin word u, the setf strict pin wordsw : w ugforms aregular language, and
thus the language of strict pin words in Av(B) is regular. It remains only to checkif this

language is nite or in nite, which canbe determined by Proposition 7.5

Lemma 7.7. Forany pin word u, the setf strict pin wordsw : w  ug formsaregularlanguage,

anda nite acceptingautomatorfor this languagecanbeeffectivelyconstructed.

Proof. Let T denote the transducer in Figure 7.6. We claim that a strict pin word w lies in
T(u) if and only if w  u. The lemma then follows by intersecting T (u) with the regular
language of all strict pin words.

We begin by noting several prominent featuresof T:
(T1) Every transition writes a symbol.

(T2) Other than the start state S, the automaton is divided into two parts, the “fabrication”

statesF; and the “copy” statesC;.
(T3) Every transition to afabrication statehas" input.

(T4) Every transition from a fabrication state to a copy state reads a numeral and writes
a direction, and exceptfor the transitions from S, these are the only transitions that

read a numeral.
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(T5) All transitions between copy statesread a direction and write the same dir ection,
these are the only transitions that read a dir ection, and there is such a transition for

every copy stateand every dir ection.

(T6) From every fabrication and copy state, eachdir ection can be output via a transition

to afabrication statewith input ".

(T7) The subscripts of the fabrication and copy statesindicate quadrants: if the strict pin
word w;  wy, corresponding to the pin sequenceps;:::;pn, hasjust been written
by the transducer and the transducer is currently in state Cy or Fy, then p, lies in

quadrant k. Moreover, if the pin word u;  up, corresponding to the pin sequence

Om lies in quadrant k.

(T8) From any state, any copy state can be reached by two transitions, the rst being a

.y . . "; 4R
transition to afabrication state;for example: C» P Fz3 T Ca.

First we prove that w  u for every strict pin word w produced from input u by this
transducer. We prove this by induction on the number of strong numeral-led factorsin u.
The basecaseis when u consists of precisely one strong numeral-led factor. Supposethat
the output right beforethe rst letter of uis readis v(Y). Therearetwo cases.If v is empty,
then the transducer is currently in state S, and must both read and write the rst letter of u,
moving the transducer into state C,,. At this point, (T5) shows that the transducer could
continue to transition between copy states, outputting aword w = uv®  u. The only
other option available to the transducer (again, by (T5)) is to transition to a fabrication
state, but then (T4) shows that the transducer can never again reacha copy state (because
u has only one numeral), and thus by (T3), it can never nish reading u. In the other
case,where v\1) is nonempty, the transducer lies in a fabrication state by (T4). The next
transition must then by (T4) beinto a copy state,and (T7) guaranteesthat the letter written
correspondsto a point in quadrant u;. The sameargument asin the previous caseshows

that the transducer is now con ned to copy statesuntil the restof u has been read, and
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thus the transducer will output vAWw@y@ .

Now suppose that u decomposesinto j 2 strong numeral-led factors asu®  u(),
By induction, at the point where ul 1 has just been read, the transducer has output a
word vAWw® v Dwl D and lies in a copy state. Sincethe rst letter of ul) is a nu-
meral, the transducer is forced by (T4) to transition to afabrication state,and this transition
will write but not read by (T3). The transducer can then transition freely between fabrica-
tion states.Let us supposethat vADw@®  v( Dw( Dy() hasbeenoutput at the moment
just before the transducer begins reading u(). As in our secondbasecaseabove, the trans-
ducer must at this point transition to a copy state by (T4), which it will do by reading the
numeral that begins ul) and writing a letter that — by (T7) — corresponds to a point in
this quadrant. The situation is then analogous to the base case,and the transducer will
output vAOwW® v Dyl DyOwbyi+D)

Now we needto verify that the transducer producesevery strict pin word w with w
u. Break u into its strong numeral-led factorsu®  u() and supposethat the factorisation
w= vDw® vl Dyl DyHwbyi+D) satis es (01) and (02). If v is nonempty then
it can be output immediately by a sequenceof transitions to fabrication statesby (T6); by
(02) and (T7), the rst letter of w1 (which must be a dir ection becausew is a strict pin
wor d) can then be output by transitioning to a copy state,from which (T5) shows that the
restof u® canberead and the restof wl) canbe written. If v(1) is empty then u® = w®
by (O1). The transducer can, by (T5), read u® and write w® by transitioning from S to
a copy state and then transitioning between copy states. Becausew is a strict pin word,
(02) shows that v(@ must be nonempty, and (T6) shows that v(® can be output without
reading any more letters of u. We then must output w® whilst reading u®. The only
possible obstacle would be reaching the correct copy state, but (T8) guaranteesthat this

canbedone. The restof u canberead, and the restof w written, in the samefashion. O

The proof of Theorem 7.1 now follows from the discussion at the beginning of the

section.
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7.5 An Easier Suf cient Condition

Though we have now seena complete answer to the decidability problem, putting this
method into practical use may, in some cases,be more work than is actually required. We
can in fact derive a much easierto-check set of conditions by recalling the unavoidable

substructuresresult of Chapter 2:

Theorem 2.17. Everysuf ciently long simplepermutationcontainsan alternationof lengthk or

an oscillationoflengthk.

Thus a permutation classwithout arbitrarily long alternations or arbitrarily long oscil-
lations necessarily contains only nitely many simple permutations. First note that these
strong conditions are not necessary;for example, the juxtaposition Av(21) Av(12)
contains arbitrarily long (wedge) alternations, yet the only simple permutations in this
classare 1, 12, and 21 The work of Albert, Linton, and Ruskuc [5] also attests to the
strength of these conditions; they prove that classeswithout long alternations have ratio-
nal generating functions.

As we have already shown how to decide if Av(B) contains arbitrarily long alterna-
tions, to convert Theorem 2.17from a theorem about unavoidable substructuresto an eas-
ily checkedsuf cient condition for containing only nitely many simple permutations we
need to decide if Av(B) contains arbitrarily long oscillations. As with the parallel and
wedge alternations from Section 7.2, the increasing oscillations nearly form a chain in the
pattern-containment order, so we need only compute the class of permutations that are
contained in some increasing oscillation, or equivalently, that are order isomorphic to a
subset of the increasing oscillating sequence. This computation is given without proof in

Murphy's thesis[97]. Here we provide the proof.

Proposition 7.8. Theclassofall permutationscontainedn all but nitely manyincreasingoscil-

lationsis Av (321; 2341, 3412 4123).

Proof. It is straightforwar d to seethat every oscillation avoids 321, 2341, 3412 and 4123

so it suf ces to show that every permutation avoiding this quartet is contained in the in-
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creasing oscillation sequence.We use the rank encoding for this. The rank encoding of the

permutation  of length nistheword d( ) = d;  d, where
di=jfj:j>iand (j)< (i)dgj

i.e., di is the number of points below and to the right of (i). It is easyto verify that a
permutation canbereconstructed from its rank encoding. Now consider the rank encoding

for some 2 Av (3212341 3412 4123). Routinely, one may check:
d( )2f0;1,2g ,
d( ) doesnot end in 1, 2, or 20,
d( ) doesnot contain 21, 22, 111, 112 2011, or 2012factors.

We now describe how to embed a permutation with rank encoding satisfying theserules
into the increasingoscillating sequence.Supposethat we have embedded (1);:::; (i 1).
If dj 1 then we embed (i) asthe next even entry in the sequence. If d; = 0 then we
embed (i) asthe next odd entry if it ends a 20, 110 or 2010factor, and as the second
next odd entry otherwise. SeeFigure 7.7 for an example. It remains to show that this is
indeed an embedding of ;to do this it suf ces to verify that the number of points of this
embedding below and to the right of our embedding of (i) is d;. This follows from the

rules above. O

7.6 Other Contexts.

To the best of our knowledge, no analogue of Theorem 7.1is known for other relational
structures. If we were to follow the pattern laid down in this thesis, our approach would
be to decomposethe simple structuresand then establish an algorithmic method to avoid
these structures. We discussed in Section 2.6 some possibilities to generalise the decom-

position methods of Chapter 2, and saw in particular the problems encountered in the

2\We refer the readerto Albert, Atkinson, and Ruskuc [4] for a detailed study of the rank encoding.
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Figure7.7:The lled points show the embedding of 2153647 with rank encoding 102010Qgiven by
the proof of Proposition 7.8.

Figure7.8: The prototype transducer for graphs.

graph case.On the assumption that thesedif culties may be overcome (particularly in the
graph case,but perhaps more generally) it seemslikely that decidability would most likely

follow . Our approach,therefore, remains furtive.

Determining the Language of Pins in Graphs. Assuming the existing de nition from
Section2.6for pin sequencesin the graph caseis nearly correct,it will actually turn out to
be somewhat easierto construct an analogue to Lemma 7.7. To begin with, recallthat the al-
phabet for the language of pins in graphs consistsof only four letters, namely fL; A; | ;Eg,

where L corresponds to adding a leaf, A an antileaf (connected to all but the last pin), |
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b [ J b [ J * [ J b [ J
b [ J b [ J * [ J b [ J
1@ 1@ 1@ 1@

b [ J b [ J * [ J b [ J

b [ J b [ J * [ J b [ J
S N S N N S S N
. J 1 [ J 1 [ J 1 [ J

b [ J 4 @ 4 @ 4 @

b [ J b [ J 1@ b [ J
1@ 1@ * [ J 1@

b [ J b [ J * [ J b [ J
b [ J b [ J * [ J b [ J

S N S N N S S N
9 @ 9 @ 4 @

B [ J B [ J B [ J

B [ J B [ J B [ J

1@ 1@ 1@

B [ J B [ J B [ J

B [ J B [ J B [ J

S N S N N S

Figure7.9: The basiselements of length 6 for the pin class(up to symmetry).

an independent point (i.e. connected to nothing) and E a point connected to everything.
The transducer producing all strict pin words for graphs is thus much smaller than the
permutation caseof Figure 7.6, and a prototype is given in Figure 7.8. Note that since we
do not have the issue of quadrants in graphs, thereis only one fabrication state F and one

copy state C.

7.7 The Pin Class

We closewith a nal, capricious, thought. The setof permutations that correspond to strict
pin words forms a permutation classby Lemma 2.16 As this classarisesfrom words, it

hasadistinctly “regular” feel, and thus we offer:

Conjecture 7.9. Theclassof permutationscorrespondingo pin wordshasa rational generating

function.

The enumeration of this classbegins 1, 2; 6; 24; 120, 664; 3596; 19004. It is not even ob-
vious that this “pin class” has a nite basis. Its shortest basis elements are of length 6,
and there are 56 of these (seeFigure 7.9). The classalso has 220 basis elements of length

7. The classof course contains arbitrarily long simple permutations, and it is trivially not
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partially well ordered —the members of the variant of the increasing oscillating antichain

from Example 5.14(Page97) may be encoded by wor ds of the form 122RURU  RUL.



CHAPTER 8

THE WREATH PRODUCT

E NOW CONSIDER a somewhat dif ferent problem, following the classicproblem of
Wdetermining the basis of a permutation classde ned in one of the ways described
in Section5.1 As we mentioned there, the question for the wr eath product of two permuta-
tion classesis known in only afew speci c cases.Atkinson [12] shows that for any nitely
basedclassC, the wr eath product CoAv (21) is nitely based,but that Av(21)0Av (321654)is
not nitely based. Thereremainsto be seenprecisely what distinguishes thesetwo cases.
Our aim in this chapteristo nd ananswer to that question. In particular, we establish the

following:

Theorem 8.1. For any nitely basedclassD not admitting arbitrarily long pin sequenceghe

wreathproductCoD is nitely basedor all nitely basedlassef.

The approach is constructive, and will rely on our knowledge of the substitution de-
composition learnt from Chapter 1, and our results concerning pin sequencesfrom Chap-
ter 2. We rst introduce D-pro les, which give us the ability to decompose permutations
arising in wr eath products into components belonging to the two original classes. For a
permutation not arising in such awr eath product, we prove the existenceof a subsequence
order isomorphic to a basiselement of the classC. Mor eover, there is a basiselement of D
lying within the “minimal block” de ned by any two points of this subsequence.lt is then
a matter of using these considerations to show that, when the classD admits only nite

pin sequencesthe minimal elementsnot in the wr eath product have bounded size.

155
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Our secondary aim, arising asaresult of the above considerations, is to exhibit a num-
ber of classesof the form D = Av( )forj j 3,orD = Av(; )withjj 4jj 4
which do not satisfy Theorem 8.1, and to demonstrate how an in nitely based wreath

product CoD canbe found in eachcase.

8.1 D-Proles

We need to be able to know when a given permutation lies in the wreath product of two
permutation classes. This could be done by inspecting all possible decompositions and
checking for membership of the original classes,but this is liable to be computationally
intensive. Instead, we would prefer only to check a single decomposition, from which
membership or otherwise of the wreath product is immediately obvious.

The pro le of apermutation is the unique permutation obtained by contracting every
maximal consecutive increasing sequencein into a single point [7]. For example, the
prole of 3415672s 3142becauseof the segments34,1,567and 2.

The notion of a “D-prole” connectsthis idea with the de nition of the substitution
decomposition = [ 1;:::; m]. Wewant the D-prole of to be the shortest possible
de ation of , given that we may only de ate by elementsfrom the classD. However, this
is not clearly well-de ned, sobeforewe canproceed,we must rst introduce D-de ations.

Formally, let D be a permutation class,and any permutation. Then a D-de ation of
is apermutation °for which canbeexpressedas 9 1; 2;:::; WJwith 17 2;::0; ¢ 2
D. For an arbitrary permutation , there are many different D-de ations. However, the

shortest one is unique, and it is this one that gives rise to the D-pro le.
Lemma 8.2. ForeveryclosedlassD andpermutation , theshortestD-de ation of is unique.

Proof. We proceedby induction onn = j j. The casen = listrivial, sonow supposen > 1.
Fix a shortest D-de ation of the permutation , and label this permutation P.If 2 D
then P = 1isunique, sowe will assume 2 D.

Let ,of length m 2, bethe skeleton of , and rst consider the casewherem 4,

whereby we have the unique substitution decomposition = [ 1; 2;:::; m]. By the
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inductive hypothesis, the shortest D-de ations of 1; 2;:::; m are unique, and we will
labelthem P; B;:::; B weclaimthat P = [ DP; §;:::; B]. Consider any other D-
deation of , = q 1; 2::::; «]. Since 2D, O%cannot be trivial, and so 0 and
indeed s the skeleton of 0 giving aunique deation °= [ %:::; 9] Moreover, ?

is aD-de ation of ; for all i. Since iD is the unique shortest D-de ation, we must have
b Owhich implies P @

When m = 2, more careis required. In this case is either sum or skew decomposable,
and without loss of generality we may assumethe former. Write = 12 t[ 1; 2;:::; ]
where each ; is sum indecomposable. If every ; 2 D, then any shortest D-de ation of
will be an increasing permutation of length at most t, and asthere is only one increasing
permutation of eachlength, P will be unique. Sonow suppose that there exists at least
onei suchthat ; 2 D,sothatj Pj 2 Since ;is sumindecomposable, P is also sum

indecomposable. We claim the shortest D-de ation of will be
°=(1 )% P (i )

Any other D-de ation will alsohave to be written asa dir ectsum of threepermutations in
this way, and by induction each of thesewill involve the respective shortest D-de ation.
O

Thus, for any classD and permutation , the D-prole of is the unique shortest D-
de ation of , and is denoted P. Note that setting D = Av(21), the set of increasing
permutations, returns the original de nition of the prole, but if we setD = S, the setof
all permutations, we do not get the substitution decomposition back, as S = 1 for any
permutation. However, an easy consequenceof the above proof isthatif 2 D,and is
the skeleton of , then D,

As mentioned at the beginning of this section, our aim with D-pro les is to be able to
to move from the permutations of the wreath product CoD down to the permutations in
the two classesCand D in a single step. Thus although initially we may know very little

about the structur e of a permutation in the basisof CoD, by taking its D-pro le we should
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be left with a permutation involving a (known) basis element of C. Conversely, we want
to be able to construct basiselementsof CoD given only the basesof Cand D. Theseideas

are encapsulatedin the following theorem.

Theorem 8.3. Let Cand D betwo arbitrary permutationclassesThen 2 CoD if andonly if
P2cC

Proof. One dir ection is immediate. For the converse,since 2 CoD, thereexists 92 C
which is ade ation of by permutations in D. The proof of Lemma 8.2then tells us that

D 0 completing the proof. 0

Any expressionof the form = P[ 1;:::; ] is called a D-pro le decompositionf
and the blocks ; are called the D-pro le blocks These blocks are not typically uniquely
de ned. For example, the Av(123)-prole of 234615is 23514 but it can be decomposed
either as23514[121; 1; 1; 1] or 23514112, 1;1; 1]. Thusit will beuseful to x aparticular D-
pro le decomposition, especially aslater we are going to needto know about the structure
of eachof the D-pro le blocks.

The left-greedyD-pro le of is the decomposition = P[ 1; 2;:::; ~]Jwith ;2 D for
all i, in which 1 is rst chosenmaximally, then »,and soon. Each ; is called aleft-greedy

D-pro le blockof . This yields the usual, unique, D-pro le:
Lemma 8.4. ForanyclassD andpermutation , ® = D,

Proof. Again, we useinduction onn = j j. The basecasen = 1is trivial, sonow suppose

n > 1. Assume further that 2 D, asotherwise P = P = 1follows immediately. Let

D= [D; D, R A similar argument showsthat P = [( 1)°;( 2)°;:::5( m)P],
and by induction P = ( ;)P for all i, giving the required result.

When m = 2, is either sum or skew decomposable,and we may assumethe former.

Write = 12 t[ 1; 2;:::; ¢Jwhereeach ;is sum indecomposable. In the casewhere



8.2 THEMINIMAL BLOCK 159

every ; 2 D,both P and P will beincreasing permutations with k °~  t. When
using the left-greedy D-pro le decomposition, the block ; was chosenmaximally, and so

1 1. Thenthe block > was taken maximally, sothe D-prole block » cannot extend
further right than the end of 5, hence » 1 2. Continuing in this manner, we see
that, for all i, 1 2 i, and in particular 1 2 k. But we
must have k , and sok = *. The remaining caseis where at leastone ; 2 D. Picki
to be minimal with this property, and then by the proof of Lemma 8.2the D-pro le breaks

into three pieces,
P=(1 0% P (in )

A similar argument holds for the left-greedy D-pro le, and then by induction eachof the
threepiecesin the left-greedy D-pro le is equal to the corresponding piecein the D-pro le.
O

There is, of course, nothing special about the left-greedy D-pro le; it can be seenthat
any algorithm to compute aD-pro le-like decomposition in which at eachstagethe blocks
are chosenmaximally will yield a D-prole de ation. For our purposes, however, when

required we will always use the left-greedy algorithm.

8.2 The Minimal Block

The primary aim of this section is to be able to tell if any two points in a permutation
belong to the same left-greedy D-pro le block, and also a partial converse: given the D-
prole de ation, what canwe say about the points “between” two specied points? To
this end, we de ne anew concept asfollows. Let beany permutation of length n. For
alll i< n, the minimal blockof that contains (i) and (j), denoted mb( ;i;j), is
the segmentof which forms the shortestinterval containing both (i) and (j). In other
words, thereexistsk iand ™ j ksuchthat mb( ;i;j) = (k) (k + 7) forms

an interval but no subsegment of this contains both (i) and (j) and forms an interval.
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Figure8.1: The minimal block mb( ;2;3)in = 236745981

For example, if = 236745981 then the minimal block on (2) = 3and (3) = 6is
mb( ;2;3) = 36745(SeeFigure 8.1).

It follows from the observation that the intersection of two intervals itself forms an
interval (seeProposition 1.2(a)) that the minimal block is always uniquely de ned. Before

we can proceedto the main result of this section, we make one further observation.

Lemma 8.5. Let beany permutationandleti 6 | beany pair of positionsin . Thenif

k;> 2 mb( ;i;j) with k 8 ~ wehave
mb( ;k;1)  mb( ;i j):
Moreoverif bothi andj separatd from™ by position,thenmb( ;k;™) = mb( ;i;j).

Proof. That mb( ;k;") is contained in mb( ;i;j) is obvious. Now supposei and j separate
k from ~ by position, i.e.k i< ".Thenmb( ;k;)isaninterval of containing both

(i)and (j). Asmb( ;i;j)isminimal with this property,we havemb( ;i;j) mb( ;k;")
and somb( ;i;j) = mb( ;k;"). O

We are now ready to prove our main technical result of this section.
Lemma 8.6. LetD beapermutationclassandlet 2 S,, beany permutation.Thenfor any pair
i;jwithl i<j n:

(i) If thepermutationorderisomorphido mb( ;i; j) doesotliein D, then (i) and (j) liein

different D-pro le blocks.
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(i) Converselyif (a)and (a;) arethe rst symbolftwo distinct left greedyD-pro le blocks
i and ; respectivelythenthe permutationorderisomorphico mb( ;i; j) doesot lie in

D.

Proof. (i) By minimality and uniqueness of the minimal block, every block in  containing
both (i) and (j) must contain the minimal block mb( ;i;j). Hence every such block
doesnot lie in D, socannotbeaD-pro le block.

(i) Write = P[ 1; 2;:::; «], and let the sequence (a1); (a);:::; (ax) represent
the leading points in  of the left-greedy D-prole blocks 1; 2;:::; k. Let jand j,
i < j,beapair of D-prole blocks. We prove the statement by induction oni.

When i = 1, the block 1 was picked maximally subjectto ; 2 D. Foranyj >
1, the minimal block mb( ;a;;a;) strictly contains ; and then the maximality of ;is
contradicted unlessmb( ;az;a;) ZD.

Supposenow that i > 1, and that mb( ;a;a) 2 D forany " < iandj > ". The D-
prole block ; was picked maximally to avoid basiselements of D, subjectto starting at
symbol (&;). Consider, for somej > i, the minimal block mb( ;a;;a;), necessarily con-
taining all of ;. If the leftmost point of mb( ;a;;a;) is (a;), then since ; is the maximal
block lying in D which startsat (a;), we must havemb( ;a;;a;) 2 D. Sonow supposethat
mb( ;a;;a ) contains at leastone symbol (h) from with h < a;. Let the D-prole block
containing (h) be -; we claim that - is completely contained in mb( ;a;;a;). If not,
then part of - lies outside mb( ;a;; ;) in both position and value, and so the part lying
inside mb( ;a;a ) itself forms aninterval in either the top-left or bottom-left corner of the
minimal block, but yet it contains neither (a;) nor (a;), contradicting the minimality of
mb( ;a;;a). In particular, the rst symbol (a')of -isinmb( ;a;a;),and by Lemma 8.5
we have mb( ;a;a) = mb( ;a;;a). By the inductive hypothesis mb( ;a;a) 2 D, and

somb( ;aj;a) ZD. O

Using this result, we now know when two points of a permutation will lie in the same
D-pro le block, and, more importantly for what follows, we know that a basiselement of

D existsin the minimal block of the rst symbols of any two D-pro le blocks. What we do
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not yet know is how to nd it; given such a minimal block, we need a method to search
through the block systematically and locate the points that form this basis element within

abounded number of steps. Onceagain it is pin sequencesthat will provide the solution.

8.3 Pin Sequencesand the Wreath Product

For the pin sequencedn this chapter, we will revert to considering thosethat occur within a
given permutation, or, indeed, part of a permutation. Recallthat for this purpose aproper
pin sequenceusesthe separation condition instead of the externality condition, together

with maximality:

Maximality: eachpin must be taken maximally in its dir ection. For example, a proper

Also, while we have thus far used pin sequencessolely with simple permutations, here
we will needto usethem in a more general setting. We cannot, of course, expectthe same
results to hold, but we may prove somethat are similar for minimal blocks. Recallthat, in
a permutation , apin sequenceps;pz;:::;Pm IS said to be saturated if rect(p1; p2;:::;pPm)
enclosesall of . Whereasin simple permutations any pin sequencemay be extended to
one that is saturated, this is not true for arbitrary permutations, but a weaker condition
does hold —we may saturate the minimal block de ned on (i; (i)) and (j; (j)) if these
points form the rst two points of our pin sequence.

To convert a saturated pin sequenceto a proper pin sequence,we rst had to restrict
our attention towar ds attaining just one of the boundaries of the permutation. We said that

apin sequenceps; pz;:::;pm Of isright-r eachingif py, is the rightmost position of

Lemma 2.9, Foreverysimplepermutation and pair of pointsp; andp, (unless trivially, p;1 is

theright-mostpoint of ), thereis a properright-reachingpin sequencbeginningwith p, andps,.
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We want the same lemma to hold within a minimal block, de ned as usual by two
points, which will alsoform the rst two points of our proper pin sequence.In the minimal
block case,right-r eaching means that the last pin is the right-most point of the minimal

block, rather than of the whole permutation. Hence:

Lemma 8.7. Let 2 S, beanypermutation,andletl i < j n. Thenthereexistsaproper
pin sequencevith starting pointspy = (i; (i)) andp2 = (j; (j)) whichis right-reachingin
mb( ;i; ).
Proof. In the minimal block mb( ;i;]), there exists a saturated (non-proper) pin sequence
p1; P2;::: starting from the pins p1 = (i; (i)) and p2 = (j; (j)). If there were no such
sequence,then some corner of the minimal block, not including either (i) or (j), would
form an interval by itself, contradicting the minimality of mb( ;i;j). Moreover, we may
assume, by removing unnecessarypins and relabelling, that every pin is maximal in its
dir ection.

The proof then follows the proof in Chapter 2 of Lemma 2.9. Sincethe pin sequenceis

saturated, it includes the rightmost point of . Label this point p;,. Next, take the small-

Continue in this manner, nding pins pi;;pi,;::: until we reachp;,,, = p2, and then

P1; P2; Pim s Pim 1 -:5sPi; IS @proper right-r eaching pin sequence. O

Lemma 2.9is easily recovered from Lemma 8.7by setting to beasimple permutation,
and observing that all minimal blocks in a simple permutation are the whole permutation.
This is, therefore, a true generalisation of that lemma.

We are now ready to prove our main result.

Theorem 8.8. LetD = Av(B) bea nitely basegermutationclassnot admitting arbitrarily long

pin sequence§.henCaD is nitely basedorall nitely basectlasse€= Av(D).

Proof. Letb= max »,5(j j),d= max op(j j),and beany permutation in the basisof CD.

By Theorem 8.3 we have P 2 C, and sothereexistssome 2 D suchthat D, We will
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be done if we canidentify abounded subsequenceof order isomorphic to a permutation
I, say, for which I D asthen! P 2 Cimplies ! 2 CoD, and hence! =

First include in our subsequenceof the setof points order isomorphic to with po-

left greedy D-pro le block, and the choice of blocks is also leftmost. For every pair d;; di+1,
Lemma 8.6tells us that the minimal block mb( ;d;;dj+1) involves some 2 B, and we in-
clude one such occurrenceof this in our subsequence.Our aim now is to add a bounded
number of points sothat still liesin the minimal block of the permutation ! on the points
corresponding to (d;) and (di+1), asthen thesetwo points are preserveddistinctly in ! P.
We do this by taking a proper right-r eaching and a proper left-reaching pin sequenceof
mb( ;dj;di+1) (which exist by Lemma 8.7), and including them in the subsequence.These
pin sequencesare only guaranteed to be bounded when D does not admit arbitrarily long
pin sequencesasthen there existsanumber N sothat every pin sequenceof length N + 2
involves some basiselement of D.
Thus'! P still involves asubsequenceorder isomorphic to ,andj!j d+(d 1)(2(N

1)+ b). O

We saw in Chapter 7 that it is decidable whether a nitely basedclassadmits arbitrar -
ily long pin sequencesor not, and therefore given any pattern classwe can tell whether

Theorem 8.8applies.

8.4 Innitely BasedExamples

For a classD which admits in nite pin sequences,Theorem 8.8gives us no information on
whether the basisof CoD (here for a speci ed classC) is nite. However, the proof does
tell us what some of the basis elementslook like. A basiselement of awreath product
CoD is built around a cor of points order isomorphic to a basiselement of C. To preserve
all the points of this core when taking the D-prole of (asrequired by Theorem 8.3),
every minimal block between any two points of the core must involve a basis element of

D. If we canembed arbitrarily long pin sequencesin theseminimal blocks, may itself be
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A

Figure8.2: The element 5 in the basisof Av(25134)0Av (321).
made arbitrarily long. For example, the classAv(321) admits the increasingoscillating pin
sequenceencoded RURURU | and sowe have:
Theorem 8.9. Av(25134)0Av(321) is not nitely based.

Proof. We exhibit an in nite antichain generated by repeatedly taking up and right pins

lying in the basisof Av(25134)0Av(321). The rst few elementsof the antichain are

2.5:1:3,7:6;4

1

2 = 2,51,3,7,4,9,8,6

K 2,5,1;3,7,4)9,6,11,8;:::;2k+ 3;2kj2k + 5,2k + 4;2k+ 2 (k 3):

Here, asin [9], the j symbol is used only to clarify the structure of the permutation. See

Figure 8.2for anillustration of atypical member of this antichain. We observe:
(i) Thesetf jk 1gisanantichain.
(i) The only occurrenceof 321in each is2k + 5;2k + 4; 2k + 2.
(i) Theonly occurrenceof 25134in each  is 2;5;1;3; ;4, and hencethis forms the core.
(iv) Each y is neither sum nor skew decomposable.

(v) The Av(321)prole of (is2;5;1;3;7;4;:::;2k + 3;2k; 2k + 4;2k + 2 (the only non-

trivial de ation occursbetween 2k + 5and 2k + 4). In particular, 25134 fv 321 for

all k, henceby Theorem 8.3 ¢ 2 Av(25134)0Av(321).
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It only remainsto show that  is minimally not in Av(25134)cAv (321). Consider the effect
of removing any symbol j. If j = 2k+ 5; 2k + 4 or 2k + 2then by (ii) this no longer involves
321s0 | 2 Av(321) Av(25134)0Av(321). Similarly, if j = 2;5;1;3 or 4 then by (iii)
k J nolonger hasacore,so x | 2 Av(25134) Av(25134)0Av (321).
Forany otherj,  j issumdecomposable.Under the Av(321)-pro le, the rst (lower)
component de ates to asingle point, and hence(  j)AV@2D 2 Av(25134) Thus « | 2

Av(25134)0Av (321), completing the proof. O

Note that in the above example, the classC = Av(25134)was speci cally chosenso
that the basis element 25134is not contained in the repeated pin sequenceused to build
the antichain, but it doeslie in the classD. This ensuresthat the core, 25134 acts as an
anchor at the baseof the antichain, but yet the only instance of the basiselement 321is in
the upper anchor.

As a result, for any classD which contains both the in nite pin sequenceformed by
alternating between up and right pins, and the permutation 25134 the wreath product

Av(25134)oD will always contain an in nite antichain similar to the one above.

Example 8.10. (i) TheclassesD = Av(321;2341)and D = Av(321; 3412)both avoid the
permutation 321and so the antichain in the proof of Theorem 8.9lies in the basis of
Av(25134)aD in both cases.

(i) All of the classesD = Av(; ) wherethe pair (; ) isoneof
(4321,4312) (4321; 4231); (4321; 4213); (4321; 3412) and (4321, 3214)

avoid 4321 and sothe antichain with terms

2.5,1;3,8,7,6,4

2.5,1;3,7,4,10,9;8;6

k = 251,37,4)96,11;,8;:::;2k+ 3;2kj2k+ 6,2k + 5,2k + 4,2k + 2 (k  3)

lies in the basisof Av(25134)aoD in eachcase.
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Figure8.3: The element s in the basisof Av(25143)0Av (4321;4123).

(iii) The classesD = Av(43124231) D = Av(43124213)and D = Av(43123421)all
avoid 4312 soswapping the order of the nal two points of each | in case(ii) gives

the required antichain.

Example 8.11. The two classesD = Av (4321 4123)and D = Av(4312 4123) both admit
the pin sequenceformed by repeatedly taking up and right pins, but do not contain the
permutation 25134 becauseof the basiselement 4123 However, the classC = Av(25143)

may be used instead. In the rst case,the antichain is (seeFigure 8.3for an illustration):

2:5:1:4,8,7;,6;3

N
1

2:5:1:4,7:3,10,9:8: 6

N
1

2,5,1;4,7,3]9,6;11:8;:::;2k+ 3,2k j2k+ 6,2k + 5,2k + 4,2k + 2 (k 3):

=~
1

All the examples so far have admitted the same*up-right” pin sequence,correspond-
ing to variants of the increasing oscillating antichain. Another commonly found in nite
pin sequenceis formed by repeating the pattern left, down, right, up,® and there are (to
within symmetry) two classesof the form D = Av(; )with j j =] j = 4 which admit
this sequence:D = Av(34122413)and D = Av (3412 2143) Eachone must be handled

separately.

Example 8.12. (i) D = Av(34122413) may be paired with C = Av(31542)to produce

1This repeating pattern is the foundation for the “Widdershins” antichain of [97].
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Figure8.4: The basiselement 3 in Av(31542)0Av (3412 2413).

the antichain with terms

816,49 7:52:3

N
1

Ak + 4,18k + 2,4,4K;6;::: 2k + 6:2K |

x
1

2k + 4,2k + 2,2k + 7;2k + 5;2k + 3]
2k + 9;2k+ 1;:::;4k+ 55]2,3 (k 2):

SeeFigure 8.4 for an illustration. Note that the occurrence of 3412in any  is not
unique, but every occurrencerequiresthe nal two symbols 2;3 of , and so these

points still behavein the sameway asin previous examples.

(i) D = Av(34122143) may be paired with C = Av(412563)to produce the antichain

with terms:

1 = 10/1;8;4,6;9;11,7;5;2; 3
k = 4k+6;14k+ 4,4;4k+ 2;6;:::;2k+ 8;2K |
2k + 6,2k + 2,2k + 4;2k + 7;2k + 9; 2k + 5;2k + 3]

2k + 11,2k + 1;:::;4k+ 7;5] 2,3 (k 2):
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8.5 Concluding Remarks and Conjectures

The above examples suggest,to some extent, a general method for nding in nite bases.
However, these examples rely on just one method for constructing antichains, and there
is no reasonwhy this method should always work. For example, a somewhat different
construction was used by Atkinson and Stitt [12] to demonstrate an in nite antichain in
the basisof Av(21) oAv(321654) relying on the sum decomposability of the basiselement
321654 The other dif culty in nding innite basesis that, for each given classD, the
search for a suitable classCis very speci ¢, and rarely seemsto be applicable to more than
a handful of other classes.

In fact, it is unlikely that we can always nd such a classC. For example, we saw in
Proposition 7.8 that the closure of the increasing oscillating sequence416385 is given
by Av(321; 2341 3412 4123). This class,of course,admits the in nite proper pin sequence
alternating between up and right pins, but, there are no other permutations in this class
which can be used to anchor an in nite antichain basedaround this pin sequence,so the

method described hitherto doesnot work here. We therefore posethe following question.

Question 8.13. Is there a nitely basedclassC for which C 0Av (321; 2341, 3412 4123) is not

nitely based?

The Other Direction. Given a nitely basedclassC, canwe tell if CoD is nitely based
for all nitely basedpermutations classesD? Noting that even C= Av(21) doesnot satisfy
this (aswitnessed by the in nite basiswithin Av(21) oAv(321654), it might be that there
are no classeswhich satisfy this. However, we must not be deceived into thinking that the
more well-behaved a classCis, the more likely CoD is to be nitely based,asthereis no

real evidence to support this. We will, however, offer the following conjecture anyway.

Conjecture 8.14. Forany nitely basedlassC, thereexistsa nitely basealassD suchthat CoD

is not nitely based.
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Wreath Basis Decidability . The ultimate aim, of course, is to be able to answer the fol-
lowing question: given two nitely based classesC and D, what is the basis of CoD?
Trivially , if Cand D both contain nitely many simple permutations, then so does CoD
and sothe basisis nite, but this result follows asa special caseof Theorem 8.8 A general
decision procedure is not likely to be straightforwar d, and remains somewhat remote. A
rst steptowards sucharesult would be abetter understanding of the structur e of in nite

antichains.
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