
Labelled well-quasi-order in juxtapositions of permutation
classes

Robert Brignall
School of Mathematics and Statistics

The Open University, UK

December 20, 2023

Abstract

The juxtaposition of permutation classes C and D is the class of all permutations formed
by concatenations στ, such that σ is order isomorphic to a permutation in C, and τ to a
permutation in D.

We give simple necessary and sufficient conditions on the classes C and D for their jux-
taposition to be labelled well-quasi-ordered (lwqo): namely that both C and D must them-
selves be lwqo, and at most one of C or D can contain arbitrarily long zigzag permutations.
We also show that every class without long zigzag permutations has a growth rate which
must be integral.

For Sophie

1 Introduction

Let C and D be permutation classes. The juxtaposition CD is the permutation class comprising
all permutations formed by concatenations στ, where σ is order isomorphic to a permutation
in C and τ is order isomorphic to a permutation in D.

A zigzag permutation (or just zigzag) is a permutation π = π(1) ¨ ¨ ¨π(n) with the property that
there is no index i P [n ´ 2] such that π(i)π(i + 1)π(i + 2) forms a monotone increasing or
decreasing pattern.1 The main purpose of this note is to establish the following theorem.

Theorem 1.1. The juxtaposition CD is labelled-well-quasi-ordered if and only if both C and D are lwqo,
and at least one of C or D contains only finitely many zigzag permutations.

1Zigzag permutations (sometimes called alternating permutations, but we reserve the term ‘alternating’ for other
purposes) have been widely studied in relation to enumerative problems, and are strongly related to the Euler
numbers (sequence A000111 of the OEIS [1]) – for a survey, see Stanley [15].
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The juxtaposition of permutations was first introduced in Atkinson’s foundational work [2],
and has since been studied in terms of enumeration (see, for example, [7]) since it represents
a natural yet non-trivial way to combine two permutation classes. Indeed, juxtapositions are a
special case of grid classes, which we define in the next section.

The study of well-quasi-ordering and infinite antichains in permutation classes dates back to
the 1970s in the work of Tarjan [16] and Pratt [14], and rose to prominence in the 2000s as a result
of works such as Atkinson, Murphy and Ruškuc [3] and Murphy and Vatter [11]. The stronger
notion of labelled well-quasi-ordering dates back to Pouzet [13], but received little attention in
the context of permutation classes until the current author’s recent work with Vatter [8].

The rest of this paper is organised as follows. In Section 2 we briefly cover the requisite ter-
minology. In Section 3 we provide a necessary and sufficient characterisation of permutation
classes without long zigzags. As a by-product of this characterisation, we show that every per-
mutation class without long zigzags has an integral growth rate. In Section 4 we prove that the
juxtaposition of a labelled well-quasi-ordered permutation class with Av(21) or Av(12) is again
labelled well-quasi-ordered, and this, together with the characterisation from Section 3, enables
us to complete our proof of Theorem 1.1. We finish with some concluding remarks in Section 5.

2 Preliminaries

Permutation classes We provide here only the minimum terminology required for our pur-
poses, and refer the reader to [4] for fuller details.

A permutation of length n, typically denoted π = π(1) ¨ ¨ ¨π(n), is an ordering of the symbols in
[n] = t1, . . . ,nu. We say that σ = σ(1) ¨ ¨ ¨σ(k) is contained in π, and write σ ď π, if there exists a
subsequence 1 ď i1 ď ¨ ¨ ¨ ď ik ď n such that the relative ordering of the points in π(i1) ¨ ¨ ¨π(ik)
is the same as that of σ. That is, π contains a subsequence that is order isomorphic to σ.

A permutation class C is a set of permutations closed downwards under containment. Every
such class can be described by its set of minimal forbidden elements, but for our purposes
it suffices to record that Av(21) = t1, 12, 123, . . . u is the class of increasing permutations, and
Av(21) = t1, 21, 321, . . . u is the class of decreasing permutations. Two other classes we will
require are as follows

à

21 = tfinite subpermutations of 21436587 ¨ ¨ ¨ u = Av(231, 312, 321),
á

21 = tfinite subpermutations of ¨ ¨ ¨ 78563412u = Av(123, 132, 213).

One important family of permutation classes in the structural study of permutations are grid
classes. These are defined by a gridding matrix M of permutation classes, and each permutation
in Grid(M) has the property that its plot can be divided using horizontal and vertical lines into
a grid of cells, of the same dimensions as M, and such that the entries in each cell of the plot
are order isomorphic to a permutation that belongs to a class in the corresponding cell of M.

Of particular note are monotone grid classes, where each cell of M is Av(21), Av(12) or empty,
and we say that a permutation class C is monotone griddable if it is the subclass of some monotone
grid class. We need the following characterisation.
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Theorem 2.1 (Huczynska and Vatter [10, Theorem 2.5]). A permutation class is monotone griddable
if and only if it has finite intersection with

À

21 and
Á

12.

The juxtaposition CD can alternatively be considered as Grid(M) where M =
[
C D

]
. Also of

interest to us is the class of gridded permutations in a juxtaposition – denoted C |D – whose
members comprise the permutations of CD together with a vertical line that witnesses the per-
mutation’s membership of the juxtaposition. Note that each permutation in CD can correspond
to more than one gridded permutation in C |D. The same notion exists for grid classes defined
by larger matrices: if C Ď Grid(M) then C7 denotes the set of permutations in C equipped with
horizontal and vertical lines to witness their membership of Grid(M).

Well-quasi-ordering A quasi-order (P, ď) is well-quasi-ordered (wqo) if it contains no infinite
descending chain, and no infinite antichain – that is, a set of pairwise incomparable elements.
For quasi-ordered classes of combinatorial objects (such as permutation classes or gridded per-
mutation classes), this condition typically reduces to checking for the presence of infinite an-
tichains.

Given a quasi-order (P, ď), let P˚ denote the set of finite sequences of P. The set P˚ can be
ordered using the generalised subword order: for v = v1 ¨ ¨ ¨ vm and w = w1 ¨ ¨ ¨wn in P˚, we say
that v ĺ w if there exists a subsequence 1 ď i1 ď ¨ ¨ ¨ ď im ď n such that vj ď wij for all
1 ď j ď m. One celebrated result that we will need is Higman’s lemma:

Lemma 2.2 (Higman [9]). If (P, ď) is a wqo set, then so is (P˚, ĺ).

Another way to combine wqo sets and obtain another wqo set is by taking products:

Proposition 2.3 (See [8, Proposition 1.2]). Let (P, ďP) and (Q, ďQ) be wqo sets. Then P ˆ Q is wqo
under the product order, (p1,q1) ď (p2,q2) if and only if p1 ďP p2 and q1 ďQ q2.

The final piece of core wqo machinery we require is as follows. We say that a mapping Φ : P Ñ

Q between two quasi-orders is order preserving if p1 ďP p2 implies Φ(p1) ďQ Φ(p2). We have:

Proposition 2.4 (See [8, Proposition 1.10]). Let (P, ďP) and (Q, ďQ) be quasi-orders, and suppose
that Φ : (P, ďP) Ñ (Q, ďQ) is an order-preserving surjection. If (P, ďP) is wqo, then so is (Q, ďQ).

Labelled well-quasi-ordering Let (L, ďL) be any quasi-order. An L-labelling of a permutation
π of length n (or of a gridded permutation of length n) is a mapping ℓπ from the indices of π
to elements of L. We write the resulting L-labelled permutation as (π, ℓπ), and the set of all
L-labelled permutations from some set (or class) C is denoted C ≀ L.

The set C ≀L induces a natural ordering: Let σ,π P C be of lengths m and n, respectively. We say
that (σ, ℓσ) is contained in (π, ℓπ) if there exists a subsequence 1 ď i1 ď ¨ ¨ ¨ ď im ď n such that
π(i1) ¨ ¨ ¨π(im) is order isomorphic to σ, and ℓσ(j) ďL ℓπ(ij) for all j P [m].

Finally, a set or class C is labelled well-quasi-ordered (lwqo) if C ≀ L is a wqo set for every wqo set
(L, ďL). We refer the reader to [8] for a complete treatment of lwqo in permutation classes.
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3 Zigzags

A peak of a permutation π is a position i such that π(i´ 1) ă π(i) ą π(i+ 1). The peak set of π is

Peaks(π) = ti : π(i ´ 1) ă π(i) ą π(i+ 1)u.

The peak set has been much studied in enumerative and algebraic combinatorics, see, for exam-
ple, Nyman [12] and Billey, Burdzy and Sagan [5], although here it simply provides convenient
terminology to prove the following result.

Proposition 3.1. Let C be a permutation class that contains only finitely many zigzags. Then C is
contained in Grid(M) for a matrix M comprising one row, and in which each entry is Av(21) or Av(12).2

Proof. Suppose that the longest zigzag in C has length k. For any π P C of length n consider the
peak set Peaks(π) and let i and j be two consecutive peaks (that is, there is no k P Peaks(π)
such that i ă k ă j). Since there are no peaks between i and j, the sequence π(i) ¨ ¨ ¨π(j) must
be a valley: that is, it is formed of a decreasing sequence, followed by an increasing sequence.
Let vi be the index such that i ă vi ă j for which π(vi) is minimal (the ‘bottom of the valley’).
Similarly, if ℓ is the leftmost peak in π, then π(1) ¨ ¨ ¨π(ℓ) is a valley, and if r is the rightmost peak
in π, then π(r) ¨ ¨ ¨π(n) is a valley. In particular, we set vr to be the index in [r,n] for which π(vr)
is minimal.

Since the entries between consecutive peaks (and before the first, and after the last peak) form
valleys, we see that the entries of π can be partitioned into a sequence of 2(|Peaks(π)|+1) (pos-
sibly empty) intervals of entries, that alternately form decreasing and increasing permutations.
By construction, the subpermutation formed on the indices Peaks(π) Y tvi : i P Peaks(π)u is
a zigzag of length 2|Peaks(π)|. Thus, 2|Peaks(π)| ď k for every π P C, and hence π belongs to
the grid class whose matrix is[

Av(12) Av(21) Av(12) Av(21) ¨ ¨ ¨ Av(12) Av(21)
]

comprising k+ 2 cells (if k is even), or k+ 1 cells (if k is odd).

Our next result establishes a more precise characterisation of classes without long zigzags. A
vertical alternation is a permutation in which every odd-indexed entry lies above every even-
indexed entry, or vice-versa. Some simple applications of the Erdős-Szekeres Theorem shows
that every sufficiently long vertical alternation contains a long parallel or wedge alternation – see
Figure 1.

Lemma 3.2. The permutation class C contains only finitely many zigzags if and only if C is monotone
griddable and does not contain arbitrarily long vertical alternations.

Proof. If C is not monotone griddable then it contains
À

21 or
Á

12 by Theorem 2.1. In particu-
lar, for every n ě 1, C contains either 2143 ¨ ¨ ¨ (2n)(2n ´ 1) or (2n ´ 1)(2n) ¨ ¨ ¨ 12, both of which

2The grid classes appearing in Proposition 3.1 were originally introduced by Atkinson, Murphy and Ruškuc [3]
under the term ‘W-classes’.
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Figure 1: From left to right: a vertical alternation, a parallel alternation, and a wedge alter-
nation.

are zigzags. Similarly, if C contains arbitrarily long vertical alternations then for every n ě 1 it
contains a permutation of the form a1b1a2b2 ¨ ¨ ¨anbn where ta1, . . . ,anu = tn+1, . . . , 2nu and
tb1, . . . ,bnu = t1, . . . ,nu, all of which are zigzags.

Conversely, Proposition 3.1 shows that a class C with bounded length zigzags is contained in
a monotone grid class comprising a single row, and this demonstrates both that C is monotone
griddable and that it cannot contain arbitrarily long vertical alternations.

We finish this section by recording an interesting consequence of the above theorem. The growth
rate of a permutation class C (or gridded permutation class C7), if it exists, is limnÑ∞ n

a

|Cn|,
where Cn denotes the set of permutations in C of length n. The existence of the growth rate
of a class in general depends upon whether the upper and lower growth rates coincide, that is,
whether lim supnÑ∞ n

a

|Cn| = lim infnÑ∞ n
a

|Cn|.

Corollary 3.3. Let C be a class that contains only finitely many zigzags. Then gr(C) exists and is
integral.

We need two auxiliary results. The first tells us that when a class is M-griddable, then it suffices
to consider the upper and lower growth rates of the gridded permutations.

Proposition 3.4 (Vatter [17, Proposition 2.1]). For a matrix of permutation classes M and a class
C Ď Grid(M), the upper or lower growth rate of C is equal, respectively, to the upper or lower growth
rate of C7.

The second result is attributed to Albert in one of Vatter’s seminal works regarding the growth
rates of permutation classes.

Proposition 3.5 (Attributed to Albert – see Vatter [18, Proposition 7.4]). The growth rate of every
subword-closed language exists and is integral.

Proof of Corollary 3.3. By Proposition 3.1, we may suppose that C is contained in a monotone
grid class Grid(M) whose defining matrix comprises a single row of (say) m cells.

The set C7 of all M-gridded permutations in C is in bijection with a subword-closed language
over an alphabet of size m (see, for example, the description in Section 7 of Vatter [18]), and in
this bijection, the set of words corresponding to C is also subword-closed. By Proposition 3.5,
the growth rate of C7 exists and is integral, and thus by Proposition 3.4 the same is true of the
growth rate of C.
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4 Juxtapositions and lwqo

Since a class that contains only finitely many zigzags is M-griddable for a monotone grid class
formed of a single row, we now want to understand what happens when we juxtapose an
arbitrary lwqo class C with such a grid class. The bulk of the remaining work lies in the next
theorem, which establishes that lwqo is preserved whenever we juxtapose an lwqo class with
Av(21) or Av(12).

Theorem 4.1. Let C be an arbitrary lwqo class, and let D be a monotone class. Then CD is lwqo.

Proof. By symmetry, we can assume that D = Av(21). Furthermore, it suffices to show that the
gridded permutations, C |D, are lwqo, since for any quasi-order L, the mapping Φ : C |D ≀ L Ñ

CD ≀ L that removes the gridline is an order-preserving surjection, and thus by Proposition 2.4,
if C |D ≀ L is wqo then so is CD ≀ L.

Let (L, ďL) be an arbitrary wqo set of labels. By Higman’s lemma, (L˚, ĺ) is wqo. Furthermore,
by Proposition 2.3 the product L ˆ L˚ is also wqo, and thus C ≀ (L ˆ L˚) is wqo since C is lwqo.
Finally, another application of Proposition 2.3 shows that C ≀ (L ˆ L˚) ˆ L˚ is wqo.

A typical element of C ≀ (LˆL˚)ˆL˚ has the form P = ((π,kπ), z1 ¨ ¨ ¨ zq) where π P C (of length
n, say), z1, . . . , zq P L, where kπ : [n] Ñ L ˆ L˚ is given by

kπ(i) = (ℓ(i), λi1 ¨ ¨ ¨ λini
)

for all i P [n], in which ℓ : [n] Ñ L, λij P L, and ni ě 0.

We now construct an order-preserving surjection Ψ from C≀(LˆL˚)ˆL˚ to C |D≀L. This mapping
takes an object P = ((π,kπ), z1 ¨ ¨ ¨ zq) and outputs an L-labelled permutation in C |D≀L of length
n+

řn
i=1 ni + q. Specifically, in Ψ(P):

• There are n points to the left of the gridline, order isomorphic to π.

• For i P [n], the ith point from the left is labelled by ℓ(i).

• There are
řn

i=1 ni + q points to the right of the gridline, forming an increasing sequence.

• For i P [n], there are ni points to the right of the gridline that lie below the ith entry on
the left, and above the next highest entry on the left (if this exists). These ni points are
labelled λi1, . . . , λini

from bottom to top.

• Above the highest entry on the left of the gridline, there are q points to the right of the
gridline, labelled z1, . . . , zq from bottom to top.

See Figure 2. The proof will be completed by showing that Ψ is an order-preserving surjection.

First, any labelled gridded permutation in C |D ≀ L comprises a set of points to the left of the
gridline (that form a permutation from C with labels from L), interleaved by sequences of points
to the right of the gridline (that form an increasing permutation, also with labels from L). With
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(ℓ(1),λ11λ12λ13)

(ℓ(2),λ21λ22)

(ℓ(3),λ31λ32λ33)

(ℓ(4),λ41λ42λ43)

(ℓ(5),λ51)

(ℓ(6),λ61λ62)

z1z2
Ψ−Ñ

ℓ(1)

λ31
λ32
λ33

ℓ(2)

λ51

λ52

ℓ(3)

λ11
λ12
λ13

ℓ(4)

λ61
λ62
λ63

ℓ(5)

λ21

ℓ(6)

λ41

λ42

z1

z2

Figure 2: The mapping Ψ : C ≀ (L ˆ L˚) ˆ L˚ Ñ C |D ≀ L.

this in mind, for any specified element of C |D ≀ L it is straightforward to identify a suitable
preimage in C ≀ (L ˆ L˚) ˆ L˚, which shows that Ψ is surjective.

Now consider S = ((σ,kσ),w1 ¨ ¨ ¨wp) and P = ((π,kπ), z1 ¨ ¨ ¨ zq) in C ≀ (Lˆ L˚)ˆ L˚, such that
S ď P.

Let σ have length m and π length n. Since σ ď π as labelled permutations, there exists a subse-
quence 1 ď i1 ă ¨ ¨ ¨ ă im ď n such that π(i1) ¨ ¨ ¨π(im) is order isomorphic to σ, and kσ(j) ď

kπ(ij) for all j P [m]. If we write kσ(j) = (ℓσ(j), λj1 ¨ ¨ ¨ λjmj
) and kπ(i) = (ℓπ(i), κi1 ¨ ¨ ¨ κini

),
then kσ(j) ď kπ(ij) means that ℓσ(j) ďL ℓπ(ij) and λj1 ¨ ¨ ¨ λjmj

ĺ κij1 ¨ ¨ ¨ κijnij
in generalised

subword order. Finally, we also require w1 ¨ ¨ ¨wp ĺ z1 ¨ ¨ ¨ zq.

To complete the proof, we show that Ψ(S) ď Ψ(P) as L-labelled gridded permutations.

The points to the left of the gridline in Ψ(S) and Ψ(P) form the L-labelled permutations (σ, ℓσ)
and (π, ℓπ), respectively. The subsequence 1 ď i1 ă ¨ ¨ ¨ ă im ď n witnesses both that σ ď

π, and that ℓσ(j) ďL ℓπ(ij), and hence (σ, ℓσ) ď (π, ℓπ). We now consider the points to the
right of the gridline. In Ψ(S), for each j P [m] the points immediately below the entry on the
left corresponding to σ(j) form an increasing sequence of length mj labelled by λj1, . . . , λjmj

.
Similarly, in Ψ(P), the points immediately below the entry corresponding to π(ij) form an
increasing sequence of length nij labelled by κij1, . . . ,κijnij

. Since λj1 ¨ ¨ ¨ λjmj
ĺ κij1 ¨ ¨ ¨ κijnij

,
we can embed these mj labelled points of Ψ(S) in the nij labelled points of Ψ(P).

Finally, in Ψ(S), there are p labelled entries to the right of the gridline that lie above all entries
to the left of the grid line. Since w1 ¨ ¨ ¨wp ĺ z1 ¨ ¨ ¨ zq, these p entries can be embedded in the q

entries of Ψ(P) in the top-right. We have now embedded every labelled entry of Ψ(S) in Ψ(P),
and the proof is complete.

Our approach to resolve one direction of Theorem 1.1 will be to apply the preceding theorem
iteratively. For the other direction, we appeal to pre-existing antichain constructions, which are
succinctly summarised by the following theorem.

The cell graph of a matrix M is the graph whose vertices are t(i, j) : Mij ‰ ∅u (corresponding
to the non-empty cells of M), and (i, j) „ (k, ℓ) if and only if i = k or j = ℓ, and there are no
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Figure 3: Typical labelled antichain elements arising in juxtaposition classes. Here, we may
take L = t‚, ˝u to be an antichain of size 2.

non-empty cells between these Mij and Mkℓ in their common row or column.

Theorem 4.2 (See Brignall [6, Theorem 1.1]). Let M be a gridding matrix where every non-empty
cell is an infinite permutation class. Then Grid(M) is not well-quasi-ordered whenever the cell graph of
M has a cycle, or a component containing two or more cells that are not monotone griddable.

Note that the ‘cyclic’ case of the above theorem is originally due to Murphy and Vatter [11].

Proof of Theorem 1.1. If one of C or D is not lwqo, then clearly neither is CD since it contains
both C and D as subclasses. So now suppose both C and D are lwqo, but contain arbitrarily
long zigzags. By Lemma 3.2 each of C and D either is not monotone griddable, or contains
arbitrarily long vertical alternations (or both).

If neither C nor D is monotone griddable, then CD is not wqo (and thus also not lwqo) by
Theorem 4.2. (See Figure 3 (left) for a typical antichain element in this case.)

Now suppose, without loss of generality, that C is monotone griddable but contains long verti-
cal alternations, and D is not monotone griddable. By Theorem 2.1, the class D contains

À

21
or

Á

12. Consequently, CD contains Grid(M) for a matrix M of the following form:

M =

[
E1

À

21
E2

À

21

]
or

[
E1

Á

12
E2

Á

12

]
where E1 and E2 are each either Av(21) or Av(12). In any case, the cell graph of M comprises a
component containing two cells that are not monotone griddable (again by Theorem 2.1), and
hence Grid(M) is not wqo by Theorem 4.2. (See Figure 3 (middle) for a typical antichain element
in this case.)

Finally for this direction, suppose that both C and D are monotone griddable, but both contain
arbitrarily long vertical alternations. In this case, CD contains Grid(M) for a matrix M of the
following form

M =

[
E1 E2
E3 E4

]
where E1, E2, E3 and E4 are each either Av(21) or Av(12). In any case, the cell graph of M

comprises a component that is a cycle, so Grid(M) is once again not wqo by Theorem 4.2, and
hence neither is CD. (See Figure 3 (right) for a typical antichain element in this case.)
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For the other direction, suppose (without loss of generality) that C is lwqo, and D contains only
bounded length zigzags. By Proposition 3.1, there exists a single-row monotone grid class E

such that D Ď E. We claim that CE is lwqo.

Write E = Grid(M) where M =
[
E1 E2 ¨ ¨ ¨ Ek

]
for classes Ei each equal to Av(21) or Av(12)

(1 ď i ď k). Let C0 = C, and for 1 ď i ď k set

Ci = Grid(
[
C E1 ¨ ¨ ¨ Ei

]
).

Now C0 = C is lwqo, and it follows by induction and Theorem 4.1 that Ci = Ci´1 Ei is lwqo for
each i = 1, . . . ,k. In particular Ck = CE is lwqo. The result now follows since CD Ď CE.

5 Concluding remarks

The methods and ideas in this note can almost certainly be adapted to a characterisation of
lwqo in grid classes, although it would likely be technically and notationally awkward to do
so.

A more interesting future direction is to consider lwqo in subclasses of these grid classes. For
example, while the juxtaposition of

Á

12 with
À

21 contains the infinite antichain comprising
elements of the form shown on the left of Figure 3, there exist subclasses of this juxtaposition
that are lwqo. Individual cases such as this are relatively easy to characterise, but a general
answer seems further out of reach.

Can a similar characterisation can be achieved for (unlabelled) wqo? Although the antichain
elements depicted in Figure 3 use two labels, the proof of Theorem 1.1 in fact uses only unla-
belled antichains, so aspects of this question already have an answer. However, if C is a wqo-
but-not-lwqo class, then it is sometimes possible to break wqo by juxtaposing C with the class
containing just the singleton permutation, while in other cases, C must be juxtaposed with two
entries. In general, we cannot hope to make progress on this question without a significantly
deeper understanding of wqo in permutation classes.
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