
Simple permutations: decidability and

unavoidable substructures
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Abstract

We prove that it is decidable whether a finitely based permutation class contains
infinitely many simple permutations, and establish an unavoidable substructure
result for simple permutations: every sufficiently long simple permutation contains
an alternation or oscillation of length k.
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1 Introduction

Simple permutations are the building blocks of permutation classes. As such,
classes with only finitely many simple permutations, e.g., the class of 132-
avoiding permutations, have nice properties. To name three: these classes have
algebraic generating functions (as established by Albert and Atkinson [1]; see
Brignall, Huczynska, and Vatter [9] for extensions), are partially well-ordered
(see the conclusion), and are finitely based [1]. It is natural then to ask which
finitely based classes contain only finitely many simple permutations. Our
main result establishes that this can be done algorithmically:

Theorem 1 It is possible to decide whether a permutation class given by a
finite basis contains infinitely many simple permutations.
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Fig. 1. The plot of a simple permutation.

Permutation classes. Two sequences u1, . . . , uk and w1, . . . , wk of distinct
real numbers are said to be order isomorphic if they have the same relative
comparisons, that is, if ui < uj if and only if wi < wj . The permutation π is
said to contain the permutation σ, written σ ≤ π, if π has a subsequence that
is order isomorphic to σ; otherwise π is said to avoid σ. For example, π =
891367452 contains σ = 51342, as can be seen by considering the subsequence
91672 (= π(2), π(3), π(5), π(6), π(9)). This pattern-containment relation is a
partial order on permutations. We refer to downsets of permutations under this
order as permutation classes. In other words, if C is a permutation class, π ∈ C,
and σ ≤ π, then σ ∈ C. We denote by Cn the set C ∩ Sn, i.e. the permutations
in C of length n, and we refer to

∑

|Cn|x
n as the generating function for C.

Recall that an antichain is a set of pairwise incomparable elements. For any
permutation class C, there is a unique (possibly infinite) antichain B such that
C = Av(B) = {π : β 6≤ π for all β ∈ B}. This antichain B, which consists of
the minimal permutations not in C, is called the basis of C. Permutation classes
arise naturally in a variety of settings, ranging from sorting (see, e.g., Bóna’s
survey [6]) to algebraic geometry (see, e.g., Lakshmibai and Sandhya [15]).

It will also be useful to have a pictorial description of order isomorphism.
Two sets S and T of points in the plane are said to be order isomorphic if
the axes can be stretched and shrunk in some manner to map one of the sets
onto the other, i.e., if there are strictly increasing functions f, g : R → R

such that {(f(s1), g(s2)) : (s1, s2) ∈ S} = T . (As the inverse of a strictly
increasing function is also strictly increasing, this is an equivalence relation).
The plot of the permutation π is the point set {(i, π(i))}, and every finite
point set in the plane in which no two points share a coordinate (often called
a generic or noncorectilinear set) is order isomorphic to the plot of a unique
permutation; in practice we simply say that a generic point set is order iso-
morphic to a permutation. This geometric viewpoint makes clear (if they were
not already) several symmetries of the pattern-containment order. The maps
(x, y) 7→ (−x, y) and (x, y) 7→ (y, x), which when applied to generic point sets
correspond to reversing and inverting permutations, generate a dihedral group
with eight elements.
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Fig. 2. The points p1, . . . , p7 form a proper pin sequence and the gray box denotes
rect(p1, . . . , p7). The point x satisfies the externality and separation conditions for
this pin sequence and thus could be chosen as p8; y, however, fails the separation
condition.

Simple permutations. An interval in the permutation π is a set of contigu-
ous indices I = [a, b] such that the set of values π(I) = {π(i) : i ∈ I} also forms
an interval of natural numbers. Every permutation π of [n] = {1, 2, . . . , n} has
intervals of size 0, 1, and n; π is said to be simple if it has no other intervals.
Note that simplicity is preserved under the eight symmetries mentioned above.
Figure 1 shows the plot of a simple permutation.

We need several notions from [8]. Given points p1, . . . , pm in the plane, we de-
note by rect(p1, . . . , pm) the smallest axes-parallel rectangle containing them.
A pin for the points p1, . . . , pm is any point pm+1 not contained in rect(p1, . . . , pm)
that lies either horizontally or vertically amongst them. A proper pin sequence
is a sequence of points in the plane satisfying two conditions for all i:

• Externality condition: pi+1 must lie outside rect(p1, . . . , pi). (Note that this
forces the pins to be distinct.)
• Separation condition: pi+1 must separate pi from {p1, . . . , pi−1}. That is, pi+1

must lie horizontally or vertically between rect(p1, . . . , pi−1) and pi. (Note
that this condition is vacuous for i = 0, 1.)

Figure 2 illustrates these definitions. The astute reader may note that we have
replaced the maximality condition of [8] with the externality condition. This
change reflects the differing viewpoints of the papers; while [8] was concerned
with finding proper pin sequences in permutations, we will be building proper
pin sequences from scratch, and in this context the externality and separation
conditions together imply the maximality condition.

Proper pin sequences are intimately connected with simple permutations. In
one direction, we have:

Theorem 2 (Brignall, Huczynska, and Vatter [8]) If p1, . . . , pm is a proper
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Fig. 3. From left to right: a parallel alternation (which in this case happens to be
simple), a wedge simple permutation of type 1, and a wedge simple permutation of
type 2.

pin sequence and m ≥ 5 then one of the sets of points {p1, . . . , pm}, {p1, . . . , pm}\
{p1}, or {p1, . . . , pm} \ {p2} is order isomorphic to a simple permutation.

While proper pin sequences are simple or nearly so, there are other types of
simple permutation. We call attention to three families, plotted in Figure 3. An
alternation is a permutation in which every odd entry lies to the left of every
even entry, or any symmetry of such a permutation. A parallel alternation is
one in which these two sets of entries form monotone subsequences, either both
increasing or both decreasing. A wedge alternation is one in which the two
sets of entries form monotone subsequences pointing in opposite directions.
Whereas every parallel alternation contains a long simple permutation (to
form this simple permutation we need, at worst, to remove two points), wedge
alternations do not. However, there are two different ways to add a single point
to a wedge alternation to form a simple permutation (called wedge simple
permutations of types 1 and 2).

These families of permutations capture, in a sense formalised below, the di-
versity of simple permutations.

Theorem 3 (Brignall, Huczynska, and Vatter [8]) For any fixed k, ev-
ery sufficiently long simple permutation contains either a proper pin sequence
of length at least k, a parallel alternation of length at least k, or wedge simple
permutation of length at least k.

Theorems 2 and 3 show that Theorem 1 will follow if we can decide when
a class has arbitrarily long parallel alternations, wedge simple permutations,
and proper pin sequences.

2 The Easy Decisions

We begin by describing how to decide if a permutation class given by a finite
basis contains arbitrarily long parallel alternations or wedge simple permuta-
tions. Consider first the case of parallel alternations, oriented \\, as in Figure 3.
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These alternations nearly form a chain in the pattern-containment order; pre-
cisely, there are two such parallel alternations of each length, and each of
these contains a parallel alternation with one fewer point and all shorter par-
allel alternations of the same orientation. Thus if the permutation class C has
a basis element contained in any of these parallel alternations, it will contain
only finitely many of them. Conversely, if C has no such basis element, it will
contain all of these alternations. Therefore we need to characterise the per-
mutations that are contained in any parallel alternation. To do so, we must
first review juxtapositions of classes.

Given two permutation classes C and D, their horizontal juxtaposition,
[

C D

]

,

consists of all permutations π that can be written as a concatenation στ where
σ is order isomorphic to a permutation in C and τ is order isomorphic to a
permutation in D, or in other words, those permutations π whose plot can be
divided into two parts by a single vertical line so that the points to the left of
the line are order isomorphic to a member of C while the points to the right
of the line are order isomorphic to a member of D.

Proposition 4 (Atkinson [4]) Let C and D be permutation classes. The ba-

sis elements of the class
[

C D

]

can all be written as concatenations ρστ where

either:

• σ is empty, ρ is order isomorphic to a basis element of C, and τ is order
isomorphic to a basis element of D, or

• |σ| = 1, ρσ is order isomorphic to a basis element of C, and στ is order
isomorphic to a basis element of D.

(In particular, if two classes are finitely based then their juxtaposition is also
finitely based.)

There is an obvious symmetry to this operation: the vertical juxtaposition of

the classes C and D, denoted







C

D





, consists of those permutations π whose

plot can be divided into two parts by a single horizontal line so that the points
above the line are order isomorphic to a member of C while the points below
the line are order isomorphic to a member of D.

Proposition 4 is all we need to solve the parallel alternation decision problem.

Proposition 5 The permutation class Av(B) contains only finitely many par-
allel alternations if and only if B contains an element of every symmetry of
the class Av(123, 2413, 3412).

Proof. The set of permutations that are contained in at least one (and thus,
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Fig. 4. The situation in the proof of Proposition 6.

all but finitely many) parallel alternation(s) oriented \\ is

[

Av(12) Av(12)

]

= Av(123, 2413, 3412),

as desired. 2

Like parallel alternations, the wedge simple permutations of a given type and
orientation also nearly form a chain in the pattern-containment order, and
thus we are able to take much the same approach with them.

Proposition 6 The permutation class Av(B) contains only finitely many
wedge simple permutations of type 1 if and only if B contains an element
of every symmetry of the class

Av(1243, 1324, 1423, 1432, 2431, 3124, 4123, 4132, 4231, 4312).

Proof. The wedge simple permutations of type 1 that are oriented <, as in
Figure 3, are contained in













Av(21)

Av(12)






{1}






=

[

Av(132, 312) Av(12, 21)

]

=Av(1324, 1423, 1432, 2431, 3124, 4123, 4132, 4231).

It is easy to see that these wedge simple permutations also avoid 1243 and
4312, and thus they are contained in the class stated in the proposition, which
we call D.

Now take a permutation π ∈ D of length n. We would like to show that π is

contained in a wedge simple permutation. If π ∈







Av(21)

Av(12)






then π is clearly
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contained in a wedge simple permutation, so suppose this is not the case. Thus

π(1) · · ·π(n − 1) is order isomorphic to a permutation in







Av(21)

Av(12)





, and it

suffices to show that:

• the entries of π above π(n) are increasing, and
• the entries of π below π(n) are decreasing.

We prove the first of these items; the second then follows by symmetry because
it can be observed from its basis that D is invariant under complementation,
i.e., if the length n permutation π lies in D then so does the permutation πc

defined by πc(i) = n+1−π(i). Suppose to the contrary that there is a descent
above π(n). Thus there are indices i < j < n such that π(i) > π(j) > π(n).
Choose these two indices to be lexicographically minimal with this property.
There must be other entries of π as otherwise π is simply 321, which lies in the
juxtaposition we have assumed π does not lie in. We now divide the entries
above π(n) into 7 regions as shown in Figure 4. About these regions we can
state:

• regions (a)–(e) and (i) are empty because π avoids 1432, 4132, 4312, 2431,
4231, and 4231, respectively;
• the points in region (f) are decreasing because π avoids 4231;
• regions (g) and (h) are empty by the minimality of i and j, respectively;
• the points in region (j) are increasing because π avoids 2431.

This establishes that π lies in







Av(21)

Av(12)






, a contradiction that completes the

proof. 2

Proposition 7 The permutation class Av(B) contains only finitely many
wedge simple permutations of type 2 if and only if B contains an element
of every symmetry of the class

Av(2134, 2143, 3124, 3142, 3241, 3412, 4123, 4132, 4231, 4312).

Proof. Let D denote the class in the statement of the proposition. It is clear
that the wedge simple permutation of type 2 that are oriented Λ, as in Figure 3,
lie in D, and so it remains to show that every permutation π ∈ D is contained
in one of these wedge simple permutations. Thus π is contained in
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Fig. 5. The two situations in the proof of Proposition 7.
[

Av(21) Av(12) {1}

]

=
[

Av(213, 312) Av(12, 21)

]

= Av(2134, 2143, 3124, 3142, 3241, 4123, 4132, 4231),

and so in particular, the permutation obtained by removing the rightmost

element of π, say π(n), is contained in
[

Av(21) Av(12)

]

. It suffices to show

that π(n) is n or n− 1. Suppose, to the contrary, that there are at least two
entries of π above π(n). Then we have one of the two situations depicted in
Figure 5.

Again, we use the basis elements of D to derive the following about the labelled
regions:

• regions (a.a), (a.c), and (b.a) are empty because π avoids 4312, 4231, and
3412, respectively;
• the points in regions (a.b) and (b.b) are decreasing because π avoids 4231.

These observations, combined with the fact that the permutation obtained

from π by removing π(n) lies in
[

Av(21) Av(12)

]

shows that π itself lies in
[

Av(21) Av(12)

]

, and so π is contained in one of the desired wedge simple

permutations, completing the proof. 2

3 Pin Words

This leaves only proper pin sequences. Proper pin sequences, as well as sub-
sets of proper pin sequences, can be described naturally, if not uniquely, by
words over the eight-letter alphabet consisting of the numerals {1, 2, 3, 4} and
directions {L, R, U, D} (standing for left, right, up, and down). In this section
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Fig. 6. The proper pin sequence p1, . . . , p15 shown corresponds to the strict pin
word w = 3RDRDLULURDLDRD. The filled points correspond to the pin word
u = 4RDL21DL, the permutation corresponding to this word, i.e., the permutation
order isomorphic to the filled points, is 27453618.

we study these words, laying the groundwork for the proof of our main result
in the fourth.

The word w = w1 · · ·wm ∈ {1, 2, 3, 4, L, R, U, D}∗ is a pin word if it satisfies:

(W1) w begins with a numeral,
(W2) if wi−1 ∈ {L, R} then wi ∈ {1, 2, 3, 4, U, D}, and
(W3) if wi−1 ∈ {U, D} then wi ∈ {1, 2, 3, 4, L, R}.

Pin words with precisely one numeral, which we term strict pin words, corre-
spond to proper pin sequences and it is this correspondence we describe first.
Let w = w1 · · ·wm denote a strict pin word and begin by placing a point p1

in quadrant w1. Next take p2 to be a pin in the direction w2 that separates p1

from the origin, denoted 0. Continue in this manner, taking pi+1 to be a pin in
the direction wi+1 that satisfies the externality condition and separates pi from
0, p1, . . . , pi−1. See Figure 6 for an example. Upon completion, 0, p1, . . . , pm is
a proper pin sequence, and more importantly, p1, . . . , pm is as well; it is the
latter pin sequence that we say corresponds to w. Note that not only is this
sequence unique up to order isomorphism 2 , but also the quadrant that point
pi lies in is determined by w (indeed, for i ≥ 2, this quadrant is determined
by wi−1 and wi). We say that the permutation corresponding to w is the per-
mutation that is order isomorphic to the set of points p1, . . . , pm. Conversely,

2 It is for this reason that we refer to it as the proper pin sequence corresponding
to w.
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we have the following result.

Lemma 8 Every proper pin sequence corresponds to at least one strict pin
word.

Proof. Let p1, . . . , pm be a proper pin sequence in the plane. It suffices to
place a point p0 (corresponding to the origin) so that p0, p1, . . . , pm form a
proper pin sequence, as then the pin word for this sequence can be read. By
symmetry, let us assume that p1 lies below and to the right of p2 and that p3

is a left or right pin. Hence p3 lies vertically between p1 and p2, and by the
separation condition, p3 is the only such pin. We place p0 vertically between
p1 and p3 and minimally to the left of p2, i.e., so that no pin lies horizontally
between p2 and p0. Clearly p2 separates p1 from p0 while p3 separates p2 from
{p0, p1}. Moreover, our placement of p0 guarantees that no later pins separate
{p0, p1, p2}, so since pi+1 separates pi from {p1, . . . , pi−1}, it will also separate
pi from {p0, p1, . . . , pi−1}. 2

It remains to construct the permutations that correspond to nonstrict pin
words. Letting w = w1 · · ·wm denote such a word, we begin as before. Upon
reaching a later numeral, say wi, we essentially collapse p1, . . . , pi−1 into the
origin and begin anew. More precisely, we place pi in quadrant wi so that it
does not separate any of 0, p1, . . . , pi−1. If wi+1 is a direction, we take pi+1 to be
a pin in the direction wi+1 that satisfies the externality condition and separates
pi from 0, p1, . . . , pi−1; if wi+1 is a numeral then we again place pi+1 in quadrant
wi+1 so that it does not separate any of the former points. In this process we
build a sequence of points corresponding to w: p1, . . . , pm. Again, see Figure 6
for an example. As is the case with strict pin words, this sequence of points is
unique up to order isomorphism, and we define the permutation corresponding
to w to be the permutation order isomorphic to this set of points.

We now define a partial order, �, on pin words. Let u and w be two pin words.
We define a strong numeral-led factor to be a sequence of contiguous letters
beginning with a numeral and followed by any number of directions (but no
numerals) and begin by writing u in terms of its strong numeral-led factors as
u = u(1) · · ·u(j). We then write u � w if w can be chopped into a sequence of
factors w = v(1)w(1) · · · v(j)w(j)v(j+1) such that for all i ∈ [j]:

(O1) if w(i) begins with a numeral then w(i) = u(i), and
(O2) if w(i) begins with a direction, then v(i) is nonempty, the first letter of

w(i) corresponds (in the manner described above) to a point lying in the
quadrant specified by the first letter of u(i), and all other letters (which
must be directions) in u(i) and w(i) agree.

(It is trivial to check that� is reflexive and antisymmetric; transitivity requires
only slightly more effort.) Returning a final time to Figure 6, the division of
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u into strong numeral-led factors is (4RDL)(2)(1DL), while w can be written
as (3R)(DRDL)(U)(L)(U)(RDL)(DRD). We now match factors. Since w3

corresponds to p3 which lies in quadrant 4, (4RDL) can embed as (DRDL);
because p8 lies in quadrant 2, the (2) factor in u can embed as (L); lastly, p10

lies in quadrant 1, so the (1DL) factor in u can embed as (RDL) in w. This
verifies that u � w.

This order is not merely a translation of the pattern-containment order on
permutations (consider the words 11, 13, 1L, 1D, 21, 23, 2R, 2U, . . . , which are
incomparable under � yet correspond to the same permutation), but ≤ and
� are closely related:

Lemma 9 If the pin word w corresponds to the permutation π and σ ≤ π
then there is a pin word u corresponding to σ with u � w. Conversely, if
u � w then the permutation corresponding to u is contained in the permutation
corresponding to w.

Proof. If w = w1 · · ·wm corresponds to the sequence of points p1, . . . , pm then
the sequence p1, . . . , pℓ−1, pℓ+1, . . . , pm corresponds to the pin word w1 · · ·wℓ−1w

′

ℓ+1wℓ+2 · · ·wm �
w, where w′

ℓ+1 is the numeral corresponding to the quadrant containing pℓ+1.
Iterating this observation proves the first half of the lemma.

The other direction follows similarly. Write u in terms of its strong numeral-led
factors as u = u(1) · · ·u(j) and suppose that the expression w = v(1)w(1) · · · v(j)w(j)v(j+1)

satisfies (O1) and (O2). Now delete every point in the sequence of points corre-
sponding to w that comes from a letter in a v(i) factor. By conditions (O1) and
(O2) and the remarks in the previous paragraph, it follows that the resulting
sequence of points corresponds to u. Therefore the permutation corresponding
to u is contained in the permutation corresponding to w. 2

4 Brief Review of Regular Languages and Automata

The classic results mentioned here are covered more comprehensively in many
texts, for example, Hopcroft, Motwani, and Ullman [14], so we give only the
barest details.

A nondeterministic finite automaton over the alphabet A consists of a set S
of states , one of which is designated the initial state, a transition function δ
from S × (A ∪ {ε}) into the power set of S, and a subset of S designated as
accept states . The transition diagram for this automaton is a directed graph
on the vertices S, with an arc from r to s labelled by a precisely if s ∈ δ(r, a).
The initial state is designated by an inward-pointing arrow. An automaton
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Fig. 7. An automaton that accepts the language of strict pin words (V and H are
accept states).

accepts the word w1 · · ·wm if there is a walk from the initial state to an accept
state whose arcs are labelled (in order) by w1, . . . , wm; the set of all such words
is the language accepted by the automaton. For example, Figure 7 shows the
transition diagram for an automaton that accepts strict pin words.

A language that is accepted by a finite automaton is called recognisable. By
Kleene’s theorem, the recognisable languages are precisely the regular lan-
guages 3 , and they have numerous closure properties, of which we use two:
the union of two regular languages and the set-theoretic difference of two reg-
ular languages are also regular languages. The other result we need about
regular languages is below.

Proposition 10 It can be decided whether a regular language given by a finite
accepting automaton is infinite.

Sketch of proof. A regular language is infinite if and only if one can find a walk
in the given accepting automaton that begins at the initial state, contains a
directed cycle, and ends at an accept state. 2

A finite transducer is a finite automaton that can both read and write. Trans-
ducers also have states, S, one of which is designated the initial state and
several may be designated accept states. The transition function for a trans-
ducer over the alphabet A is a map from S × (A ∪ {ε})× (A ∪ {ε}) into the
power set of A. In the transition diagram of a transducer we label arcs by

pairs, so the transition r
a,b
−→ s stands for “read a, write b”. Empty inputs and

outputs are allowed, both designated by ε, e.g., r
ε,b
−→ s means “read nothing,

write b”. A word w ∈ A∗ is produced from the word u ∈ A∗ by the transducer
T if there is a walk

s1
u1,w1

−→ s2
u2,w2

−→ s3 · · ·
um,wm

−→ sm+1

3 The reader unfamiliar with formal languages is welcomed to take this as the
definition of regular languages.
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in the transition diagram of T beginning at the initial state, ending at an
accept state, and such that u = u1 · · ·um and w = w1 · · ·wm (note that
these ui’s and wi’s are allowed to be ε). We denote the set of words that the
transducer T produces from set of input words L by T (L).

Proposition 11 If L is a regular language and T is a finite transducer then
T (L) is also regular, and a finite accepting automaton for T (L) can be effec-
tively constructed.

Sketch of proof. Let M denote a finite accepting automaton for L. Suppose
that the states of M are R and the states of T are S. The states of an accepting

automaton for T (L) are then R × S, where there is a transition (r1, s1)
b
−→

(r2, s2) whenever there are transitions r1
a
−→ r2 and s1

a,b
−→ s2 in M and T ,

respectively. 2

5 Decidability

We are now in a position to prove our main result. We wish to decide whether
the class Av(B), where B is finite, contains only finitely many simple per-
mutations. Propositions 5–7 show how to decide if Av(B) contains arbitrarily
long parallel alternations or wedge simple permutations, so by Theorem 3 it
suffices to decide if Av(B) contains arbitrarily long proper pin sequences.

Consider a permutation π that is order isomorphic to a proper pin sequence
and thus, by Lemma 8, corresponds to at least one strict pin word, say w. If
π 6∈ Av(B) then π ≥ β for some β ∈ B. By Lemma 9, β corresponds to a pin
word u � w. Conversely, if w � u for some u corresponding to β ∈ B, then
Lemma 9 shows that π ≥ β. Therefore the set

{strict pin words w : w � u for some u corresponding to a β ∈ B}

consists of all strict pin words which represent permutations not in Av(B),
so by removing this set from the regular language of all strict pin words we
obtain the language of all strict pin words corresponding to permutations in
Av(B). In the upcoming lemma we prove that for any pin word u, the set
{strict pin words w : w � u} forms a regular language, and thus the language
of strict pin words in Av(B) is regular. It remains only to check if this language
is finite or infinite, which can be determined by Proposition 10.

Lemma 12 For any pin word u, the set {strict pin words w : w � u} forms
a regular language, and a finite accepting automaton for this language can be
effectively constructed.
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Fig. 8. The transducer that produces all strict pin words containing the input pin
word.

Proof. Let T denote the transducer in Figure 8. We claim that a strict pin word
w lies in T (u) if and only if w � u. The lemma then follows by intersecting
T (u) with the regular language of all strict pin words.

We begin by noting several prominent features of T :

(T1) Every transition writes a symbol.
(T2) Other than the start state S, the automaton is divided into two parts,

the “fabrication” states Fi and the “copy” states Ci.
(T3) Every transition to a fabrication state has ε input.
(T4) Every transition from a fabrication state to a copy state reads a numeral

and writes a direction, and except for the transitions from S, these are
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the only transitions that read a numeral.
(T5) All transitions between copy states read a direction and write the same

direction, these are the only transitions that read a direction, and there
is such a transition for every copy state and every direction.

(T6) From every fabrication and copy state, each direction can be output via
a transition to a fabrication state with input ε.

(T7) The subscripts of the fabrication and copy states indicate quadrants: if
the strict pin word w1 · · ·wn, corresponding to the pin sequence p1, . . . , pn,
has just been written by the transducer and the transducer is currently
in state Ci or Fi, then pn lies in quadrant i. Moreover, if the pin word
u1 · · ·um, corresponding to the pin sequence q1, . . . , qm, has been read
and the transducer currently lies in the copy state Ci, then qm lies in
quadrant i.

(T8) From any state, any copy state can be reached by two transitions, the

first being a transition to a fabrication state; for example: C2
ε,D
−→ F3

4,R
−→

C4.

First we prove that w � u for every strict pin word w produced from input
u by this transducer. We prove this by induction on the number of strong
numeral-led factors in u. The base case is when u consists of precisely one
strong numeral-led factor. Suppose that the output right before the first letter
of u is read is v(1). There are two cases. If v(1) is empty, then the transducer is
currently in state S, and must both read and write the first letter of u, moving
the transducer into state Cu1

. At this point, (T5) shows that the transducer
could continue to transition between copy states, outputting a word w =
uv(2) � u. The only other option available to the transducer (again, by (T5))
is to transition to a fabrication state, but then (T4) shows that the transducer
can never again reach a copy state (because u has only one numeral), and thus
by (T3), it can never finish reading u. In the other case, where v(1) is nonempty,
the transducer lies in a fabrication state by (T4). The next transition must
then by (T4) be into a copy state, and (T7) guarantees that the letter written
corresponds to a point in quadrant u1. The same argument as in the previous
case shows that the transducer is now confined to copy states until the rest of
u has been read, and thus the transducer will output v(1)w(1)v(2) � u.

Now suppose that u decomposes into j ≥ 2 strong numeral-led factors as
u(1) · · ·u(j). By induction, at the point where u(j−1) has just been read, the
transducer has output a word v(1)w(1) · · · v(j−1)w(j−1) and lies in a copy state.
Since the first letter of u(j) is a numeral, the transducer is forced by (T4)
to transition to a fabrication state, and this transition will write but not
read by (T3). The transducer can then transition freely between fabrication
states. Let us suppose that v(1)w(1) · · · v(j−1)w(j−1)v(j) has been output at the
moment just before the transducer begins reading u(j). As in our second base
case above, the transducer must at this point transition to a copy state by
(T4), which it will do by reading the numeral that begins u(j) and writing
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a letter that — by (T7) — corresponds to a point in this quadrant. The
situation is then analogous to the base case, and the transducer will output
v(1)w(1) · · · v(j−1)w(j−1)v(j)w(j)v(j+1) � u.

Now we need to verify that the transducer produces every strict pin word w
with w � u. Break u into its strong numeral-led factors u(1) · · ·u(j) and suppose
that the factorisation w = v(1)w(1) · · · v(j−1)w(j−1)v(j)w(j)v(j+1) satisfies (O1)
and (O2). If v(1) is nonempty then it can be output immediately by a sequence
of transitions to fabrication states by (T6); by (O2) and (T7), the first letter
of w(1) (which must be a direction because w is a strict pin word) can then be
output by transitioning to a copy state, from which (T5) shows that the rest
of u(1) can be read and the rest of w(1) can be written. If v(1) is empty then
u(1) = w(1) by (O1). The transducer can, by (T5), read u(1) and write w(1)

by transitioning from S to a copy state and then transitioning between copy
states. Because w is a strict pin word, (O2) shows that v(2) must be nonempty,
and (T6) shows that v(2) can be output without reading any more letters of
u. We then must output w(2) whilst reading u(2). The only possible obstacle
would be reaching the correct copy state, but (T8) guarantees that this can
be done. The rest of u can be read, and the rest of w written, in the same
fashion. 2

The proof of Theorem 1 now follows from the discussion at the beginning of
the section.

6 Unavoidable Substructures in Simple Permutations

The pin words used to prove our main result allow us to prove an unavoidable
substructures result for simple permutations. This provides an easy-to-check
sufficient (but, n.b., not necessary) condition to guarantee that a permutation
class contains only finitely many simple permutations.

We define the increasing oscillating sequence to be the infinite sequence

4, 1, 6, 3, 8, 5, . . . , 2k + 2, 2k − 1, . . . .

A plot is shown in Figure 9.

We define an increasing oscillation to be any simple permutation that is con-
tained in the increasing oscillating sequence, a decreasing oscillation to be the
reverse of an increasing oscillation, and an oscillation to be any permutation
that is either an increasing oscillation or a decreasing oscillation.
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Fig. 9. A plot of the increasing oscillating sequence.

Theorem 13 Every sufficiently long simple permutation contains an alterna-
tion of length k or an oscillation of length k.

Proof. By Theorem 3, it suffices to prove that every sufficiently long proper
pin sequence contains an alternation or oscillation of length k. Take a proper
pin sequence p1, . . . , pm. By Lemma 8, we may assume that these pins lie in
the plane in such a way that 0, p1, . . . , pm is also a proper pin sequence, where
0 denote the origin.

We say that this sequence crosses an axis whenever pi+1 lies on the other side
of the x- or y-axis from pi, and refer to {pi, pi+1} as a crossing . First suppose
that p1, . . . , pm contains at least 2k crossings, and so crosses some axis at
least k times; suppose that this is the y-axis. Each of these y-axis crossings
lies either in quadrants 1 and 2 or in quadrants 3 and 4. We refer to these
as upper crossings and lower crossings, respectively. By the separation and
externality conditions, both pins in an upper crossing lie above all previous
crossings, while both pins in a lower crossing lie below all previous crossings.
Thus we can find among the pins of these crossings an alternation of length
at least k.

Therefore we are done if the pin sequence contains at least 2k crossings, so
suppose that it does not, and thus that the pin sequence can be divided into
at most 2k contiguous sets of pins so that each contiguous set lies in the same
quadrant. Each of these contiguous sets is restricted to two types of pin (e.g.,
a contiguous set in quadrant 3 can only contain down and left pins) and thus
since these two types of pin must alternate, these contiguous sets of pins must
be order isomorphic to an oscillation (e.g., a contiguous set in quadrant 3 must
be order isomorphic to an increasing oscillation). Thus we are also done if one
of these contiguous sets has length at least k, which it must if the original pin
sequence contains at least m ≥ 2k2 pins, proving the theorem. 2

Thus a class without arbitrarily long alternations or arbitrarily long oscilla-
tions necessarily contains only finitely many simple permutations. First note
that these strong conditions are not necessary; for example, the juxtaposition
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[

Av(21) Av(12)

]

contains arbitrarily long (wedge) alternations, yet the only

simple permutations in this class are 1, 12, and 21. The work of Albert, Lin-
ton, and Ruškuc [3] also attests to the strength of these conditions; they prove
that classes without long alternations have rational generating functions.

Still, there are benefits to having such a straightforward sufficient condition.
For example, such classes are guaranteed to be partially well-ordered. As we
have already shown how to decide if Av(B) contains arbitrarily long alter-
nations, to convert Theorem 13 from a theorem about unavoidable substruc-
tures to an easily checked sufficient condition for containing only finitely many
simple permutations we need to decide if Av(B) contains arbitrarily long os-
cillations. As with the parallel alternations from Section 2, the increasing
oscillations nearly form a chain in the pattern-containment order, so we need
only compute the class of permutations that are contained in some increas-
ing oscillation, or equivalently, order isomorphic to a subset of the increasing
oscillating sequence. This computation is given without proof in Murphy’s
thesis [16], so we prove it below.

Proposition 14 The class of all permutations contained in all but finitely
many increasing oscillations is Av(321, 2341, 3412, 4123).

Proof. It is straightforward to see that every oscillation avoids 321, 2341, 3412,
and 4123, so it suffices to show that every permutation avoiding this quartet
is contained in the increasing oscillation sequence. We use the rank encoding 4

for this. The rank encoding of the permutation π of length n is the word
d(π) = d1 · · · dn where

di = |{j : j > i and π(j) < π(i)}|,

i.e., di is the number of points below and to the right of π(i). It is easy to
verify that a permutation can be reconstructed from its rank encoding. Now
consider the rank encoding for some π ∈ Av(321, 2341, 3412, 4123). Routinely,
one may check:

• d(π) ∈ {0, 1, 2}∗,
• d(π) does not end in 1, 2, or 20,
• d(π) does not contain 21, 22, 111, 112, 2011, or 2012 factors.

We now describe how to embed a permutation with rank encoding satisfying
these rules into the increasing oscillating sequence. Suppose that we have
embedded π(1), . . . , π(i − 1). If di ≥ 1 then we embed π(i) as the next even
entry in the sequence. If di = 0 then we embed π(i) as the next odd entry if it
ends a 20, 110, or 2010 factor, and as the second next odd entry otherwise. See

4 We refer the reader to Albert, Atkinson, and Ruškuc [2] for a detailed study of
the rank encoding.
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Fig. 10. The filled points show the embedding of 2153647, with rank encoding
1020100, given by the proof of Proposition 14.

Figure 10 for an example. It remains to show that this is indeed an embedding
of π; to do this it suffices to verify that the number of points of this embedding
below and to the right our embedding of π(i) is di. This follows from the rules
above. 2

7 Concluding Remarks

Other contexts. Analogues of simplicity can be defined for other combina-
torial objects, and such analogues have received considerable attention. For
example, let T be a tournament (i.e., an oriented complete graph) on the ver-
tex set V (T ) with (directed) edge set E(T ). For a set A ⊆ V (T ) and vertex
v /∈ A, we write v → A if (v, a) ∈ E(T ) for all a ∈ A and similarly v ← A
if (a, v) ∈ E(T ) for all a ∈ A. An interval in T is a set A ⊆ V (T ) such that
for all v /∈ A, either v → A or v ← A. Clearly the empty set, all singletons,
and the entire vertex set are all intervals of T , and T is said to be simple if
it has no others. Crvenković, Dolinka, and Marković [11] survey the algebraic
and combinatorial results concerning simple tournaments.

In the graph case the term “simple” is already taken; two correspondent terms
are prime and indecomposable. An interval (also commonly, module) in the
graph G is a set A ⊆ V (G) such that every vertex v /∈ A is adjacent to every
vertex in A or to none. We refer to Brandstädt, Le, and Spinrad’s text [7] for
a survey of simplicity in this context.

Simplicity has also, to some extent, been studied for relational structures in
general, for example, by Földes [12] and Schmerl and Trotter [17].

To the best of our knowledge, no analogue of Theorem 1 is known for these
other contexts. An approach similar to the one we have taken would require
an analogue of Theorem 3 which, as remarked in [8], remains furtive.
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Fig. 11. The basis elements of length 6 for the pin class (up to symmetry).

Partial well-order. Recall that a partially ordered set is said to be partially
well-ordered (pwo) if it contains neither an infinite strictly decreasing chain
nor an infinite antichain. While permutation classes cannot contain infinite
strictly decreasing chains, there are infinite antichains of permutations, see
Atkinson, Murphy, and Ruškuc [5]. A permutation class with only finitely
many simple permutations, on the other hand, is necessarily pwo (Albert and
Atkinson [1] derive this from a result of Higman [13]). Thus Theorem 1 bears
some resemblance to the pwo decidability question:

Question 15 Is it possible to decide if a permutation class given by a finite
basis is pwo?

This question is considered in more generality by Cherlin and Latka [10].

The pin class. We close with a final, capricious, thought. The set of per-
mutations that correspond to strict pin words forms a permutation class by
Lemma 9. As this class arises from words, it has a distinctly “regular” feel,
and thus we offer:

Conjecture 16 The class of permutations corresponding to pin words has a
rational generating function.

The enumeration of this class begins 1, 2, 6, 24, 120, 664, 3596, 19004. It is not
even obvious that this “pin class” has a finite basis. Its shortest basis elements
are of length 6, and there are 56 of these (see Figure 11). The class also has
220 basis elements of length 7.

Acknowledgements. We wish to thank Mike Atkinson for fruitful discus-
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[12] Földes, S. On intervals in relational structures. Z. Math. Logik Grundlag.
Math. 26, 2 (1980), 97–101.

[13] Higman, G. Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. (3) 2 (1952), 326–336.

[14] Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction
to automata theory, languages, and computation, 2nd ed. Addison-Wesley
Publishing Co., Reading, Mass., 2001.

[15] Lakshmibai, V., and Sandhya, B. Criterion for smoothness of Schubert
varieties in SL(n)/B. Proc. Indian Acad. Sci. Math. Sci. 100, 1 (1990), 45–52.

21



[16] Murphy, M. M. Restricted Permutations, Antichains, Atomic Classes, and
Stack Sorting. PhD thesis, Univ. of St Andrews, 2002.

[17] Schmerl, J. H., and Trotter, W. T. Critically indecomposable partially
ordered sets, graphs, tournaments and other binary relational structures.
Discrete Math. 113, 1-3 (1993), 191–205.

22


