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An interval in a combinatorial structure R is a set I of points which

are related to every point in R \ I in the same way. A structure is

simple if it has no proper intervals. Every combinatorial structure

can be expressed as an inflation of a simple structure by struc-

tures of smaller sizes — this is called the substitution (or mod-

ular) decomposition. In this paper we prove several results of

the following type: An arbitrary structure S of size n belonging

to a class C can be embedded into a simple structure from C by

adding at most f (n) elements. We prove such results when C

is the class of all tournaments, graphs, permutations, posets, di-

graphs, oriented graphs and general relational structures contain-

ing a relation of arity greater than 2. The function f (n) in these

cases is 2, ⌈log2(n + 1)⌉, ⌈(n + 1)/2⌉, ⌈(n + 1)/2⌉, ⌈log4(n + 1)⌉,

⌈log3(n + 1)⌉ and 1, respectively. In each case these bounds are

best possible.
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1. INTRODUCTION

Relational structures – objects governed by a given set of relations over some ground set
– provide a general setting in which to study a wide variety of combinatorial structures
including graphs, tournaments, posets and permutations. For each of these types of struc-
ture, the substitution decomposition (also called the modular decomposition) can be used to
describe larger objects in terms of smaller ones. The elemental building blocks arising in
this decomposition are the simple1 structures.

In this paper, rather than decompose a combinatorial structure to describe it in terms
of smaller simple ones, we will be embedding structures into larger simple ones. In par-
ticular, we consider the following question: given a class C of relational structures, what is
the minimal function f (n) so that any structure in C of size n can be embedded in a simple
structure from C containing at most f (n) additional elements?

This question has its origins in the early 1970s with Erdős, Fried, Hajnal and Mil-
ner [8], who showed in the case of tournaments that f (n) = 2 for all n. In a subse-
quent paper [9] they also showed that the only tournaments which could not be embed-
ded in a simple tournament with 1 additional vertex were transitive tournaments with an
odd number of vertices. Around the same time, Sumner showed in his thesis [23] that
f (n) = ⌈log2(n + 1)⌉ for the subcase of complete graphs (when allowing extensions to
arbitrary graphs). In this paper, we answer the question completely for many standard
combinatorial structures, in addition to more general relational structures containing rela-
tions of higher arity. These results rest on a unifying framework that uses the substitution
decomposition, but each class of structures presents different problems and this is reflected
in the variety of answers attained.

For the rest of this section, we will introduce important definitions and present the
standard framework for our approach to the problem. In Section 2 we show how the case
of tournaments fits into the framework, then in Sections 3—6 we demonstrate the cases
of graphs, permutations, posets, digraphs and oriented graphs. Section 7 discusses more
general results for higher arity relational structures, and some concluding remarks are
given in Section 8.

A k-ary relation R on a set A is a subset of Ak. Informally, a relational structure is an
ordered sequence of relations over some set A. More specifically, we may define a relational
language, L, to be a set of relational symbols, and for each symbol R there is a positive integer
nR denoting the arity of R. A relational structure A whose relational symbols are those of
L is then defined by its ground set A = dom(A) and a set of subsets RA ⊆ AnR for each
R ∈ L. Such a structure may also be called an L-structure. When it does not cause any
confusion, we will omit the superscriptA from relations.

Most standard combinatorial structures can be viewed as relational structures; they
differ in the number of relations involved, their arities, and extra properties they are re-
quired to posses. This viewpoint offers a unifying framework for investigating different
combinatorial structures ‘in parallel’.

1The terms indecomposable, prime, and primitive have been used in place of simple in other contexts.
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Example 1.1. A graph G can be viewed as a relational structure with a single binary operation
which is required to be symmetric and irreflexive. Thus, in this case the language is L = {E, nE =
2}, dom(A) = V(G), and (x, y) ∈ E if and only if x ∼ y in G.

Example 1.2. Here are some further combinatorial structures viewed as relational structures:

(i) Oriented graphs: L = {→, n→ = 2} where→ is asymmetric, i.e., (x→ y)⇒ (y 6→ x).

(ii) Tournaments: L = {→, n→ = 2}, but where→ is trichotomous: for any x, y, precisely one
of x = y, x → y or y→ x is true.

(iii) Digraphs: L = {→, n→ = 2}, a ‘generic’ structure with a single binary relation.

(iv) Posets: L = {<, n< = 2}, where < is asymmetric and transitive.

(v) Linear orders: L = {<, n< = 2}, where < is asymmetric, transitive and trichotomous.

(vi) Permutations: L = {<,≺, n< = 2, n≺ = 2}, where each of < and ≺ are linear orders. For
a permutation π of [n] these two orders are defined as follows: < is the normal ordering on
[n], while i ≺ j if and only if π(i) < π(j).

A set I ⊆ A = dom(A) is an interval if for every R ∈ L and all x, y ∈ AnR \ InR where
for all i either xi = yi or xi, yi ∈ I, we have x ∈ RA ⇔ y ∈ RA. Intuitively, this means that
in relationships involving elements outside an interval I, any two elements within I are
interchangeable. Every singleton set {x} ⊆ A is an interval, as is all of A and the empty
set. All other interval are said to be proper, and a structure is simple if it has no proper
intervals.

LetA and B be two structures over the same languageL. We say thatA is a substructure
of B, or, equivalently, that B is an extension ofA, if A ⊆ B and RA = RB↾A for every R ∈ L.
If, in addition, B is simple, we say that B is a simple extension of A. Our aim is therefore
to show that in a class of L-structures C, for every A ∈ C there exists a simple extension
B ∈ C of A, and more importantly, to bound |B \ A| as a function of |A|.

To establish embeddings into simple L-structures we typically need to look at the in-
tervals of A. This is easier to establish by first defining the reverse process. Given an
L-structure S , we say that A is an inflation of S by the L-structures {As : s ∈ S}, denoted
A = S [As : s ∈ S], if A is obtained by replacing each element s ∈ S with a set of elements
As = dom(As) (assuming beforehand, of course, that all these domains are disjoint) that
form an interval in the A. More precisely, A = domA =

⋃

s∈S As, and for every R ∈ L,
and every nR-tuple (a1, . . . , anR

) ∈ A where ai ∈ Asi
, we have

RA(a1, . . . , anR
)⇔

{

RAs(a1, . . . , anR
) if s1 = . . . = snR

= s; or
RS(s1, . . . , snR

) otherwise.

If A is an inflation of S , we also say that S is a quotient ofA. We are particularly interested
in the case where S is simple — Theorem 1.4 below gives the uniqueness of such an S ,
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which will be called the simple quotient of A. This decomposition is the substitution (or
modular) decomposition.

The notion of modular decomposition dates back at least to a 1953 talk of Fraı̈ssé. How-
ever, only the abstract of this talk [11] survives. The first article using modular decomposi-
tions seems to be Gallai [12] (for an English translation, see [13]), who applied them to the
study of transitive orientations of graphs. Since then it has reappeared in settings rang-
ing from game theory to combinatorial optimisation – see Möhring [18] or Möhring and
Radermacher [20] for extensive references. Before stating and proving the general unique-
ness theorem, we quote two basic facts about intervals, which follow from elementary
considerations. The first of these facts is proved explicitly by Földes [10].

Proposition 1.3. For any two intervals I and J of the L-structure A:

(a) If I ∩ J 6= ∅ then I ∩ J and I ∪ J are intervals of A.

(b) I \ J is an interval of A.

Theorem 1.4. Let A be an L-structure for some language L. There exists a unique simple L-
structure S such that A = S [As : s ∈ S]. Moreover, when |S| > 2, the structures As are also
uniquely determined.

Proof. Let M denote the set of all intervals, except A = dom(A), which are not contained
in another proper interval.

If two intervals I, J ∈ M intersect, then Proposition 1.3 (a) shows that I ∪ J is also an
interval, which, unless I ∪ J = A, contradicts the definition of M. If I ∪ J = A, then
Proposition 1.3 (b) shows that J \ I is an interval, so A can be written as the inflation
S [A1,A2] of a two-element structure S (with S = {1, 2}). Note that every two-element
structure is obviously simple.

For uniqueness in this case, suppose that A = T [A′t : t ∈ T] is another modular
decomposition of A. Let t1, t2 ∈ T be such that A′t1

∩ A1 6= ∅, A′t2
∩ A2 6= ∅. Suppose first

that |T| > 2, and let t ∈ T \ {t1, t2}. Clearly, at least one of the sets A′t ∩ A1 or A′t ∩ A2

is non-empty; without loss of generality we assume that A′t ∩ A1 6= ∅. Let U = {u ∈
T : A′u ∩ A1 6= ∅} \ {t2}. Then it is easy to see that U is an interval in T . But t, t1 ∈ U,
contradicting the simplicity of T . Thus T = {t1, t2}, and it is easy to check that T ∼= S
under the isomorphism 1 7→ t1, 2 7→ t2.

Now consider the case where no two intervals in M intersect. Clearly, now the sets in
M partition A. For each I ∈ M choose a representative xI ∈ I, and define the L-structure
S to be the restriction of the structure A to the set S = dom(S) = {xI : I ∈ M}. Clearly A
is the inflation of S by the corresponding intervals of A. The simplicity of S follows from
the observation that if S contained a proper interval K, then

⋃

{I : xI ∈ K} would be a
proper interval of A contradicting the definition of M.

To show uniqueness of S and allAs in this case, suppose that we have another modular
decompositionA = T [A′t : t ∈ T]. Since the intervals in M are maximal and disjoint, each
A′t is contained in some member of M. Suppose I ∈ M contains several such intervals, I =
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A′t1
∪ . . . ∪ A′tj

. It is then easy to verify that {t1, . . . , tj} is an interval in T , a contradiction.

The two cases in the above proof will be referred to as the degenerate and non-degenerate
substitution decompositions. The degenerate case can give rise to non-uniqueness of this
decomposition, and this may be dealt with in several ways, either by specifying the prop-
erties that one of the two substructures must possess (for example, the substructure must
not itself be decomposable in the same way), or by decomposing the structure into as
many pieces as possible (for example, dividing a disconnected graph into its connected
components).

We use the former treatment here, but note that the latter is often better suited for cer-
tain problems, particularly in relation to the substitution decomposition tree of a structureA:
each node of this tree corresponds to a substructure of A whose ground set is an interval,
with the root of the tree beingA and the leaves being the singleton ground sets. For a given
node with corresponding non-singleton structure A′, the children of A′ are the substruc-
tures A′s in the decomposition A′ = S ′[A′s : s ∈ dom(S)]. The complexity of computing
these trees for particular relational structures has received considerable attention in recent
years, particularly in the case of graphs because of its applications in optimisation. See, for
example, [1, 4, 6, 15, 16].

The proofs of our main theorems below all follow the same basic pattern: we take an
arbitrary structure A of the type under consideration, identify its substitution decomposi-
tion, and then employ an inductive argument to show how adding extra points can be used
to break the intervals ofA. The degenerate case usually needs to be considered separately,
and it is precisely this case that normally gives our upper bounds.

2. TOURNAMENTS

Recall that a tournament is an oriented complete graph. An interval in a tournament (often
called a convex set in the literature) is a set I of vertices such that for every pair x, y ∈ I and
any z ∈ V(T) \ I, either x → z and y→ z or z→ x and z→ y.

The name “tournament” derives from its use to describe a competition where every
pair of players x, y must meet each other in a match, the outcome being either that x wins,
y → x, or x loses, x → y. This viewpoint then defines an algebra with two idempotent
binary operations AT = 〈T,∨,∧〉, so that if x → y, then x ∨ y = y ∨ x = x and x ∧ y = y ∧
x = y. An extensive survey of tournaments from this algebraic viewpoint has been written
by Crvenković, Dolinka and Marković [5]. Of interest for us here is that a tournament is
simple if and only if its corresponding abstract algebra is also simple, meaning that it
has no proper homomorphic images. Simple extensions of tournaments were studied in a
string of papers in the early 1970s, and in particular it is known that at most two additional
vertices are needed to extend any tournament into a simple tournament.

Theorem 2.1 (Erdős, Fried, Hajnal and Milner [8]). Every tournament on n vertices has a
simple extension with at most 2 additional vertices.
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x x

Figure 1: One-vertex (non-simple) extensions of tournaments on 3 vertices.

A chain in this context is a transitive tournament.

Proposition 2.2 (Erdős, Hajnal and Milner [9]). A tournament T has a one-point simple exten-
sion if and only if T is not a finite odd chain with 5 or more vertices.

Note that these results hold for tournaments of arbitrary cardinality, though they were
originally proved for finite tournaments by Moon [21]. We give here another proof of the
finite case using the substitution decomposition, in order to introduce the methods used in
the following sections, and to be able to compare those later results with the tournament
case.

Proof. We proceed by induction on |T| = n ≥ 2, by constructing a one-point extension
Tx = T ∪ {x} of T. We will show that Tx is simple unless n = 3 or T is a finite odd
chain, in which case we will prove that all proper intervals of Tx must contain x. From
this construction, in the exceptional cases it will be possible to build a two-point simple
extension Txx̄ by adding another vertex x̄ satisfying x→ x̄, and x̄ → v if and only if v→ x
for all v ∈ V(T).

The base case is n = 2, for which we may assume T = {u, v} with u → v. We define
x by v → x → u and observe that Tx is simple. For the exceptional case n = 3, note that
there are no simple tournaments on four vertices so a simple extension requires at least
two additional points. For the induction, however, we must create Tx so that every proper
interval contains x, and this is done in Figure 1. Note also that the two-vertex extension
Txx̄ is simple in both cases.

Suppose now that n ≥ 4. We take the substitution decomposition T = S[As : s ∈ S],
where the simple quotient S of T has m ≥ 2 vertices. First, we will consider the case where
m > 2, in which case the tournaments As are defined uniquely. If every As contains a
single vertex then T = S is simple. Since we have assumed n ≥ 4, the addition of x will
preserve simplicity providing it does not have the same neighbourhoods as any existing
vertex of T and it does not satisfy x → T or T → x. (Note that there are 2n − n− 2 ways of
doing this.)

Thus we may assume that at least one interval As contains more than one vertex. In this
case, we add a vertex x to T so that for each nonsingleton interval As, the subtournament
As ∪ {x} is by induction equal to Ax

s . Now fix any nonsingleton interval As∗ , and for each
singleton interval As form Ax

s to satisfy x → As if and only if As → As∗ . We claim in
this case that Tx is simple. Note first that by the inductive construction we cannot have
x → T or T → x in Tx, as otherwise the extension Ax

s of any nonsingleton block As would
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contradict the inductive hypothesis. Now suppose I is a nonsingleton interval of Tx, and
let u, v ∈ I be two distinct vertices. The possible positions of u and v in Tx give rise to three
cases:

Case 1: u ∈ As, v ∈ As′ for some s, s′ ∈ S with s 6= s′. Then by the simplicity of the
quotient S we have V(T) ⊆ I, and x must be included since we cannot have x → T or
T → x.

Case 2: u ∈ As, v = x, for some s ∈ S. If there exists some other block As′ of T with
|As′ | ≥ 2, then we have either u → As′ or As′ → u, but not v → As′ or As′ → v, reducing
to Case 1. If every other As′ is a singleton, then As is the only nonsingleton block so s = s∗,
and, by the construction, u and v will disagree on every singleton block, again reducing to
Case 1.

Case 3: u, v ∈ As for some s ∈ S. By induction, the only possible proper intervals of Ax
s

are those which involve x, reducing immediately to Case 2.
This leaves the case where T = S[A1, A2] with |S| = 2, A1 → A2, and A1 and A2 not

necessarily uniquely defined. Suppose first that T is not a finite odd chain, and note in this
case that we can always choose A1 and A2 so that neither is an odd chain of length greater
than one. We will also try to choose A1 and A2 so that they are not singletons, and when
this is possible we construct Tx so that A1 ∪ {x} = Ax

1 and A2 ∪ {x} = Ax
2. By induction,

Ax
1 and Ax

2 are simple unless one or both contains only 3 vertices. In every case, however,
it is easy to check that Tx is simple. However, if we are forced to take |A2| = 1, then there
is no a ∈ A1 for which A1 \ {a} → a, and so we create Tx by setting A1 ∪ {x} = Ax

1, and
A2 → x. Note that Ax

1 is simple unless |A1| = 3, and in either case it is now easy to check
that Tx is simple. A similar argument applies when |A1| = 1.

Finally, if T is a finite odd chain then we pick A1 to be a finite even chain and A2 a
finite odd chain of length greater than one. Given a one-point extension Tx of T, we define
another one-point extension T x̄ = T ∪ {x̄} by x̄ → v if and only if v → x in Tx. (Note that
if every proper interval of Tx contains x, then every proper interval of T x̄ must contain x̄.)
Denote by a the vertex of A1 for which A1 \ {a} → a, and by b the vertex of A2 for which
b → A2 \ {b}. In order to form the one-point extension Tx required by the induction, we
adjoin a vertex x to T so that A1 ∪ {x} = Ax

1 is a simple one-point extension. To adjoin
x to A2, we force x → b by taking either the edges given by Ax

2, or the edges between x̄
and A2 from Ax̄

2. The resulting extension Tx is not simple, but we note that any proper
interval must contain the vertex x. The only other candidate we need to check is {a, b},
which, since we fixed x → b, cannot be an interval unless x → a, which would contradict
the simplicity of Ax

1 . Since T x̄ must satisfy the same property, it follows that the two-point
extension Txx̄ is simple.

It is initially surprising that the case where T is a finite odd chain with 5 or more ver-
tices requires two additional vertices rather than one. Figure 2 shows a two-point simple
extension of a chain on 7 vertices.



SIMPLE EXTENSIONS OF COMBINATORIAL STRUCTURES 8

Figure 2: A 2-vertex simple extension of a transitive tournament on 7 vertices.

3. GRAPHS

In a graph G, an interval I is a set of vertices for which N(u) \ I = N(v) \ I for every
u, v ∈ I. A graph is simple if it contains no proper intervals, but it is worth noting that the
word “simple” is commonly used to describe graphs with no multiple edges or loops, and
our notion is more often referred to as prime or indecomposable. These graphs have been
the subject of considerable study, see for example Ehrenfeucht, Harju, and Rozenberg [7],
Ille [14], and Sabidussi [22]. A survey of indecomposability and the substitution decompo-
sition in graphs can be found in Brandstädt, Le, and Spinrad’s text [2]. Simple extensions
of graphs have received some attention in the past. In particular, we have:

Lemma 3.1 (Sumner [23, Theorem 2.45]). The complete graph Kn has a simple extension with
⌈log2(n + 1)⌉ additional vertices.

The bound m = ⌈log2(n + 1)⌉ is also the smallest possible, for were we to add a set B
of m vertices with n > 2m − 1, then either two vertices in G have the same neighbourhood
in G ∪ B, or one vertex of G is connected to every other vertex in G ∪ B, both of which give
an interval.

Theorem 3.2. Every graph G has a simple extension with at most m = ⌈log2(|V(G)| + 1)⌉
additional vertices.

Proof. First note that when |G| = 1, we may trivially extend by 1 vertex to form K2. We
will prove, by induction on |G| = n ≥ 2 the following statement: G has a simple extension
with a set B of m independent vertices2, where 2 ≤ m ≤ ⌈log2(n + 1)⌉.

The base case n = 2 may be seen in Figure 3, so now suppose n ≥ 3. Write G =
H[Jv : v ∈ V(H)] where H is the simple quotient of G, and suppose first that |H| > 2.
If H = G then the graph is already simple, but for the induction we need to add two
vertices. As in the tournament case, we may preserve simplicity by adding vertices whose
neighbourhoods in G are distinct and neither the same as any vertex in G, empty, nor all
of V(G). As in the case of tournaments, are 2n − n− 2 possible neighbourhoods, and for
n ≥ 4 we may pick any two of these for the new vertices.

Thus we may now suppose that G 6= H. By induction, each Jv of size |Jv| ≥ 2 can be
extended by some independent set Bv of size at most ⌈log2(|V(Jv)|+ 1)⌉ so that Jv ∪ Bv is
simple. Picking x ∈ V(H) for which Bx = B is largest, for every v 6= x in H with |Jv| ≥ 2

2The assumption that B is independent may be replaced by the requirement that B be any graph specified
in advance, but this adds considerably to the complexity and length of the proof.
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Figure 3: Two point simple extensions in the cases when |G| = 2. In each case the
filled nodes correspond to G, and the empty nodes to B.

we identify Bv with any subset of B of the correct size. For any v ∈ H for which |Jv| = 1,
we connect Jv to any vertex in B that is not adjacent to all of Jx, and label this singleton set
Bv.

Claim. The extension G ∪ B is simple.

Proof. Consider an interval I with at least two vertices a and b. There are four cases:
Case 1: a ∈ Ju, b ∈ Jv for u 6= v in H. The simplicity of H implies that G ⊆ I. In

particular this gives Jx ⊆ I, which implies B ⊆ I since Jx ∪ B is simple.
Case 2: a, b ∈ Jv ∪ Bv, v 6= x. By the simplicity of Jv ∪ Bv we have Jv ∪ Bv ⊆ I. If |Jv| ≥ 2

then by induction |Bv| ≥ 2 implying that Jx ⊆ I, reducing to Case 1. If, say, Jv = {a} then
either a is adjacent to everything in Jx or nothing in Jx, while by the construction b ∈ Bv is
adjacent to some but not all of Jx, reducing to Case 1.

Case 3: a, b ∈ Jx ∪ B. We immediately have Jx ∪ B ⊆ I, and so if there is some v 6= x for
which |Jv| ≥ 2 then Jv ⊆ I gives Case 1, so we now assume |Jv| = 1 for all v 6= x in H. Pick
any such Jv = {c} we know there exist b1, b2 ∈ B with b1 ∼ c but b2 6∼ c, implying c ∈ I,
which again reduces to Case 1.

Case 4: a ∈ Jv, b ∈ B \ Bv. Since Jv ∪ Bv is simple, we know that a is adjacent to some
c ∈ Jv ∪ Bv, while b is not, reducing to Case 2.

For the degenerate cases, let us first assume that H = K2, i.e., that G is disconnected, so
G = H[J1, J2] where J1 and J2 may be picked possibly in a number of ways. We arrange it
so that J1 is a largest connected component, and suppose first that |J1| ≥ 2. By induction,
each of J1 and J2 may be extended by adding a set of vertices B1 and B2, respectively, unless
|J2| = 1, where we pick any vertex of B to act as the singleton set B2. Fix x ∈ {1, 2} so that
B = Bx is the larger of B1 and B2, and associate the other set Bx′ , x′ ∈ {1, 2}, x′ 6= x, with
any subset of B. If |J1| = 1 then G is in fact Kn, and but for the induction we could appeal
to Lemma 3.1. By induction, there exists a set B2 of ⌈log2 n⌉ vertices for which J2 ∪ B2 is a
simple extension of J2. Unless ⌈log2(n + 1)⌉ = ⌈log2 n⌉+ 1, we may assign a nonempty
neighbourhood of B2 to the single vertex of J1 that is different to the neighbourhood of
every vertex in J2. In the exceptional case where ⌈log2(n + 1)⌉ = ⌈log2 n⌉+ 1, we assign
any nonempty neighbourhood of B2 to J1, observing that there exists a vertex v ∈ J2 with
the same neighbourhood. However, we are now permitted to add another new vertex b,
attached to J1 and nothing else, so that v no longer has the same neighbourhood as the
single vertex in J1.

In the case that H = K2, only a few modifications need to be made to the above. We
first pick J1 so that J1 is the largest possible connected component. When J1 is not a sin-
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Figure 4: An interval in the plot of a permutation.

gleton but J2 is, we select B2 = {b} by choosing any b ∈ B for which b is not connected
to all of J1 (as in the non-degenerate case). When J1 is a singleton (so G is a complete
graph), it can have any non-complete neighbourhood of B = B2 (including the empty
neighbourhood), providing no vertex of J2 already has that neighbourhood. If no such
neighbourhood exists, then we may add a new vertex to B and connect it to J1. The analy-
sis of these degenerate cases is similar to and easier than the analysis in the nondegenerate
case above.

Although this bound is tight for complete and independent graphs, the inductive con-
struction used in the proof actually does somewhat better in many cases. Unless the graph
is complete or empty, at each stage of the induction we add only as many vertices as are
required by any single block Jv of the substitution decomposition. This may be thought
of iteratively in terms of the substitution decomposition tree: recalling that the degenerate
cases are handled in this tree by breaking up the graph into as many parts as possible,
the largest such degenerate node all of whose children are leaves will dictate how many
additional vertices are needed. If no such degenerate node exists, then the inductive con-
struction above requires only two additional vertices.

4. PERMUTATIONS

In a permutation π of [n] an interval is a collection of entries that are contiguous both
by position and value. If a permutation is viewed as a set with two linear orders < and
≺, an interval is a set of points that is contiguous under both < and ≺. Intervals are
easily identified in the plot of a permutation as sets of points enclosed in an axis-parallel
rectangle, with no points lying in the regions above, below, to the left or to the right (see
Figure 4). To embed a given π in a simple permutation, therefore, we must ensure that
every axis-parallel rectangle containing at least two points of π is “broken” by at least one
of the extension points.

Theorem 4.1. Every permutation π on n symbols has a simple extension with at most ⌈(n + 1)/2⌉
additional points.

Proof. We proceed by induction on n ≥ 2, claiming that for each permutation π of length
n we may construct two extensions π

↑ and π
↓ both containing at most ⌈ n+1

2 ⌉ new points,
satisfying:
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• Viewed as extensions, each π
a (a ∈ {↑, ↓}) has a new leftmost point which is neither

a new maximum nor a new minimum, called the entry point and denoted In(π
a).

• Each π
a (a ∈ {↑, ↓}) has a new exit point Out(π

a); for π
↑ this is a new maximum

while for π
↓ this is a new minimum, and in both cases it is neither a leftmost nor a

rightmost point.

• Any proper interval of π
a contains the exit point Out(π

a), but does not contain the
rightmost point of π.

• At least one of π
↑ and π

↓ is simple.

Let us call the permutation obtained from π
a by removing the entry and exit points the

core of π
a and denote it by Core(π

a). Note that Core(π
a) still contains the original copy of

π.
In the base case n = 2, either π = 12 or π = 21. When π = 12, π

↑ = 2413 is simple,
and the only non-singleton intervals of π

↓ = 3124 are 12 and 312, both of which contain
the exit point. The case π = 21 is dealt with by symmetry.

Now suppose n ≥ 3. Write π = σ[π1, π2, . . . , πm] where the simple quotient σ of π

is of length m ≥ 2, and π1, π2, . . . , πm are permutations. First suppose m > 2 so that the
substitution decomposition is unique. If πi = 1 for all i, then π = σ is already simple.
We construct π

↑ and π
↓ by adding precisely two points. The first is a new leftmost point,

which may be positioned vertically anywhere except as a new maximum, minimum, or
adjacent to the leftmost entry of π. The new maximum or minimum is inserted similarly,
and it is easily checked that the resulting permutation is simple.

Now suppose that at least one πi contains at least two points. The permutations π
↑

and π
↓ will be constructed by extending each non-trivial block πi of π to one of π

↑
i or π

↓
i

and then ‘repositioning’ the entry and exit points so that they ‘link’ successive blocks. The

choice between π
↑
i and π

↓
i is made so as to enable this linking. More formally, to define π

a

(a ∈ {↑, ↓}), first write σ = s1 . . . sm, and suppose that the non-trivial blocks of π are, from
left to right, πi1 , . . . , πit

. Next, for each i = 1, . . . , m define

τi =



















Core(π
↑
i ) if i = ir , 1 ≤ r ≤ t− 1, and sir

< sir+1

Core(π
↓
i ) if i = ir , 1 ≤ r ≤ t− 1, and sir

> sir+1

Core(π
a
i ) if i = it

1 otherwise,

and form the permutation τ = σ[τ1, . . . , τm]. For each r = 1, . . . , t− 1 insert a linking point
ℓr, the position of which is uniquely determined by the requirement that ℓr is the exit point
for τir

and the entry point for τir+1
. Finally, complete the construction of π

a by defining
ℓ0 = In(π

a) to be the leftmost point, which at the same time serves as the entry point to
τi1 , while ℓt = Out(π

a) is a new minimum or a new maximum (depending on a) which is
at the same time the exit point for τit

. This construction is illustrated in Figure 5.
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π1

π3

π4

π6

τ
↑
1

τ
↓
3

τ
↑
4

τ
↑
6

In(π
↑)

ℓ1

ℓ2

ℓ3

Out(π
↑)

Figure 5: On the left, the substitution decomposition of π = 264135[π1, 1, π3, π4, 1, π6].
On the right, the extension π

↑ formed from the blocks τ
a
i connected by linking points

ℓ1, ℓ2 and ℓ3.

Claim. If π
↑ is not simple then the rightmost non-singleton block πit

is the maximal block by
value, and every non-trivial proper interval of π

↑ contains Out(π
↑).

Proof. Let I be a non-singleton interval of π
↑, and let u, v ∈ I be two distinct points. We

consider several cases, depending on the position of u and v in π
↑.

Case 1: u ∈ τj, v ∈ τk, j 6= k. The simplicity of σ implies that I contains all τi (1 ≤ i ≤ m).
Each of the remaining points ℓ0, ℓ1, . . . , ℓt overlaps at least one τi, and so these points must
belong to I too. We conclude that I = π

↑.

Case 2: u, v ∈ τir
for some r ∈ {1, . . . , t− 1}. The set I ∩ (τir

∪ ℓr−1 ∪ ℓr) is an interval of
the permutation π

b
ir

= τir
∪ ℓr−1 ∪ ℓr (b ∈ {↑, ↓}), and so by induction it contains the exit

point ℓr. But ℓr overlaps horizontally with τir+1
, and so I must contain a point from τir+1

.
Thus we have reduced this case to Case 1.

Case 3: u, v ∈ τit
. As in Case 2 we see that I must contain the corresponding exit point,

which this time is Out(π
↑). Now, if πit is the maximal block by value there is nothing

further to prove, while if πit
is not maximal we see that I must contain a point from some

other block, and reduce again to Case 1.

Case 4: u ∈ {ℓ0, ℓ1, . . . , ℓt}, v ∈ τj. From the construction it follows that u and v are
separated either horizontally or vertically by at least one other point belonging to some τk.
Thus this case reduces to one of the first three cases.

Case 5: u, v ∈ {ℓ0, ℓ1, . . . , ℓt}. Again, we can see that I must contain at least one element
from some τj, reducing to Case 4.

Returning to the proof of the theorem, we note that the analogous assertion holds for
π
↓: If π

↓ is not simple then the rightmost non-singleton block πit
is the minimal block

by value, and every non-trivial proper interval of π
↓ contains Out(π

↓). Since σ is simple
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Figure 6: Simple extensions of 12 · · · n, for n = 12 (left) and n = 13 (right).

and of length at least 4, neither the maximal nor the minimal blocks by value can be the
rightmost block of π, and so the rightmost point of π cannot appear in any proper interval
of π

a. Moreover, as πit
cannot be at the same time maximal and minimal, we conclude that

at least one of π
↑ or π

↓ is simple.
To complete the proof in the non-degenerate case, let us estimate the number of points

we have added to π. To each non-trivial block πir
(1 ≤ r ≤ t) we have added at most

⌈(|πir
| + 1)/2⌉ points. Moreover, we merged t − 1 pairs of exit/entry points. Thus the

total number of additional points does not exceed

t

∑
r=1

⌈

|πir
|+ 1

2

⌉

− (t− 1) ≤
t

∑
r=1

|πir
|+ 2

2
− (t− 1) = 1 +

t

∑
r=1

|πir
|

2
≤ 1 +

n

2
.

Since the number of points is a whole number, we conclude that it does not exceed ⌈(n + 1)/2⌉,
as required.

In the case where m = 2 we may assume without loss that σ = 12, and write π =
12[π1, π2], where π1 and π2 may be chosen possibly in a number of different ways. Fix
π1 so that if possible it does not end with its largest element. If this is possible, and if

π2 is not a singleton, we may construct π
a (a ∈ {↑, ↓}) by extending π1 to π

↑
1 and π2 to

π
a
2, and identifying the exit point of the first to the entry point of the second. If π2 is a

singleton, then the exit point of π
↑
1 may be placed above π2 to form π

↑ without producing
a proper interval between the top of π1 and π2: the intersection of any such interval with

π
↑
1 would have to form a proper interval in π

↑
1 containing the rightmost point of π1, which

is impossible by the inductive hypothesis. We form π
↓ simply by taking 12[π↓1 , π2], with

the exit point of π1 acting as the exit point of π. Note that π
↓ is not simple since π

↓
1 is an

interval, but it contains Out(π
↓) and not the single point of π2 and so satisfies the inductive

hypothesis.
If it is not possible to pick π1 so that it does not end with its largest element, then we

first attempt to pick π2 so that it does not start with its smallest element. If this is possible,
and if π1 is not a singleton, an analogous argument to that given above applies. On the
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other hand, if π1 is a singleton, place all additional points of π
a
2 that lie to the left of every

point in π2 to the left of the singleton π1. (This happens, for example, if π = 132, and we
form π

↑ = 35142 and π
↓ = 41253.) If it is not possible to pick π2 so that it does not start

with its smallest element, then π = 12 · · · n. If n > 3, we set π1 = 12 · · · n − 2 so that
π2 forms the pattern 12, whence there is a two-point extension π

a
2, a ∈ {↑, ↓}, in which

both the entry and exit points occur to the left of Core(π2). This permits us to connect the

exit point of the extension π
↑
1 to the entry point of π

a
2, and the exit point of π

a
2 both acts

as the exit point of π
a and ensures that there are no intervals between π1 and π2. Finally,

when π = 123, we set π
↑ = 31524 and π

↓ = 42135. In each case, checking that the so
constructed extensions π

↑ and π
↓ satisfy the required conditions is similar to (and easier

than) the non-degenerate case.

See Figure 6 for examples of extensions of monotone permutations. Note that in this
case the bound is tight: every adjacent pair i, i + 1 must be “separated” either horizontally
or vertically by one of the additional points, and the points π(1) = 1 and π(n) = n of π

must not lie in the “corners” of the simple extension — a total of n + 1 gaps to be filled,
and each additional point can be used to fill at most two of these gaps (one horizontally,
one vertically).

5. POSETS

Although posets are very naturally described as relational structures, we have delayed
considering their simple extensions until now, as with posets we encounter a “mix” of
the results related to the degenerate decompositions corresponding to permutations and
graphs. For permutations recall that the degenerate cases correspond to the increasing
and decreasing permutations, which (viewing them as relational structures) occur when
the two linear orders are equal or are the opposites of each other. For graphs, the non-
uniqueness comes in the form of complete and independent graphs. Posets can be decom-
posed non-uniquely either through total comparability (linear orders) or total incompara-
bility (antichains), and the simple extension in each case is significantly different.

We begin with a result that holds for all posets; we will discuss special cases where
fewer additional elements are required afterwards. Our approach takes much the same
form as the permutation case, inductively identifying entry and exit points from the simple
extensions of the intervals in the substitution decomposition, and this gives rise to the same
bound. Because of this similarity, we will omit some of the case by case details in the proof.

Theorem 5.1. A poset (P, <) on n elements has a simple extension with at most ⌈(n + 1)/2⌉
additional elements.

Proof. Extending a poset of size 1 is trivial, so we proceed by induction on n assuming
n ≥ 2. Our claim is that we may form four extensions P↑, P↓, P↑↓ and P↓↑ of a poset (P, <),
satisfying:

• Each extension Pa (a ∈ {↑, ↓, ↑↓, ↓↑}) has at most ⌈(n + 1)/2⌉ new elements.
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1

2

2

1
2

1

1

2

12

12 1

2

2

1

Figure 7: The eight 2-element extensions when |P| = 2. The points labelled 1 and 2
correspond to the distinguished elements Ext1(Pa) and Ext2(Pa) respectively.

• Among these new points lie two distinguished elements, Ext1(Pa) and Ext2(Pa). For P↓

these are both new minima, for P↑ new maxima, for P↑↓, the point Ext1(P↑↓) is a max-
imum and Ext2(P↓↑) is a minimum, while for P↓↑, the point Ext1(P↓↑) is a minimum
and Ext2(P↓↑) is a maximum. Note that P↑↓ and P↓↑ need not be different extensions
— it is only the labelling of the distinguished elements that matters. The remaining
points of Pa will be called the core, denoted Core(Pa).

• Every proper interval of Pa (a ∈ {↑, ↓, ↑↓, ↓↑}) contains Ext2(Pa). Additionally, in P↑

and P↑↓ there is a minimal element that is not contained in any proper interval, and
in P↓ and P↓↑ there is a maximal element not contained in any proper interval.

• At least one Pa is simple.

The base case is n = 2, when the poset is either linear or an antichain. The extensions Pa

may be seen in Figure 7, and it is straightforward to check that these satisfy the inductive
hypothesis. Now suppose that n > 2 and decompose the poset as P = S[As : s ∈ S].
Assuming first that |S| > 2, we proceed in essentially the same way as in the permutation
case.

If every As is a singleton, then P is already simple, but for the purposes of the induction
we must add two elements to form the four extensions P↓, P↑, P↑↓ and P↓↑. First observe
that P can contain neither a unique maximum nor a unique minimum element. To form P↑

we find any two maxima of P, place Ext1(P↑) above one of them, and place Ext2(P↑) above
both. We form P↓ analogously, and P↑↓ and P↓↑ are formed by adjoining two elements to
any chosen element of P; see Figure 8. Note that all four extensions are necessarily simple.

When at least one As has more than one element, induction may be used on each such
interval to form the extensions Aas

s (as ∈ {↑, ↓, ↑↓, ↓↑}), which we utilise to construct Pa.
The basic idea is to consider the non-trivial blocks in turn, and for each of them determine
which extension Aas

s to use so that Aas
s can share one distinguished point with the previous

block, and one with the subsequent block. The first and the last blocks will contribute one
distinguished point each to become the distinguished points of Pa. To be more precise,
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1 2

1 2

1

2

1

2

P↑ P↓ P↑↓ P↓↑

Figure 8: The four 2-element simple extension of an arbitrary simple poset. The points
labelled 1 and 2 correspond to the distinguished elements Ext1(Pa) and Ext2(Pa), re-
spectively.

assume (without loss of generality) that the groundset of S is {1, . . . , |S|}, and that the first
t of these elements correspond to the non-trivial blocks of P. Define elements as ∈ {↑, ↓
, ↑↓, ↓↑}, 1 ≤ s ≤ t, as follows:

as =

































































































↑ if a ∈ {↑, ↑↓} and 1 ≯S 2
↓ if a =↓ and 1 >S 2
↑↓ if a ∈ {↑, ↑↓} and 1 >S 2
↓↑ otherwise

if s = 1,















↑ if s− 1 ≮S s and s ≯S s + 1
↓ if s− 1 <S s and s >S s + 1
↑↓ if s− 1 ≮S s and s >S s− 1
↓↑ otherwise

if 2 ≤ s ≤ t− 1, or















↑ if t− 1 ≮S t and a =↑
↓ if t− 1 <S t and a ∈ {↓, ↑↓}
↑↓ if t− 1 ≮S t and a ∈ {↓, ↑↓}
↓↑ otherwise.

if s = t.

For 1 ≤ s ≤ t, we define new, extended blocks Bs = Core(Aas
s ). For the remaining elements

of S, t + 1 ≤ s ≤ |S|, As is the trivial poset on one element, and we set Bs = As.
Now we form the extension S[Bs : s ∈ S] by adding t + 1 linking points ℓs (s = 0, . . . , t),

as follows: ℓ0 is related to the elements of B1 in exactly the same way as Ext1(Aa1
1 ) is

related to the elements of B1 = Core(Aa1
1 ); ℓs (1 ≤ s ≤ t − 1) is related to the elements

of Bs in the same way as Ext2(Aas
s ) is related to the elements of Bs = Core(Aas

s ), and ℓs is
related to the elements of Bs+1 in the same way as Ext1(A

as+1

s+1) is related to the elements of

Bs+1 = Core(A
as+1

s+1); ℓt is related to the elements of Bt in exactly the same way as Ext2(Aat
t )

is related to the elements of Bt = Core(Aat
t ); these comparisons and their consequences

via transitivity are the only comparisons that the elements ℓs satisfy. Finally, we stipulate
Ext1(Pa) = ℓ0, Ext2(Pa) = ℓt.

To see that one such Pa (a ∈ {↑, ↓, ↑↓, ↓↑}) is simple, a case analysis needs to be carried
out, but as this is similar to the permutation case, we omit the details. The only intervals
that can arise in any such Pa must contain ℓt and be contained in Bt ∪ {ℓt}, and these



SIMPLE EXTENSIONS OF COMBINATORIAL STRUCTURES 17

intervals are permitted by the inductive hypothesis for all but one of the extensions. To
see that there is indeed one extension with no such interval, however, note that by the
simplicity of S, Bt must be related to some other block Bs of P, and by symmetry suppose
Bs < Bt. Taking ℓt to be a new minimum (i.e., the extension Pa that we are considering
satisfies a ∈ {↓, ↑↓}), we note that any interval I in Bt ∪ {ℓt} cannot be an interval in Pa,
since there is some x ∈ I ∩ Bt with x > Bs, while ℓt ≯ Bs.

In the degenerate case we have P = S[A1, A2], where S is the 2-element chain (so
A1 < A2) or the 2-element antichain (so that A1 and A2 are incomparable). Supposing
first that S is a chain, if possible pick A1 so that it has no unique maximum. Assum-
ing this is possible and that the resulting A2 is not a singleton, identify the distinguished
points of the extensions Aa1

1 and Aa2
2 in the same way as the non-degenerate case, with

Ext1(Pa) = Ext1(Aa1
1 ) and Ext2(Pa) = Ext2(Aa2

2 ). On the other hand, if the resulting A2 is a
singleton, we form S[Core(Aa

1), A2] and then add the distinguished points to Aa
1 to serve as

the distinguished points of Pa. (Note that by the requirement that A↓↑1 contained a maximal
element that is not contained in any proper interval and that Ext2(P↓↑) was contained in
every proper interval, there are no proper intervals in P↓↑.)

If we cannot pick A1 to have no unique maximum but we can instead pick A2 to have
no unique minimum, then we may argue by symmetry. This leaves only the case where
P is a chain, which is handled by appealing directly to the permutation case; the chain P
corresponds to an increasing permutation π = under the following mapping: i < j in P
if and only if both i < j and π(i) < π(j). Under this mapping the simple extensions of
increasing permutations map to simple extensions of linear orders, and by appealing to
the inductive construction of Theorem 4.1 this allows us to form P↓ and P↓↑, one of which
is simple. We form P↑ and P↑↓ by using an analogous mapping that connects chains to
decreasing permutations.

This leaves the case where S is a 2-element antichain. By analogy with the case where
S is a two-element chain, first attempt to pick A1 so that it is not itself decomposable by
an antichain and, if possible, so that A1 is not a singleton. If this can be done leaving A2

with |A2| ≥ 2, then we proceed by using the same construction as the nondegenerate case,
while if A2 is a singleton then we form P↓↑ and P↑↓ simply by taking the corresponding
extensions of A1 and leaving the single element of A2 unrelated to any other elements. We
ensure that P↑ and P↓ are simple extensions of P by adding the relation Ext2(A1) > A2 in
P↑ and Ext2(A1) < A2 in P↓. This leaves only the case where P is an antichain, which is
covered by appealing to the connection between posets and permutations.

As we may expect by its similarity to the permutation case, precisely ⌈(n + 1)/2⌉ ad-
ditional elements are required when (P, <) is a linear order. Note further that this bound
is tight, because of its connection with permutations.

On the other hand, when (P, <) is an antichain, a simple extension does not require
this many points by the following connection with graphs: the comparability graph G(P, <)
of a poset (P, <) is a graph with vertex set P, and edges p ∼ q if and only if either p < q
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or q < p.3 It is then easy to appeal to Theorem 3.2 to create simple extensions of antichains
that require just ⌈log2(n + 1)⌉ additional points, and again this bound is tight. In fact, if
the simple extension of a graph admits a transitive orientation then this extension could
be interpreted as a simple extension of a poset.

6. DIGRAPHS AND ORIENTED GRAPHS

An arbitrary digraph corresponds to the most general type of binary relational structure,
i.e., the structure A contains just one binary relation R for which there are no restrictions.
Elements of the relation may be viewed as directed edges on a graph, so that two vertices
u and v of a digraph may be related in one of four different ways: u→ v, u← v, u↔ v, or
u and v have no edge between them.

We obtain a general bound on the number of additional vertices required by analogy
with the graph case: where we had two possible “types” of connection (i.e., an edge or no
edge) between an old and a new vertex for graphs, we now have four. The result of this is
that a new vertex in a digraph can do the work of two new vertices in a graph, so half as
many vertices are required.

Theorem 6.1. A digraph D has a simple extension with at most m = ⌈log4(|V(D)|+ 1)⌉ addi-
tional vertices.

Proof. The underlying graph GD of a digraph D is the graph formed by replacing each di-
rected edge with an undirected one, i.e., uv ∈ E(G) if and only if u → v or v → u.
Moreover, it is easy to see that a set of vertices that forms an interval in D will also form
an interval in GD. By Theorem 3.2, we can construct a simple extension G∗D of GD by
adding a set B = {b1, b2, . . . , bm} of m ≤ ⌈log2(|V(GD)|+ 1)⌉ vertices. Now, noting that
2⌈log4(|V(D)|+ 1)⌉ ≥ ⌈log2(|V(GD)|) + 1⌉, we add a set C = {c1, . . . , cℓ} of ℓ = ⌈m/2⌉
additional vertices to GD, satisfying, for every v ∈ V(D) and i = 1, 2, . . . , ℓ,

v→ ci if and only if vb2i−1 ∈ E(G∗D), and,

ci → v if and only if vb2i ∈ E(G∗D) and 2i ≤ ℓ.

Thus every vertex ci of C has outneighbourhood matching the neighbourhood of b2i−1,
and inneighbourhood matching b2i. It is now straightforward to check that this is a simple
extension.

This bound can be seen to be tight for a complete digraph — a digraph for which u↔ v
for every pair of distinct vertices u and v — and an empty digraph, again by analogy with
the graph case.

3The converse operation — forming a poset from a graph — is called a transitive orientation of (the edges
of) G. This connection between posets and graphs arises in a number of combinatorial problems — see
Möhring [19] for a survey.
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Figure 9: A one-vertex simple extension of a linear digraph on 7 vertices.

However, if our digraph forms a linear order (and is hence transitive), our structure
forms a transitive tournament. Appealing to Theorem 2.1, only one additional point is re-
quired to form a simple tournament unless the tournament had an odd number of vertices,
when two are required. Here, however, we do not require the resulting simple extension to
be a tournament, and this added freedom allows us to form a simple one-point extension
in every case. See Figure 9 for an example.

Extending the connection with tournaments, any digraph that is also a tournament
must consequently have a simple one-vertex extension. A natural question then arises:
which digraphs have simple extensions requiring only one additional vertex? Clearly
structures which are “close” to tournaments will have this property, and again the an-
swer must lie in the substitution decomposition tree, and in particular how we decompose
a structure with a quotient of size 2.

Oriented Graphs An oriented graph G is a graph in which each edge has a specified direc-
tion, and it can be described as a relational structureAG on the languageL = {→, n→ = 2}
where→ is an asymmetric binary relation, i.e., for each u, v ∈ dom(AG) = V(G), u → v
implies v 6→ u. The difference between these and digraphs is that oriented graphs per-
mit only three types of connection between two vertices, and so in particular there is no
oriented graph corresponding to a complete graph. There is, however, an oriented graph
corresponding to the empty graph, and it is this that gives rise to the upper bound.

Theorem 6.2. An oriented graph G has a simple extension with at most m = ⌈log3(|V(G)|+ 1)⌉
additional vertices.

When the oriented graph forms a tournament, it is easy to check that only one addi-
tional vertex is required — note in particular that the simple extension in Figure 9 is also
an oriented graph.

7. RELATIONS WITH HIGHER ARITY

When a relational structure is defined on a language containing a k-ary relation for some
k ≥ 3, simple extensions are often trivial to find and depend only on the type of relation.
We begin with a straightforward observation.

Lemma 7.1. A relational structure A on the language L = {R1, R2, . . . , nR1
, nR2

, . . .} is simple
if there is some k for which the structure ARk

, defined on the ground set dom(ARk
) = dom(A)

and language LRk
= {Rk, nRk

}, is simple.
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Proof. Suppose, for a contradiction, that I is a nontrivial interval of A, and in partic-
ular we may choose two distinct elements x, y ∈ I. Since ARk

is simple, there exists
z ∈ dom(ARk

) \ I = dom(A) \ I for which x and y are not interchangeable in any re-
lationship of Rk containing z and at least one of x and y. This, however, is also true in
A.

Consequently, if a relational structure A contains an arbitrary k-ary relation R with
k ≥ 3, only one additional element is required, regardless of what other relations the
structure may hold:

Theorem 7.2. A relational structure A containing an arbitrary nR-ary relation R with nR ≥ 3
has a one-element simple extension.

Proof. By Lemma 7.1 we need only prove that we may form a one-element simple exten-
sion for a structureA defined on the language L = {R, nR} consisting of only one relation.
Furthermore, we assume that nR = 3, noting that the result is easily extended if our chosen
arbitrary relation has higher arity.

Choose any simple binary relational structure B on the set dom(A) with language
{B, nB = 2}— such a structure exists for every size of set by taking, for example, a path in
the graph-theoretic sense unless |A| ≤ 3, in which case we may choose a simple tourna-
ment. We now add an additional vertex x toA and define relations between x and dom(A)
to form A∗ as follows: for every (u, v) ∈ BB, put (x, u, v) ∈ RA

∗
. (Note that if nR > 3 we

set (x, . . . , x, u, v) ∈ RA
∗
.) We claim that A∗ is simple. By the simplicity of B, any interval

containing more than one element of dom(A) must contain all of dom(A), so the only
intervals we need to rule out are I = {w, x} for some w ∈ dom(A), and I = dom(A).

For the first case, by the construction there exists at least one relationship of the form
(x, w, v) or (x, v, w) in RA

∗
for some v ∈ dom(A) with v 6= w, and without loss we may

assume the former. Since I is an interval, this implies that (x, x, v) ∈ RA
∗
, a contradiction

as there are no relationships of the form (x, x, ·) in RA
∗
. In the second case, I = dom(A)

implies that (x, u, v) ∈ RA
∗

for every u, v ∈ domA, which implies that B can be thought
of as a complete graph, a contradiction since B was chosen explicitly to be simple.

Structures which have more restrictive relations do also sometimes have one point ex-
tensions. For example, a suitably large relational structure containing a k-ary relation for
some k ≥ 3 that is irreflexive in its entries is easily found to have such an extension:

Theorem 7.3. For k ≥ 3, a relational structure with n ≥ k elements on a k-ary irreflexive relation
has a one vertex simple extension.

Proof. Fix k ≥ 3, and let R be a k-ary irreflexive relation. By Lemma 7.1 it suffices to form
a one-element simple extension A∗ of a relational structure A on the language L = {R, k}
whose ground set consists of n ≥ k vertices. Set domA∗ = domA ∪ {x}, and define the
set of relations RA

∗
as follows: (x1, . . . , xk) ∈ RA

∗
if and only if either (x1, . . . , xk) ∈ RA or

x = xi for exactly one i and (x1, . . . , xi−1, xi+1, . . . , xk) is a (k− 1)-tuple of distinct elements
from dom(A).
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It follows routinely that A∗ is simple: suppose that I is a proper interval of A∗ con-
taining u, v ∈ dom(A∗). By the construction there is at least one relation in RA

∗
of the

form (u, v, x3, . . . , xk) where x3 6∈ I, but this then means that (u, u, x3, . . . , xk) ∈ RA
∗
, a

contradiction since R is irreflexive.

Note in particular that the above proof immediately answers the problem for hyper-
graphs since the construction ensures that if A is a hypergraph then so is A∗ (i.e., RA

∗
is

symmetric in its entries).

8. CONCLUDING REMARKS

Tight bounds. Although the bounds in this paper are tight in the sense that there are
certain structures which require as many points as the bound permits, on a typical exam-
ple our constructions do quite a bit better. As noted in Section 3, more than two vertices
are required in the graph case only if there is a large degenerate node in the substitution
decomposition tree, all of whose children are leaves. Similar analysis of the substitution
decomposition tree may be used in the cases of permutations, oriented graphs and di-
graphs to determine exactly how many points will be required in any particular case. More
complicated is the poset case: we cannot simply appeal to the permutation case because
degenerate decompositions whose quotients are antichains can be treated as if they are
empty graphs, which require only O(log2 n) additional vertices.

Average number of additional points required. In the case of graphs and other rela-
tional structures defined by a single asymmetric relation (e.g. tournaments, posets and
oriented graphs), almost all structures are already simple (see Möhring [17]). In other
words, in these contexts, the proportion of objects which are already simple tends to 1,
while the results in this paper bound the number of points needed in the other cases, from
which it can be shown that the expected number of points needed to make such an struc-
ture simple tends to 0. The permutation case is more interesting, because here one expects
to find two intervals of size two (see, for example, [3]).

Simple extensions of infinite structures. Proposition 2.2 as proved by Erdős, Hajnal and
Milner applies to tournaments of arbitrary cardinality, and it is natural to wonder what (if
anything) can be said for other structures. Note that for many such structures it is easy
to construct examples that require infinitely many additional points (e.g., the countably
infinite complete graph). On the other hand, Theorem 7.2 holds so long as the structure
contains an arbitrary nR-ary relation with nR ≥ 3.
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