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Abstract

We undertake a detailed investigation into the structure of permutations in monotone grid
classes whose row-column graphs do not contain components with more than one cycle.
Central to this investigation is a new decomposition, called the M-sum, which generalises
the well-known notions of direct sum and skew sum, and enables a deeper understanding
of the structure of permutations in these grid classes. Permutations which are indecom-
posable with respect to the M-sum play a crucial role in the structure of a grid class and
of its subclasses, and this leads us to identify coils, a certain kind of permutation which
corresponds to repeatedly traversing a chosen cycle in a particular manner.

Harnessing this analysis, we give a precise characterisation for when a subclass of such a
grid class is labelled well quasi-ordered, and we extend this to characterise (unlabelled) well
quasi-ordering in certain cases. We prove that a large general family of these grid classes
are finitely based, but we also exhibit other examples that are not, thereby disproving a
conjecture from 2006 due to Huczynska and Vatter.

1 Introduction

Throughout the study of various types of combinatorial structures, and indeed general rela-
tional structures on finite sets, decomposition strategies play a prominent role. Very loosely
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speaking, a decomposition consists of partitioning the structure in such a way that the indi-
vidual parts are well understood and ‘simpler’ than the whole, and so that the relationship
between parts is also controlled.

One concrete example concerns the so-called modular decompositions. They date back to the
1950s and a talk of Fraı̈ssé, of which only the abstract [23] survives, and their use in graph
theory can be traced back to Gallai’s work [24, 25]. Since then modular decompositions have
become a standard tool, especially in topics related to algorithms and complexity; see [15, Sec-
tion 12.1] for an introduction, and [10, 19, 22, 27] for some recent results.

The defining feature of modular decompositions is that the relationship between points be-
longing to different blocks is completely determined. Moving away from such a strict require-
ment, in extremal graph (and hypergraph) theory, various decompositions are at the heart of
many significant developments: besides the classical results of Turán, there is the celebrated
Regularity Lemma of Szemeredi [36], the Container method (originally due to Kleitman and
Winston [31]), and notions of χ-bounded families of graphs (originating with Gyárfás [26], as
a generalisation of perfect graphs).

In the study of hereditary properties of graphs, Balogh, Bollobás and Morris [9] showed that
any graph class whose speed falls below the Bell numbers can be partitioned into a union of
cliques and independent sets, so that the connections between each part are either very dense,
or very sparse. This was subsequently generalised by Atminas [8], and this result is in fact the
graph-theoretic equivalent of the characterisation of monotone griddability in permutations,
due to Huczynska and Vatter [29].

For hereditary classes whose speed is smaller still, progressively finer structural decomposi-
tions are available, one notable example being the ‘letter graphs’ of Petkovšek [34]. These are
the graph-theoretic analogue of geometrically griddable permutations [5], as established by
Alecu, Ferguson, Kanté, Lozin, Vatter and Zamaraev [7]. There are therefore parallels at several
levels between hereditary graph classes and permutation classes.

The purpose of this paper is to advance the framework of structural decomposition in the area
of permutation classes, by undertaking a detailed analysis of the so-called monotone griddable
classes. Central to our analysis is a new decomposition, called the M-sum (introduced in Sec-
tion 3), which significantly expands our understanding of this important family of permutation
classes. A list of the consequences of our decomposition is provided later in this introduction.

The structural study of permutation classes has become a major area of endeavour in the last
30 years, motivated by questions in enumerative combinatorics, by parallels with the study
of graph classes, and as a topic in its own right. Indeed, the phase transitions in the number
and complexity of permutation classes whose growth rates are ‘small’, as established by Kaiser
and Klazar [30] and Vatter [37, 39], are exemplars of the interplay between enumeration and
structure. Vatter [39] also gives a good account of the parallels with the aforementioned study
of speeds of hereditary graph classes, which started with Scheinerman and Zito [35].

Within this structural study, given a suitable description of some permutation class C, one may
ask a number of pertinent questions, such as:

• Does C have some kind of concise definition? For example, is it finitely based?
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• Can the structure of the permutations in C be succinctly represented?

• Does C have some notable order-theoretic properties? For example, is it well quasi-ordered
or even labelled well quasi-ordered?

• Does C have good enumerative properties, such as a tractable generating function, or at
least a quantifiable asymptotic growth?

Over recent years it has transpired that a key role in many developments in each of the above
strands is played by the grid classes. Roughly speaking, a grid class comprises permutations
which, when plotted in the plane, can be subdivided into cells in a grid-like manner so that the
entries in each cell belong to a simpler permutation class, specified by a matrix entry.

In full generality, where there are no restrictions on the types of classes that the matrix may
contain, we have little understanding about the behaviour of the resulting general grid classes,
beyond knowing their growth rates (see Albert and Vatter [4]), and some results relating to well
quasi-order and labelled well-quasi-order, see Brignall [16, 17].

At the other end of the spectrum are the geometric grid classes, in which not only must the entries
in each cell of a subdivided permutation form a monotone sequence, but it is additionally re-
quired that the permutations in the class can be plotted in such a way that their points lie on the
cell diagonals. A major study, due to Albert, Atkinson, Bouvel, Ruškuc and Vatter [5], showed
(among other results) that every geometric grid class is finitely based, well quasi-ordered and
enumerated by a rational generating function. Brignall and Vatter [20] subsequently established
that geometric grid classes are in fact labelled well quasi-ordered.

The monotone grid classes that form the basis of this article form an intermediate family of
grid classes. As they are the only classes we consider in the sequel, we will henceforth refer to
them simply as ‘grid classes’. A gridding matrix is a matrix M whose entries are all in {0,±1},
and we let Grid(M) denote the grid class of M, which comprises all permutations which can be
divided into a rectangular grid of cells (of the same dimensions as M), such that each cell ij of
the permutation contains no entries ifMij = 0, contains entries forming a monotone increasing
sequence ifMij = 1, and contains a monotone decreasing sequence ifMij = −1.

For a gridding matrixMwithm columns and n rows, the row-column graph ofM, denotedGM,
is the bipartite graph with vertices {1, . . . ,m} ∪ {1 ′, . . . ,n ′} such that ij ′ ∈ E(GM) whenever
the corresponding entry Mij of M is non-zero.1 The graphs GM play an important role in
the complexity of the class Grid(M). For example, the growth rate of Grid(M) is equal to the
square of the spectral radius of GM (see Bevan [11, 12], and also Albert and Vatter [4] for
a generalisation), while Grid(M) is well quasi-ordered if and only if GM is a forest (due to
Murphy and Vatter [32]; see also Vatter and Waton [40]).

With results like these in mind, the structure of the components in the graphs GM provides us
with a taxonomy for the classes Grid(M), and we borrow terminology from graphs to name
them.

• If GM contains no cycles (that is, every connected component of GM is a tree), then we
say thatM is acyclic.

1A related concept, known as the cell graph, has also been used in the literature (see, for example, Vatter [37, 39]),
but the row-column graph will prove more useful for our work.
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• IfGM has exactly one cycle, thenM is unicyclic,2 while ifGM is isomorphic to a cycle then
M is cyclic.

• When every component ofGM is either unicyclic or a tree, we say thatM is a pseudoforest.

• If GM contains a component with more than one cycle, thenM is polycyclic.

Note that every cycle in GM necessarily has even length at least four, since GM is a bipartite
graph.

We also use the above terms to describe the grid class Grid(M). While acyclic classes are already
well understood (both by Murphy and Vatter [32], and by the fact that all such classes are
geometric grid classes so the results of [5] apply), additional tools are required to understand
more complex row-column graphs.

Our attention in this paper focuses on the structure of permutations in cyclic, unicyclic and
pseudoforest grid classes. By analysing the permutations in Grid(M) that are indecomposable
with respect to theM-sum (Definition 3.1), we identify an unavoidable family of permutations
called coils (Definition 3.8), formed by repeatedly traversing a chosen cycle ofM in a particular
manner. Harnessing the analysis in Section 3, our main results are as follows.

Theorem 4.1 A subclass of a pseudoforest grid class is labelled well quasi-ordered if and only
if it contains only bounded length coils.

Theorem 4.13 It is possible to decide whether a finitely based subclass of a pseudoforest grid
class is labelled well quasi-ordered.

Theorem 5.1 Every unicyclic grid class is finitely based.

Proposition 5.11 There exist pseudoforest grid classes that are not finitely based.

Theorem 6.5 A subclass of a cyclic grid class is well quasi-ordered if and only if it contains
only finitely many end-inflated coils.

Proposition 5.11 disproves a 2006 conjecture due to Huczynska and Vatter [29, Conjecture 2.3],
which claimed that all monotone grid classes must be finitely based. On the other hand, Theo-
rem 5.1 establishes that the conjecture does hold in a smaller family of grid classes.

For the rest of this section we provide some further basic definitions, and set our work in the
context of the existing literature. Section 2 initiates our in-depth study of grid classes with fur-
ther introductory material and some new concepts, such as the “orientation digraph”. This sec-
tion also contains a proof of a result concerning “negative cycles” that previously only existed
in Waton’s PhD thesis. Section 3 establishes our underpinning decomposition of pseudoforest
grid classes by means of theM-sum, and introduces coils.

Section 4 covers all the introductory material concerning labelled and unlabelled well quasi-
ordering, before presenting the proofs of Theorems 4.1 and 4.13. Section 5 contains the proofs
of Theorem 5.1 and Proposition 5.11, and Section 6 establishes Theorem 6.5.

2Note that our use of the term unicyclic is consistent with its general use in graph theory, but is different from how
the term has been used in other studies of grid classes, notably in the PhD theses of Bevan [13] and Opler [33].

4



Permutations and permutation classes The uninitiated reader may wish to refer to Bevan [14]
or Vatter [38] for a broader introduction to the area of permutation classes than that given here.
A permutation π = π(1) · · ·π(n) of length |π| = n is an ordering of the numbers 1, . . . ,n, though
we frequently refer to a permutation π by its point set {(i,π(i)) : i = 1, . . . ,n}. Indeed, this point
set leads us to the crucial graphical perspective upon which the notion of grid classes depends:
the plot of π is the plot of its point set in the plane.

Given two permutations π and σ of lengths n and k, respectively, we say that σ is contained in
π if there exists a subsequence i1, . . . , ik such that 1 ⩽ i1 < i2 < · · · < ik ⩽ n, and the sequence
π(i1) · · ·π(ik) forms a set of points in the same relative order as those in σ (that is, π(i1) · · ·π(ik)
is order isomorphic to σ). A witness of this containment forms a copy, or an embedding, of σ in π.
Containment forms a partial order on the set of all permutations, and when σ is contained in π
we can write σ ⩽ π; if, on the other hand, there is no copy of σ in π, then we write σ ̸⩽ π, and
say that π avoids σ.

A permutation class is a set of permutations that is closed under containment. That is, if π belongs
to a permutation class C and σ ⩽ π, then σ ∈ C. The basis of a class C is the set of minimal
forbidden permutations not in C; such a set is unique, but need not be finite. For a set B we
write Av(B) for the permutation class consisting of all permutations that avoid all elements
of B. If B is the basis of C, then of course C = Av(B), and if B is finite then we say that C is finitely
based.

The bases of grid classes Prior to this work, relatively little general progress had been made
on Huczynska and Vatter’s conjecture, other than the results mentioned earlier for geometric
grid classes in [5]. In his PhD thesis [41, Theorem 4.7.5] Waton showed that one 2× 2 grid class
is finitely based, and subsequently Albert and Brignall [2] extended Waton’s argument to cover
all 2× 2 grid classes.

Well quasi-ordering in grid classes A permutation class is well quasi-ordered if it contains no
infinite antichains with respect to the containment ordering. We defer the core definitions re-
garding this property and its labelled version until Section 4, but give here some context for our
work. In general, the property of being well quasi-ordered is seen as an indicator of ‘tameness’,
as described by Cherlin [21]. For example, every well quasi-ordered permutation class contains
at most countably many distinct subclasses, whereas those that are not well quasi-ordered must
have uncountably many subclasses (and, therefore, also uncountably many subclasses whose
enumeration sequences are intractably difficult). As such, the presence (or otherwise) of infi-
nite antichains dictates much of what we know regarding the structure and growth rates of the
so-called “small” permutation classes, see Vatter [37, 39].

As mentioned earlier, Murphy and Vatter [32] established that a grid class is well quasi-ordered
if and only if its graph is acyclic. It may seem something of a surprise, therefore, to note how
much of this paper is dedicated to the study of well quasi-ordering in grid classes. Our interest
here is in the subclasses of pseudoforest grid classes, and there are two principal reasons for this:

• Our result that unicyclic grid classes are finitely based fundamentally relies on the charac-
terisation of labelled well quasi-order given in Theorem 4.1; in fact, our counterexamples
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to the 2006 conjecture are also unlikely to have been discovered without the development
ofM-sums and coils.

• Our work here is intended to initiate a programme of study similar to that undertaken for
subclasses of the 321-avoiding permutations in Albert, Brignall, Ruškuc and Vatter [3]. In-
deed, it is shown in [3] that every finitely based or well quasi-ordered subclass of Av(321)
is enumerated by a rational generating function, even though Av(321) itself is not.3

We stop short of attempting to derive enumerative consequences of our work for subclasses of
pseudoforest grid classes, but refer the curious reader to our concluding remarks on the topic.

2 Grid class structure

In this section, we review several concepts from the literature (including some work that has
previously only appeared in Waton’s PhD thesis [41]) relating to grid classes, and set these
alongside a novel concept – the orientation digraph.

2.1 Grid classes and gridded permutations

Recall that a gridding matrix is any matrix whose entries come from {0,±1}. In order to reflect the
way we view permutations graphically, we deviate from the standard convention for indexing
matrix entries: we index them starting from the lower left corner, and we record the column
number first, followed by the row number. Thus, anm× nmatrix hasm columns and n rows,
and, for example, M21 is the entry in the second column from the left in the bottom row of the
matrixM.

It is often helpful to adopt a more graphical representation of gridding matrices, by replacing
the non-zero entries of each cell with small increasing or decreasing line segments as appropri-

ate. For example, ifM =

(
−1 0 1
0 1 1
1 −1 0

)
, then we might alternatively writeM = .

Given an m × n gridding matrix M, an M-gridding of a permutation π of length ℓ is a division
of the points in the plot of π into a grid of m × n rectangles, called cells, such that the cell (i, j)
contains no points ifMij = 0, and otherwise the points in this cell form an increasing sequence
if Mij = 1, or a decreasing sequence if Mij = −1. The latter two options also include the
possibility of the cell containing no points. More formally, such a gridding can be viewed as a
pair (V,H) where V = {v1, . . . , vm−1} and H = {h1, . . . ,hn−1} are collections of m − 1 vertical
and n− 1 horizontal lines, represented by numbers

1
2 = v0 ⩽ v1 ⩽ · · · ⩽ vm−1 ⩽ vm = ℓ+ 1

2 , and
1
2 = h0 ⩽ h1 ⩽ · · · ⩽ hn−1 ⩽ hn = ℓ+ 1

2 .

3The 321-avoiding permutations are famously one of the classes of combinatorial structures enumerated by the
Catalan numbers, which means it has an algebraic, but not rational, generating function.
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Figure 1: The permutation 812543697 possesses six griddings in Grid(M) whereM = ,

three of which are shown here.

The permutation π together with the gridding is referred to as a gridded permutation, and we
write π# = (π,V,H). The rectangle {(x,y) : vi−1 < x < vi, hj−1 < y < hj} will be referred to as
the cellCij. Sometimes we will identify a cell with the set of all points of π# that belong to Cij. A
permutation π ∈ Grid(M) may possess severalM-griddings; see Figure 1. We will occasionally
use π♮ to refer to a second gridding of the permutation π.

The collection of all permutations that possess anM-gridding forms a permutation class known
as the grid class of M, which we denote by Grid(M). If C is a permutation class such that every
π ∈ C possesses anM-gridding, i.e. if C ⊆ Grid(M), then we say that C isM-griddable.

We denote the collection of allM-gridded permutations by Grid#(M). Note that the elements of
Grid#(M) are not permutations, and if σ#, π# are twoM-gridded permutations such that σ ⩽ π,
then it need not be the case that σ can be embedded in π in such a way as to respect the two
given griddings. However, there is the notion of gridded containment: we say that σ# ⩽ π# if
there exists a subsequence 1 ⩽ i1 ⩽ · · · ⩽ i|σ| ⩽ |π| of π that is order isomorphic to σ, such that
the entries (j,σ(j)) of σ# and (ij,π(ij)) of π# lie in the cells that correspond to the same entry
ofM, for each j = 1, . . . , |σ|.

Equipped with gridded containment, we observe that for any M-griddable class C ⊆ Grid(M),
the set of gridded permutations C# is a downset: that is, if π# ∈ C# and σ# ⩽ π#, then σ# ∈ C#.

2.2 Partial multiplication matrices and griddings

LetM be anm×n gridding matrix, and recall that the vertices ofGM are {1, . . . ,m}∪ {1 ′, . . . ,n ′}.
For any cycle C in GM, the sign of the cycle is the product

∏
ij ′∈E(C)Mij, where E(C) is the set

of edges of C. Thus, each cycle in GM is either positive or negative, and one of our aims in
this subsection is to demonstrate that matrices whose graphs possess negative cycles can be
removed from our considerations.

We say that anm×n gridding matrixM is a partial multiplication matrix if there exist sequences
c1, . . . , cm and r1, . . . , rn with entries ±1 such that each non-zero entry Mij of M is equal to
cirj. Such matrices are characterised by the following proposition.

Proposition 2.1 (Vatter and Waton [40]). A gridding matrix M is a partial multiplication matrix if
and only if its row-column graph GM contains no negative cycles.

The sequences c1, . . . , cm and r1, . . . , rn from the above definition will be called the column and
row sequences, respectively. They are not uniquely determined byM: for example, if c1, . . . , cm
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Figure 2: A gridding of the permutation 10 1 12 2 5 4 6 3 7 11 9 8 in Grid(M) whereM =

is a partial multiplication matrix with column sequence 1,−1,−1 and row sequence
1,−1, 1. The inherited orientations for each non-empty cell are shown in grey.

and r1, . . . , rn are column and row sequences forM, then so are −c1, . . . ,−cm and −r1, . . . ,−rn.
In what follows, whenever we have a gridding matrix that is a partial multiplication matrix,
we will assume that a particular choice of row and column sequences has been fixed.

Column and row sequences lead to the notion of orientation for cells, columns and rows. For
example, in the case that ci = rj = 1, we order the points in cell ij from bottom left (the first
point) to top right (the last point), and we can succinctly denote this orientation by↗. All four
cases are given in the following table.

ci rj orientation ofMij

1 1 ↗
−1 −1 ↙

1 −1 ↘
−1 1 ↖

Note that when ri = 1, then the vertical component of orientation for all non-empty cells in that
row is the same, namely from bottom to top (↑), and when ri = −1, it is from top to bottom (↓).
An analogous statement can be made in relation to the horizontal orientation within columns.
See Figure 2.

This notion of a common orientation within each row and column motivates the following
definition. Let M be a partial multiplication matrix, and let π# be an M-gridded permutation.
The orientation digraph Dπ# has vertex set equal to the points of π#, with directed edges as
follows: x → y if x and y share a row and/or column in π#, and x precedes y in the common
orientation of these two points. Thus, the directed edges between the points of Dπ# within a
single row or column define a total order. See Figure 3.

Given any gridded permutation π# and a gridded subpermutation σ# obtained by removing
a single point p, the digraph Dσ# is an induced subdigraph of Dπ# obtained by removing the
vertex p. Iterating this process, we have the following.

Observation 2.2. The mapping π# 7→ Dπ# is order-preserving.

Note that this mapping from gridded permutations to directed graphs is not injective.

The orientation digraphs Dπ# play an important rôle throughout this work. However, before
we can bring them into our arguments we need to consider matrices that cannot be expressed
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Figure 3: A gridding of the permutation 415362 in Grid(M) where M = is a partial
multiplication matrix, together with its orientation digraph.

as partial multiplication matrices, sinceDπ# requires a consistent orientation of the underlying
matrixM.

For any m × n gridding matrix M, the doubling of M, denoted M×2, is the 2m × 2n matrix
obtained fromM using the substitution rules

0 7−→
(

0 0
0 0

)
1 7−→

(
0 1
1 0

)
− 1 7−→

(
−1 0
0 −1

)
.

Note that each row of M gives rise to two rows of M×2, and the number of non-zero entries in
each of these three rows is the same. A similar comment applies to the columns ofM andM×2.

For example, ifM =

(
1 1
1 1

)
and N =

(
1 −1
1 1

)
, then

M×2 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 N×2 =


0 1 −1 0
1 0 0 −1
0 1 0 1
1 0 1 0

 .

Note thatGM andGN are both isomorphic to the 4-cycleC4, but the graphsGM×2 andGN×2 are
not isomorphic: specifically,GN×2 is a cycle of length 8 (of positive sign), whileGM×2 comprises
two disjoint copies of C4. Indeed, the submatrix formed on the rows and columns of M×2

corresponding to the vertices from either of the two components of GM×2 is equal to M. These
observations hold more generally.

Proposition 2.3. LetM be a gridding matrix whose graph GM contains a cycle C of length ℓ.

(i) If C has positive sign, then the vertices in GM×2 that arise from C form two disjoint cycles each of
length ℓ and of positive sign.

(ii) If C has negative sign, then the vertices in GM×2 that arise from C form a single cycle of length
2ℓ, of positive sign.

Proof. Denote the vertices around the cycle C of GM by x1, . . . , xℓ. Each vertex xi gives rise to
two vertices in the row-column graph of GM×2 , which we will label as follows: If xi is a row
vertex, then we denote the lower of the two corresponding vertices by xAi and say it is of type
A, and the upper by xBi (of type B), while if xi is a column vertex, then xAi (type A) refers to the
leftmost, and xBi (type B) the rightmost.
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Now consider a non-zero entry Mpq that corresponds to the edge between xi and xi+1, where
we reduce indices modulo ℓ as appropriate.4 If Mpq = 1, then in GM×2 we find the edges
xAi x

A
i+1 and xBi x

B
i+1, while ifMpq = −1 then we instead have the edges xAi x

B
i+1 and xBi x

A
i+1.

Now consider the walk, starting from xA1 , that sequentially follows these edges in turn, until
we return to one of the two vertices xA1 or xB1 . Note that this walk moves between vertices of
type A and type B precisely when the corresponding edge of GM arises from an entry of M
that is equal to −1.

Consequently, if the cycle C has positive sign, then the walk switches between vertices of types
A and B an even number of times, and thus returns to xA1 after ℓ steps. Similarly, the walk that
starts at xB1 will return to xB1 after ℓ steps. Thus we have two cycles of length ℓ, both of positive
sign.

On the other hand, if the cycle C has negative sign, then the walk makes an odd number of
switches between vertices of type A and type B, and thus reaches vertex xB1 after ℓ steps. Fur-
thermore, the walk starting at xB1 reaches vertex xA1 after ℓ steps, and by combining these two
walks we find a cycle of length 2ℓ. This cycle necessarily passes through all of the 2ℓ vertices
in GM×2 arising from the vertices on the cycle C of GM, and since this collection of 2ℓ vertices
contains an even number of −1s, the cycle has positive sign.

The following result, and the proof we present, first appeared in Waton’s PhD thesis.

Proposition 2.4 (Waton [41, Theorem 4.5.8]). LetM be a gridding matrix. If every component ofGM

that contains a negative cycle contains no other cycle, then Grid(M) = Grid(M×2).

Proof. Suppose M has m columns and n rows. First, observe that if π ∈ Grid(M×2), then there
is some π# = (π,V,H) ∈ Grid#(M×2) where V = {v1, . . . , v2m−1} and H = {h1, . . . ,h2n−1}. The
gridding (π,V ′,H ′) where V ′ = {v2, v4, . . . , v2m−2} and H ′ = {h2,h4, . . . ,h2n−2} (that is, the sets
formed by removing all the odd-numbered lines from V and H) demonstrates that π ∈ Grid(M).
Thus Grid(M×2) ⊆ Grid(M).

For the other direction, without loss of generality, we may assume that GM contains a single
component, otherwise the following argument can be applied to each component separately.

First, if M contains no negative cycle, then by Proposition 2.1, M can be expressed as a partial
multiplication matrix, and we identify sequences c1, . . . , cm and r1, . . . , rn that witness this fact.
Define maps κ : [m]→ [2m] and ρ : [n]→ [2n] as follows. For i ∈ [m], j ∈ [n],

κ(i) =

{
2i− 1 if ci = 1
2i otherwise.

ρ(j) =

{
2j− 1 if rj = 1
2j otherwise.

4Throughout this paper, we will adopt the convention that (mod ℓ) reduces an integer to the set of residues {1, . . . , ℓ},
rather than to {0, . . . , ℓ− 1}.
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f11

f13

f21

f22
f32

f33

Figure 4: The piecewise maps fij, described in the proof of Proposition 2.4, for a gridding of

the permutation 2 11 14 16 3 6 4 7 1 8 12 5 9 13 10 15 in Grid(M), whereM = .

We have Mij = M×2
κ(i)ρ(j), and furthermore the submatrix of M×2 defined on the columns

{κ(1), . . . ,κ(m)} and the rows {ρ(1), . . . , ρ(n)} is equal toM. Thus, any permutation that belongs
to Grid(M) also belongs to Grid(M×2).

It remains to consider the case thatGM contains a negative cycle, which we take to have length
2ℓ. Consider π ∈ Grid(M), and fix a specific gridding π# = (π,V,H) ∈ Grid#(M). Our aim is to
refine this gridding by slicing each row and column of π# in order to show that π ∈ Grid(M×2),
but some care is required. Suppose, for example, that we have identified a horizontal line that
slices some row of π#. For any non-empty cell cwe must identify a vertical line to slice c, so that
the points in c occupy only the lower-left and upper-right regions if they form an increasing
sequence, and the upper-left and lower-right regions if they form a decreasing sequence. The
vertical line we identify slices the whole column containing c, and for any other non-empty
cells in this column we will similarly need to identify suitable horizontal lines. We call this
process propagation, and it presents no issues unless we revisit an already-sliced cell, at which
point we need to ensure that this cell is sliced only once horizontally and once vertically. This
situation arises when we propagate slices around the cells corresponding to the edges of the
cycle of GM, so our first task is to show how to slice the cells of the negative cycle.

For i ∈ [m], j ∈ [n] such that Mij ̸= 0, define the continuous function fij : [vi−1, vi]→ [hj−1,hj]
formed by the piecewise linear map between the entries of π in cell ij, together with the corners
of the cell, namely (vi−1,hj−1), (vi,hj) if Mij = 1, and (vi−1,hj), (vi,hj−1) if Mij = −1. See
Figure 4, and note that fij is monotone increasing if Mij = 1, and monotone decreasing if
Mij = −1.

Denote the negative cycle ofM by a sequence of alternating rows and columns,

i1, j1, i2, j2, . . . , iℓ, jℓ.

Thus the cells of the cycle in π# are i1j1, i2j1, i2j2, . . . , iℓjℓ, i1jℓ. Define the map f : [vj1−1, vj1 ] →
[vj1−1, vj1 ] as the composition (taken from right to left)

f = f−1
i1jℓ
◦ · · · ◦ fi2j2 ◦ f

−1
i2j1
◦ fi1j1 ,

formed by following the functions and their inverses around the cycle. Note that since the cycle
has negative sign, the function f is a decreasing function. As such, there exists x1 ∈ (vj1−1, vj1)
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such that f(x1) = x1 (this follows, for example, by applying the Intermediate Value Theorem to
the function f(x) − x). Let y1 = fi1j1(x1), and for k = 2, . . . , ℓ iteratively define

xk = f−1
ikjk−1

(yk−1), yk = fikjk(xk).

Note that, for 1 ⩽ k ⩽ ℓ, by construction yk is a point on the vertical axis (which we can
associate with a horizontal line) that is propagated by xk, and xk+1 (mod ℓ) is a point on the
horizontal axis (associated with a vertical line) that is propagated by yk (since x1 = fi1jℓ(yℓ)).
Thus, the 2ℓ vertical and horizontal lines defined by x1, . . . , xℓ and y1, . . . ,yℓ slice the rows and
columns of π# corresponding to the vertices on the cycle of GM, as required. Note that if any
point of π# shares one or both coordinates with these lines, then we can adjust the coordinates
of the point by a small amount so that it still lies on the curve defined by the appropriate
piecewise map fij, but no longer meets any of the horizontal or vertical lines, and so that the
plot is still order isomorphic to π#.

It remains to show that any non-empty cells of π# not on the cycle can be sliced both hori-
zontally and vertically which we establish by induction on the number of such cells. In the case
there are no such cells, then all non-empty cells of π# lie on the cycle, and are sliced as described
above. So we now suppose there is at least one cell not on the cycle.

Identify a non-empty cell c of π# that either has no other non-empty cells in its column or its
row. (Such a cell exists since any cell that is not on the cycle corresponds to an edge in GM on a
unique path from the cycle to some leaf of GM, and hence we may choose the last non-empty
cell along this path.) By symmetry, we may assume that c is the only non-empty entry in its
column, and furthermore that the points in c form an increasing sequence.

By induction, the gridded subpermutation of π# formed by removing the entries of c has a
refinement that gives an M×2-gridding. In π#, this refinement creates a horizontal line h that
slices the cell c. We now propagate in c: choose a vertical line v slicing c so that each entry in
c belongs to the lower-left or upper-right regions. Since there are no other non-empty cells in
the column, the line v slices no other non-empty cells of π#, and thus by including the line vwe
have anM×2-gridding of π, as required.

The previous three propositions now enable us to conclude the following.

Proposition 2.5. If M is an acyclic, unicyclic or pseudoforest gridding matrix, then there exists, re-
spectively, an acyclic, unicyclic or pseudoforest partial multiplication matrix N such that Grid(M) =
Grid(N).

Proof. By Proposition 2.1, ifM itself contains no negative cycles then we may formN by equip-
ping M with suitable row and column sequences. If M contains a negative cycle, then we con-
sider the doubled matrix M×2. This doubled matrix contains only positive cycles by Propo-
sition 2.3 and, if M is unicyclic so is M×2. Thus we can equip M×2 with row and column
sequences to form a partial multiplication matrix N. By Proposition 2.4 we have Grid(N) =
Grid(M), as required.

In light of this, without loss of generality we may now restrict our attention only to partial
multiplication matrices.
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3 Indivisibility and coils

In this section we develop a detailed structural understanding of grid classes through a method
of decomposition that we call the M-sum. This method can be viewed of as an adaptation to
gridded permutations of the classical constructions of direct and skew sums.

3.1 M-sums andM-indivisibility

Let M be an m × n partial multiplication matrix. As noted in the proof of Proposition 2.4, the
submatrix ofM×2 defined on the columns κ(1), . . . ,κ(m) and rows ρ(1), . . . , ρ(n) is equal toM;
we call this the first copy of M in M×2. The submatrix defined on the other rows and columns
of M×2 is also equal to M, and we call this the second copy. Together these two submatrices
include all the non-zero elements of M×2: Each non-zero entry Mij of M corresponds to two
non-zero entries inM×2, one belonging to each of the two submatrices.

Definition 3.1 (M-sum). Let M be an m × n matrix, and let σ# and τ# be two M-gridded
permutations. TheM-sum of σ# and τ#, denoted σ#⊞τ#, is theM-gridded permutation obtained
from the following process: in a 2m × 2n grid (which we associate with the doubled matrix
M×2), insert the points of σ# into the cells that correspond to the entries of the first copy of
M, and the points of τ# into the cells corresponding to the second copy. Now remove the odd-
numbered grid lines to be left with theM-gridded permutation σ# ⊞ τ#.

We say that a gridded permutation π# is M-divisible if it can be expressed as the M-sum of two
non-empty gridded permutations, and M-indivisible otherwise. Where the matrix M is clear
from the context, we may simply refer to divisible and indivisible permutations.

We now recall the orientation digraph associated with an M-gridded permutation, defined in
Subsection 2.2.

The orientation digraph Dσ#⊞τ# of an M-sum has the property that for any x ∈ σ# and y ∈
τ#, either x → y or there is no edge between x and y. Consequently, Dσ#⊞τ# is not strongly
connected. Conversely, if the orientation digraph Dπ# of some M-gridded permutation π# is
not strongly connected, then we may express π# as an M-sum of two smaller permutations by
considering a partition of the vertices of Dπ# into non-empty sets S and T such that there is no
edge starting in T and ending in S. Thus we have:

Lemma 3.2. LetM be a partial multiplication matrix, and let π# ∈ Grid#(M). Then π# is indivisible if
and only if Dπ# is strongly connected.

As a consequence of Lemma 3.2, we make a few remarks. First, we make a simple observation
concerning subpermutations of divisible permutations.

Observation 3.3. Let π# = σ#⊞τ# be a divisibleM-gridded permutation. Any gridded subpermutation
of π# that contains at least one point from each of σ# and τ# is divisible.

Next, by considering the decomposition of Dπ# into strongly connected components, we can
express any π# as anM-sum of indivisibles. This decomposition is illustrated in Figure 5.
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= ⊞ ⊞

Figure 5: For M = , the decomposition into M-indivisibles of the M-gridded permu-

tation π# = 2 16 14 11 3 6 4 7 1 8 12 5 9 13 10 15.

Lemma 3.4. Let π# be anM-gridded permutation. Then π# can be expressed as anM-sum of indivisible
permutations,

π# = π#
1 ⊞ · · ·⊞ π#

k.

Furthermore, any other expression of π# as anM-sum of indivisible permutations,

π# = φ#
1 ⊞ · · ·⊞φ#

ℓ,

satisfies k = ℓ and {φ#
1, . . . ,φ#

ℓ} = {π#
1, . . . ,π#

k} as multisets.

We will refer to any decomposition of π# into M-indivisibles as guaranteed by Lemma 3.4 as
an M-decomposition of π#. Note that in the M-decomposition π# = π#

1 ⊞ · · · ⊞ π#
k, the order in

which the indivisibles appear may not be uniquely determined. For example, if the points of π#
i

and π#
i+1 lie in cells that correspond to edges of GM in different components, then π#

i ⊞ π
#
i+1 =

π#
i+1 ⊞ π

#
i. This gives:

Observation 3.5. The points of anyM-indivisible permutation must belong to cells that correspond to
edges in a single component of GM.

For ease of presentation, we will refer toM-indivisibles as being associated with a component of
GM.

In any strongly connected component of some Dπ# that contains a directed cycle (and hence
more than one point), the points on the directed cycle must belong to cells that correspond to
edges of GM in some closed path. This gives:

Observation 3.6. Any non-singleton M-indivisible must contain at least one point from each cell
around some cycle ofM.

With Observation 3.6 in mind, we now uncover some more information about the structure of
non-singletonM-indivisibles. Recall that the last point of a cell is the final one according to the
orientation of that cell.
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Lemma 3.7. Let M be a partial multiplication matrix, and let π# be a non-singleton indivisible M-
gridded permutation. Then there exists an indivisible subpermutation of π# formed from the last points
in cells of π# that correspond to the edges of some cycle of GM.

Proof. Consider the permutation α#, formed by taking the last point from every non-empty cell
of π#. We first show that α# must contain a non-singleton indivisible.

Suppose to the contrary that α# can be decomposed as anM-sum of singleton gridded permu-
tations, α# = α#

1 ⊞ · · · ⊞ α#
k with each gridded α#

i being a gridding of the permutation 1. Now
let ai denote the vertex in Dπ# corresponding to the singleton entry of α#

i. Note that ai → aj
only if i < j.

Since Dπ# is strongly connected, there exists v ∈ Dπ# such that ak → v. As ak is the last entry
in its cell, v cannot lie in that same cell. Let ai (for some i ̸= k) be the last entry in the cell
containing v, so that either v = ai, or v → ai. In either case, since v, ai and ak share a row
or column, we conclude that ak → ai, a contradiction with i < k. Thus indeed α# contains a
non-singleton indivisible.

The digraph of this non-singleton indivisible in α# is strongly connected, and so it contains
an induced subdigraph that is isomorphic to a directed cycle, which we write as b1 → b2 →
· · · → bℓ → b1 for some ℓ. The corresponding gridded permutation β# on the points b1, . . . ,bℓ
is indivisible, and by Observation 3.6 it has at least one point (and hence, by the definition of
α#, exactly one point) in each cell around some cycle of GM. But this cycle must consist of all of
the ℓ non-empty cells in β#, or elseDβ# would have a proper subdigraph isomorphic to a cycle,
which is not possible because Dβ# is a cycle. Thus, β# satisfies the claim in the lemma.

As a consequence of Lemma 3.7, for a fixed cycle in a gridM there are exactly twoM-indivisible
permutations that contain precisely one entry in each cell of the cycle, formed by traversing the
cycle in one direction or the other. Since the only proper indivisible subpermutations of these
M-indivisibles are singletons, we will refer to them as the minimal indivisibles. For example, in
Figure 5, the third component in the M-decomposition is one of the two minimal indivisible
permutations.

3.2 Coils

In this subsection and the next, we give a description of the structure of M-indivisible permu-
tations in the specific case that M is a pseudoforest partial multiplication matrix. Our aim is
Theorem 3.13, which establishes that an M-indivisible permutation π# can be regridded as an
element of some Grid#(N) for an acyclic matrix N, the dimensions of which are determined by
the size of a substructure of π# known as a coil.

This description of M-indivisible permutations can in part be regarded as a generalisation of
the decomposition given by Albert and Vatter [6] of the skew-merged permutations,

Av(2143, 3412) = Grid
( )

.

Note that this class is the grid class of a pseudoforest (indeed, cyclic) partial multiplication
matrix.
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To begin with, we restrict our attention to cyclic gridding matrices. Thus, throughout this sub-
section and unless stated otherwise, we fixM to be a partial multiplication matrix whose graph
GM is a cycle of length ℓ. Recall that ℓ ⩾ 4, and is even.

Definition 3.8. A gridded M-coil (or, where the context is clear, gridded coil) is an M-gridded
permutation π# of length n > ℓ for which there exists an ordering v1, . . . , vn on the verticesDπ# ,
and a labelling 1, . . . , ℓ of the non-empty cells such that:

C1 vi lies in cell i (mod ℓ) for all 1 ⩽ i ⩽ n;

C2 vi−1 → vi for all 1 < i ⩽ n;

C3 vi → vi−ℓ−1 for all ℓ+ 1 < i ⩽ n;

C4 vℓ+1 → v1.

An M-coil (or simply coil) is an ungridded permutation π with the property that some M-
gridding π# of π is a gridded coil.

It is worth noting that coils and gridded coils are conceptually strongly related to the sequences
of points used by Murphy and Vatter [32] to construct infinite antichains in grid classes that
contain a cycle.

Notice that conditions C1–C3 specify the placement of the point vi in relation to earlier points
in the sequence, which gives us an iterative method to construct coils. We begin by constructing
the base case of length ℓ+ 1: by C1 we have v1 → v2 → · · · → vℓ+1, and by C4 vℓ+1 → v1. Since
v1, vℓ and vℓ+1 share a row or column, we must also have vℓ → v1. Thus the points v1, . . . , vℓ
form a directed cycle (corresponding to a minimal indivisible), and the point vℓ+1 must be
placed in cell 1, in the horizontal or vertical strip defined by vℓ and v1. All placements of vℓ+1
in this region yield the same result.

Now suppose that i > ℓ + 1, and that v1, . . . , vi−1 have been placed. The following discussion
is accompanied by Figure 6. By C1, the point vi must be placed in cell i (mod ℓ). Since i− 1 ≡
i − ℓ − 1 (mod ℓ), the two vertices vi−1 and vi−ℓ−1 both lie in cell i − 1 (mod ℓ), and this cell
shares a row or column with cell i (mod ℓ). Without loss of generality, suppose that these cells
share a row.

Conditions C2 and C3 together require that vi−1 → vi → vi−ℓ−1, which means that vi must be
placed in the horizontal strip between vi−1 and vi−ℓ−1. As there are only two non-empty cells
in this row, there are no other points in this strip: by C2 and C3, the points in these two cells
satisfy

vi−1 → vi−ℓ−1 → vi−ℓ → vi−2ℓ−1 → vi−2ℓ → · · ·

Thus, any vertical placement of vi in cell i between vi and vi−ℓ−1 is permitted, and equivalent.

We now consider the horizontal placement of vi. The column containing cell i (mod ℓ) has
precisely two non-empty cells, namely i (mod ℓ) and i + 1 (mod ℓ). By C2 and C3, the points
in this column satisfy the following linear ordering,

vi−ℓ → vi−ℓ+1 → vi−2ℓ → vi−2ℓ+1 → · · ·
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vi−1

vi−ℓ−1

vi−2ℓ−1

vi−ℓ

vi−2ℓ

vi−ℓ+1

vi−2ℓ+1

Figure 6: Building a coil: for i > ℓ+ 1, the point vi must be placed in the shaded region.

Figure 7: A griddedM-coil of length 19, whereM = . The grey edges have been drawn

to illustrate the order of the vertices v1, . . . , v19, where v1 corresponds to the upper-
most entry in the bottom-left cell.

Since vi−ℓ−1 → vi−ℓ, and vi → vi−ℓ−1, it follows that vi must be placed earlier than all of the
points in this column. Thus, any horizontal placement of vi before vi−ℓ satisfies the criteria,
and all such placements are equivalent.

The above discussion establishes that coils exist, and that the placement of each successive
point vi is determined by v1, . . . , vi−1. In other words, there are at most 2ℓ coils of any length
n > ℓ: after fixing the cell in which v1 is placed (ℓ choices) and then the cell that contains v2
(two choices), the coil is uniquely determined. Furthermore, by considering the orientation of
and the number of entries in each cell of the coil, it is straightforward to establish that these
2ℓ coils are distinct, although we do not require this fact in what follows. Finally, observe that
this collection of 2ℓ coils naturally partitions into two sets depending on the direction in which
the cycle is traversed. In some simple grids this partition is determined by whether each coil
proceeds clockwise or anticlockwise around the cycle, but in general we consider the order in
which the cells of the cycle are visited by each coil. We call this order the chirality of a coil. An
example of a coil is illustrated in Figure 7.
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We now record a number of other observations about coils. First, in any row or column, the
vertices are linearly ordered according to the ordering

vi−1 → vi → vi−ℓ−1 → vi−ℓ → · · ·

and when we restrict to cell i (mod ℓ) we have vi → vi−ℓ → vi−2ℓ → · · · . This implies that the
points v1, . . . , vℓ are the last points in their cells, and they form a directed cycle.

The following properties readily follow:

A Every set of ℓ consecutive vertices vi, . . . , vi+ℓ−1 forms a directed cycle.

B Dπ# is strongly connected for every gridded coil π#.

C For every vi, the only j > i for which vi → vj is j = i+ 1.

From A, the points corresponding to a sequence of ℓ consecutive vertices of a coil must form
one of the two minimal indivisible permutations.

From B and by Lemma 3.2, gridded coils are M-indivisible. Furthermore, C shows that the
removal of any interior entry results in a divisible subpermutation:

Lemma 3.9. Let π# be a griddedM-coil with points v1, . . . , vn in Grid#(M) whereM is a cycle partial
multiplication matrix. Then the removal of a single entry vi, where 1 < i < n, produces a gridded
permutation that isM-divisible. Specifically,

π# − vi = σ# ⊞ τ#

where σ# and τ# are the gridded permutations on the points vi+1, . . . , vn and v1, . . . , vi−1, respectively.

Proof. By C, the only path from v1 to vn in Dπ# is v1 → v2 → · · · → vn. Thus, the removal
of an interior point vi from π# renders a digraph with no directed path from any vertex in
{v1, . . . , vi−1} to any vertex in {vi+1, . . . , vn}. The decomposition stated in the lemma now follows
by Lemma 3.2.

Note that it is not necessarily the case that the gridded permutations σ# and τ# in Lemma 3.9
are themselves M-indivisible: this will occur if and only if each part contains at least ℓ points.
Furthermore, if either contains at least ℓ+ 1 points, then it is itself a coil.

3.3 Coils and the structure of indivisibles

We now turn our attention to the role of coils in the structure of M-indivisible permutations.
For now, M is still a partial multiplication matrix whose graph GM is a cycle of length ℓ. Let
π# ∈ Grid#(M) be a non-singleton M-indivisible permutation. By Lemma 3.7, the last points of
π in each cell of the cycle form a directed cycle in Dπ# . Denote these points by z1, z2, . . . , zℓ in
such a way that in Dπ# we have z1 → z2 → · · · → zℓ → z1, and label the cells of π# on the cycle
as 1, . . . , ℓ so that zi belongs to cell i.
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Since π# is indivisible, Dπ# is strongly connected, so there exists a path from z1 to any other
vertex obtained by following only forward edges. We partition the points of π# based on their
distance from z1.

Formally speaking, set B1 = {z1}, and for i ⩾ 1 let

Bi+1 =

{
v ∈ V(Dπ#) \

⋃
j⩽i

Bj : u→ v for some u ∈ Bi

}
.

Thus, Bi denotes the set of vertices ofDπ# (or, equivalently, of points of π#) whose shortest path
from z1 has length i− 1. Since π# is indivisible, every vertex ofDπ# belongs to some set Bi, and
we let k be the index of the last non-empty set Bk.

Proposition 3.10. In the above partition of π#, the set Bi is contained in cell i (mod ℓ) of π#, for all
1 ⩽ i ⩽ k.

Proof. We proceed by induction, noting that z1 belongs to cell 1, by definition.

Suppose that the sets B1, . . . ,Bi satisfy the hypothesis, and consider the set Bi+1. By construc-
tion, since Bi+1 is defined in terms of vertices that can be reached by following a single directed
edge from Bi, it follows that Bi+1 must be contained in the union of cells i − 1, i and i + 1
(mod ℓ).

Now suppose that Bi+1 contains an entry w in cell i − 1 (mod ℓ), and note that the shortest
path from z1 to w has length i. By definition, there is some v ∈ Bi such that v → w, and also
some u ∈ Bi−1 such that u → v. Thus we have u → v → w, and (by the inductive hypothesis)
u belongs to cell i − 1 (mod ℓ), along with w, which implies that u → w. Now, any shortest
path from z1 to u of length i − 2 can be extended to a path of length i − 1 to w, which means
that the path of length i from z1 to w was not the shortest one, which is a contradiction. A
similar analysis applies in the case that Bi+1 contains a point in cell i (mod ℓ), and the result
follows.

Since each set Bi belongs to cell i (mod ℓ), the vertices in Bi are linearly ordered, and we denote
by vi the vertex of Bi that comes first in this ordering, that is, vi → v for every v ∈ Bi distinct
from vi. Note that v1 = z1. See Figure 8 for an example.

We record the following observation.

Observation 3.11. If k > ℓ, the sequence v1, . . . , vk constructed above forms a griddedM-coil.

Note that the requirement that k > ℓ is required simply because coils are defined to have length
at least ℓ + 1. However, if k ⩽ ℓ, then in fact it must be the case that k = ℓ or k = 1, by
Observation 3.6.

We refer to the partition B1, . . . ,Bk as a coil decomposition of π# of length k. Note that this de-
composition is not unique (the choice of B1 = {z1} was arbitrary, and could have been replaced
with any of the last vertices in the cells 1, . . . , ℓ), but every M-indivisible must possess a coil
decomposition.

19



v19

B19
v13

B13
v7

B7

v6

B6

v12

B12

v18

B18

v5

B5

v11

B11

v17

B17

v4B4

v10B10

v16B16

v3

B3

v9

B9

v15

B15

v14

B14 v8

B8 v2

B2

B1 = {v1}

Figure 8: A coil decomposition, showing the partition B1, . . . ,B19 and the corresponding

(gridded) coil v1, . . . , v19, for an indivisible permutation in Grid#
( )

.

The coil decomposition of π# can be used to define a refinement N of M whose dimensions
are bounded by the size of the longest coil in π#, whose row-column graph is a path, and such
that π ∈ Grid(N). Indeed, in Figure 8, the feint grey lines indicate such a refined gridding. We
formalise this in the following lemma.

Lemma 3.12. Let M be a cyclic partial multiplication matrix, and let π# be an M-indivisible permuta-
tion that contains no coil of length greater than k. Then π is N-griddable where N is an acyclic matrix
containing at most k non-zero entries.

Proof. Fix any coil decomposition of π#, say B1, . . . ,Bk ′ where k ′ denotes the length of the de-
composition. By Observation 3.11, we must have k ′ ⩽ k. We claim that this partition of π#

defines a refined gridding whose corresponding gridding matrix is acyclic.

By construction, each non-empty cell in π# is partitioned into a finite number of setsBi,Bi+ℓ, . . . ,
so that Bi ← Bi+ℓ, Bi+ℓ ← Bi+2ℓ, and so on. To see this, suppose that there is u ∈ Bi, v ∈ Bi+ℓ

such that u→ v. Then there would be a shortest path from z1 to v of length i, which is a contra-
diction since the shortest path to v should have length i+ ℓ− 1 > i+ 2. Similarly, we also have
Bi+jℓ±1 → Bi, and Bi → Bi−jℓ±1 for all j ⩾ 1. This tells us that non-consecutive sets in the coil
decomposition interact in a uniform way in the following sense: If Bi and Bi+1 share a row or
column, then every Bi−jℓ and Bi+1−jℓ precede both Bi and Bi+1 in the consistent orientation,
while every Bi+jℓ and Bi+1+jℓ succeed both.

Consider a pair of consecutive sets Bi and Bi+1 which share a common row. Define two (hori-
zontal) slicing lines to separate by value the points in Bi ∪ Bi+1 from the other points in their
common row, i.e. the remaining points in cells i, i + 1 (mod l). For consecutive sets that share
a common column, we may similarly define two vertical slicing lines to separate the points by
position.

20



This process yields a gridding that is a refinement of that for π#, and we letN denote the corre-
sponding matrix whose non-zero entries correspond to the non-empty cells of this refinement.
(Note that these non-empty cells are precisely the sets Bi.) Since the refined gridding is con-
structed such that each Bi has at most one other entry in its row and column (namely Bi−1 and
Bi+1), it follows that GN is a path of length k ′ ⩽ k.

Our final task for this section is to extend Lemma 3.12 from the case where the matrix M is
cyclic to the case where M can be any pseudoforest partial multiplication matrix. To begin this
task, we first need to extend the notion of a coil to these matrices.

Let M be a pseudoforest partial multiplication matrix. A gridded M-coil is an M-gridded per-
mutation π# for which there exists an ordering v1, . . . , vn of the vertices in Dπ# , and a labelling
1, . . . , ℓ on the cells corresponding to the edges of some cycle of GM, such that conditions C1–
C4 on page 16 are satisfied. Similarly, an M-coil is an ungridded permutation π such that there
exists someM-gridding π# which forms a griddedM-coil.

Note that while M may have entries that do not lie on the cycle, by C1 the corresponding
cell in an M-coil contains no points. Indeed, M may contain more than one cycle in different
components of GM (and each cycle can be used to construct M-coils), but any single M-coil
must reside entirely within the cells corresponding to edges of just one cycle. Thus, gridded
coils defined by pseudoforest partial multiplication matrices are exactly the same as gridded
coils on cyclic partial multiplication matrices. As such, many properties of gridded coils are the
same irrespective of which type of matrix is being used.

Theorem 3.13. Let M be a pseudoforest partial multiplication matrix containing T non-zero entries,
and let π# be an M-indivisible permutation that contains no gridded coil of length greater than k. Then
π is N-griddable where N is an acyclic matrix containing at most k(T − 3) non-zero entries.

Proof. By Observation 3.5, the points of the M-indivisible permutation π# belong to a single
component H of GM. If π# is a singleton then the statement in the theorem is clear, so we may
assume that π# is not a singleton. By Observation 3.6, π# contains at least one point from each
cell around some cycle, which means that the component H must contain a cycle. Let ℓ ⩾ 4
denote the length of this cycle, and let t ⩽ T denote the number of edges in H.

We now proceed inductively on the number t− ℓ of non-zero entries ofM that belong to H but
do not lie on the cycle. Our hypothesis is that π# has a refined gridding using an acyclic matrix
that has at most k(t − ℓ + 1) non-zero entries, and that this refined gridding divides the points
in each cell of π# among at most k smaller cells. Since ℓ ⩾ 4, we see that k(t− ℓ+ 1) ⩽ k(T − 3)
and so this induction will complete the proof.

The base case, in which t = ℓ ⩾ 4, follows by Lemma 3.12, since the number of non-zero entries
in this case is k = k(t − ℓ + 1), and the refined gridding of π# in this acyclic grid divides the
points in each cell on the cycle among at most ⌈k/ℓ⌉ ⩽ k smaller cells.

Now suppose that M has t − ℓ > 0 non-zero entries in H that are not on the cycle. Identify a
non-empty cell c of π# that has no other non-empty cells in either its column or its row. (Such
a cell must correspond to an edge in H since all points of π# belong to H. Furthermore, c exists
since each edge of H not on the cycle lies on a unique path from the cycle to some leaf of GM,
and so we may choose the last non-empty cell along this path.) Without loss of generality, we
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may assume that c is the only non-empty cell in its column, and that the points in c form an
increasing sequence.

By induction, the gridded subpermutation of π# formed by removing the points in c has a
refined gridding into an acyclic matrix with at most k(t − ℓ) non-zero entries. Furthermore,
in π# the row containing c has been divided by at most k − 1 horizontal lines of this refined
gridding (into at most k slices). We now propagate these lines through c: for each of the k − 1
additional horizontal lines, choose a vertical line so that the points in c occupy the regions up
the diagonal from the lower left to the upper right. Since there are no other non-empty cells in
the column containing c, this process introduces no cycles and thus ensures that the resulting
gridding is acyclic. This gridding has at most k + k(t − ℓ) = k(t − ℓ + 1) non-zero entries, and
each cell has been divided into at most k smaller cells. This completes the inductive step.

4 Labelled well quasi-ordering

In this section, we work towards the following characterisation for subclasses of pseudoforest
grid classes. Recall that anM-coil is an ungridded permutation π for which there is a gridding
π# that forms a griddedM-coil.

Theorem 4.1. Let M be a pseudoforest partial multiplication matrix. Then a subclass C ⊆ Grid(M) is
labelled well quasi-ordered if and only if there is a bound on the length of the longest M-coils that are
contained in C.

This section is organised as follows. Subsection 4.1 contains the introductory definitions and
auxilliary results from the literature, and sets the context for the section. The proof of Theo-
rem 4.1 is given in Subsection 4.2. Finally, Subsection 4.3 uses Theorem 4.1 to derive a decision
procedure for the following question: given a pseudoforest partial multiplication matrix M, is
a given finitely based subclass C ⊆ Grid(M) labelled well quasi-ordered?

4.1 The well quasi-ordering toolkit

In this introductory subsection, we give only the minimal terminology required for our pur-
poses, and refer the reader to Brignall and Vatter [20] for a fuller treatment.

Given a quasi-ordered set5 (X,⩽), we say that X is well quasi-ordered (wqo) if in every infinite
sequence x1, x2, . . . of entries from X, there exists a pair xi, xj with i < j such that xi ⩽ xj. A
useful equivalent characterisation is given by the following folklore proposition. An antichain
in a quasi-order (X,⩽) is a set {x1, x2, . . . } such that xi ̸⩽ xj for all i ̸= j.

Proposition 4.2. A quasi-order (X,⩽) is well quasi-ordered if and only if X contains neither an infinite
antichain nor an infinite strictly descending chain, x1 > x2 > · · · .

5Recall that a quasi-ordered set (X,⩽) is a set X equipped with a binary relation ⩽ that is both reflexive and transitive.
In particular, every partial order is a quasi order.
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In the context of collections of combinatorial structures with some notion of embedding, the
requirement that there are no infinite strictly descending chains is trivially satisfied, since such
quasi-orders are always well-founded.

One widely-used tool in the study of wqo is Higman’s Lemma [28], which we now state. Given
a quasi-order (X,⩽), let X∗ denote the set of all finite sequences of elements of X (which can
be thought of as the set of all words over the alphabet X). Given two sequences x1 · · · xk and
y1 · · ·yn in X∗, we say that x1 · · · xk is contained in y1 · · ·yn if there exists a subsequence 1 ⩽
i1 < · · · < ik ⩽ n such that xj ⩽ yij for all j = 1, . . . ,k. We call this ordering the generalised
subword ordering on X∗.

Theorem 4.3 (Higman’s Lemma [28]). If (X,⩽) is wqo, thenX∗ is wqo under the generalised subword
ordering.

Another tool we require is the following well-known fact (for a proof, see, for example, [20,
Proposition 1.3].

Proposition 4.4. Let (X,⩽X) and (Y,⩽Y) be quasi orders. If (X,⩽X) and (Y,⩽Y) are wqo, then so is
(X× Y,⩽X × ⩽Y).

Let (L,⩽L) be any quasi-order. For a permutation π of length n, an L-labelling of π is a func-
tion ℓπ from the indices of π to L, and we call the pair (π, ℓπ) an L-labelled permutation. Infor-
mally speaking, one may regard the label ℓπ(i) as belonging to the point (i,π(i)) of π. We may
similarly consider L-labellings of other combinatorial structures, most notably in our context
gridded permutations: given an M-gridded permutation π# and an L-labelling ℓπ of the (un-
gridded) permutation π, we call the pair (π#, ℓπ) an L-labelledM-gridded permutation.

Given two L-labelled permutations (π, ℓπ) and (σ, ℓσ) of lengths n and k, respectively, we say
that (σ, ℓσ) is contained in (π, ℓπ) if there exists a subsequence 1 ⩽ i1 ⩽ · · · ⩽ ik ⩽ n such that
π(i1)π(i2) · · ·π(ik) is order isomorphic to σ, and such that ℓσ(j) ⩽L ℓπ(ij) for all j = 1, . . . ,k. We
refer to this ordering as the (L-)labelled containment ordering.

Given a set of permutations C, we use C ≀ L to denote the collection of all L-labelled permu-
tations from C. If C is a permutation class, then C ≀ L is downwards-closed set under labelled
containment: if (π, ℓπ) ∈ C ≀ L and (σ, ℓσ) is contained in (π, ℓπ), then (σ, ℓσ) is also in C ≀ L. We
say that a set of permutations C is labelled well quasi-ordered (lwqo) if C ≀ L is well quasi-ordered
under the labelled containment ordering for any well quasi-ordered set (L,⩽L).

Similarly, for a set of M-gridded permutations C#, we write C# ≀ L for the collection of all L-
labelledM-gridded permutations from C#, and we can use the term labelled well quasi-ordered in
the obvious manner.

Let (X,⩽X) and (Y,⩽Y) be two quasi-orders, and let ϕ : X→ Y be a mapping. We say that ϕ is
order-preserving if x1 ⩽X x2, implies ϕ(x1) ⩽Y ϕ(x2). Conversely, we say that ϕ is order-reflecting
if ϕ(x1) ⩽Y ϕ(x2) implies x1 ⩽X x2.

Lemma 4.5. Let ϕ : X→ Y be a mapping between two quasi-ordered sets.

(i) If ϕ is an order-preserving surjection, then Y is (labelled) well quasi-ordered whenever X is.
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(ii) If ϕ is order-reflecting, then X is (labelled) well quasi-ordered whenever Y is.

For a proof, see [20, Propositions 1.10 and 1.13].

The notion of labelling also offers us an alternative viewpoint for gridded permutations. LetM
be anm×n gridding matrix, letG = [m]× [n], and giveG the ordered structure of an antichain.
For a permutation π ∈ Grid(M) and a corresponding gridded version π#, define the function
gπ : π → G by gπ(k) = (i, j) where in π# the point (k,π(k)) lies in cell ij of π#. It is then clear
that ϕ : Grid#(M)→ Grid(M) ≀G given by

ϕ(π#) = (π,gπ)

is an injective map that is both order-preserving and order-reflecting. (Note, however, that it is
not surjective except in trivial cases.)

It is a well-known fact that the set of all permutations under the containment ordering is not
wqo, and hence also not lwqo. On the other hand, it is still possible for permutation classes
(specified, for example, by their basis) to be wqo or lwqo, which leads to the following general
question.

Question 4.6. Given a permutation class C, can one decide whether C is well quasi-ordered, labelled
well quasi-ordered, or neither?

This question is open, and seems hard at present.

Theorem 4.1 (proved in the next subsection) characterises lwqo for any class C contained in a
pseudoforest grid class, and we then answer the question above in the affirmative for these
classes in Subsection 4.3.

4.2 The proof of Theorem 4.1

Our first task in proving Theorem 4.1 is to convert the question of labelled well quasi-ordering
for a subclass C of some grid class to one for theM-indivisibles in C# corresponding to a single
component of GM. We do this in a succession of lemmas.

Lemma 4.7. Let M be a gridding matrix, and let C ⊆ Grid(M). The set of M-gridded permutations
C# ⊆ Grid#(M) is labelled well quasi-ordered if and only if C is.

Proof. Let π,σ ∈ C. If there exist griddings of π and σ such that σ# ⩽ π#, then any embedding as
gridded permutations induces an embedding of σ in π as ungridded permutations, and hence
σ ⩽ π. Thus the surjection ϕ : C# → C given by ϕ(π#) = π that “removes” the gridding is
order-preserving, and the converse implication is complete by Lemma 4.5.

For the direct part, let (L,⩽L) be an arbitrary wqo set of labels. Suppose that M is an m × n
matrix, and let G = [m] × [n] denote the indices for the cells of M. We consider G to be an
antichain, and since it is finite it is wqo. By Proposition 4.4, the product L×G is also wqo. Since
C is lwqo, it follows that C ≀ (L×G) is wqo.
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We now adopt the viewpoint in which each gridded permutation is interpreted as a labelled
permutation. Consider the mapping ϕ : C# ≀ L→ C ≀ (L×G) given by

ϕ((π#, ℓπ#)) = (π, (ℓπ# ,gπ))

where gπ(k) = (i, j) records that the point (k,π(k)) lies in cell ij. This mapping is clearly order-
reflecting, and since C ≀ (L×G) is wqo, so is C# ≀ L, which shows that C# is lwqo.

We now restrict to theM-indivisible permutations of C#.

Lemma 4.8. LetM be a partial multiplication matrix and let C ⊆ Grid(M). TheM-indivisible elements
of C# are labelled well quasi-ordered if and only if C# is labelled well quasi-ordered.

Furthermore, the same statement holds replacing ‘labelled well quasi-ordered’ with ‘well quasi-ordered’.

Proof. First, trivially, if C# is labelled well quasi-ordered, then so is any subset of C#, such as the
M-indivisible elements.

Conversely, let I# denote the set of M-indivisible permutations in C#, which we assume to
be lwqo. Thus, for any wqo set of labels L the set I# ≀ L is wqo, and then Higman’s Lemma
(Theorem 4.3) tells us that (I# ≀ L)∗ is wqo as well.

Consider the sequence (π#
1, ℓπ#

1
), (π#

2, ℓπ#
2
), . . . , (π#

k, ℓπ#
k
), and define π# = π#

1⊞ · · ·⊞π#
k. Each point

of π# belongs to the natural copy of some π#
i in π#. To such a point, we assign a label using ℓπ#

i
.

This gives a labelling ℓπ# of π#, and we define ψ : (I# ≀ L)∗ → C# ≀ L by

ψ((π#
1, ℓπ#

1
) · · · (π#

k, ℓπ#
k
)) = (π, ℓπ#).

This map is clearly order-preserving. It is also surjective since every permutation π# ∈ C# pos-
sesses a decomposition intoM-indivisibles by Lemma 3.4. Thus, by Lemma 4.5(i), C# ≀L is wqo,
and since Lwas arbitrary we conclude that C# is lwqo.

Finally, the same proof holds after removing all references to labels (or, equivalently, by taking
L to be a singleton), which establishes the second part of the statement.

Note that by Observation 3.5, any griddedM-indivisible is associated with a single component
of GM. SinceM has only finitely many components, we conclude the following.

Lemma 4.9. Let M be a partial multiplication matrix and let C ⊆ Grid(M). Then C# is labelled well
quasi-ordered if and only if, for every component of M, the M-indivisibles in C# associated with this
component are labelled well quasi-ordered.‘

By our earlier observation that any non-singletonM-indivisible must contain at least one point
from each cell around some cycle of M, we can now state the following strengthening of one
half of the main result of Murphy and Vatter [32].

Proposition 4.10. Let M be a matrix for which GM is a forest. Then the set of M-indivisibles in
Grid#(M) is equal to the set of all possible M-griddings of the singleton permutation. Consequently,
Grid(M) is labelled well quasi-ordered.
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We can now complete one half of the proof of Theorem 4.1: Suppose that the longest coil
contained in C has length k. By Lemma 4.7, C is lwqo if and only if C# is. Furthermore, by
Lemma 4.9, it suffices to show that the M-indivisible permutations in C# associated with each
component ofGM are lwqo. Fix any component ofGM, and consider the set I# ofM-indivisible
permutations in C# associated with this component. If the component is a tree, then I# is lwqo
by Proposition 4.10. Thus we may now assume that the component is unicyclic.

By hypothesis, any M-indivisible π# ∈ I# contains a coil of length at most k, and thus by Theo-
rem 3.13 the corresponding ungridded permutation π is Nπ-griddable for some acyclic matrix
Nπ containing a bounded number of nonzero entries. This gives us a superset of the ungridded
permutations corresponding toM-indivisibles in I#:

I ⊆
⋃

π#∈I#

Grid(Nπ).

The set {Nπ : π# ∈ I#} must be finite, since it comprises a collection of acyclic gridding matrices
each with a bounded number of non-zero entries. Furthermore, each class Grid(Nπ) is lwqo by
Proposition 4.10, and hence we conclude that I is contained in a finite union of lwqo sets, and
thus I is lwqo. A final application of Lemma 4.7 shows that I# is lwqo, as required.

To complete the proof of Theorem 4.1, it remains to show that classes containing arbitrarily
long coils contain infinite labelled antichains. In fact, we construct the elements of the antichain
directly from the gridded coils.

Lemma 4.11. LetM be a unicyclic partial multiplication matrix, let π# be a coil with points v1, . . . , vn,
and let σ# a coil with points u1, . . . ,um, wherem < n. If π#, σ# are labelled via

ℓπ#(vi) =

{
• 1 < i < n
◦ i ∈ {1,n},

and ℓσ#(ui) =

{
• 1 < i < m
◦ i ∈ {1,m},

where L = {•, ◦} is a 2-element antichain, then there is no labelled embedding of (σ#, ℓσ#) in (π#, ℓπ#).

Proof. Suppose to the contrary that ϕ is an embedding of (σ#, ℓσ#) into (π#, ℓπ#). Then the image
ϕ((σ#, ℓσ#)) in (π#, ℓπ#) must include v1 and vn, because they are the only entries whose labels
match those of u1 and um in (σ#, ℓσ#). Since m < n, this means that there is at least one entry
vk (with 1 < k < n) not in the image ϕ((σ#, ℓσ#)).

By Lemma 3.9, the removal of vk from π# leaves an M-divisible gridded subpermutation in
which v1 and vn are in different components. The imageϕ((σ#, ℓσ#)) is contained in π#−vk, and
it contains v1, vn; hence the image is alsoM-divisible by Observation 3.3. This is a contradiction,
since σ# is indivisible.

Note that the following result applies to any permutation class, but in particular it completes
our proof of Theorem 4.1.

Proposition 4.12. Let C be a permutation class. If there exists a cycle partial multiplication matrix M
such that C contains arbitrarily longM-coils, then C is not labelled well quasi-ordered.
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Proof. Suppose thatM is anm×nmatrix, and let G = [m]× [n] denote the indices for the cells
ofM (which, as before, we consider to be an antichain). Denote the (infinite) set ofM-coils in C

by O.

For each π ∈ O, we fix an M-gridded version, π#, of π, chosen so that π# is a gridded M-coil.
Now define a labelling ℓπ : π→ G× {•, ◦} as follows. For a point p belonging to cell (i, j) in π#,
we have

ℓπ(p) =

{
((i, j), ◦) if p is the first or last point of the coil
((i, j), •) otherwise.

For distinct σ,π ∈ O, the labelled permutations (σ, ℓσ) and (π, ℓπ) are not comparable by
Lemma 4.11, and thus C is not lwqo.

4.3 Decidability

Before we move on to consider the bases of pseudoforest grid classes, we take a brief diversion
to show that lwqo in finitely based subclasses of pseudoforest grid classes is decidable, thus
answering an instance of Question 4.6.

Theorem 4.13. There exists an algorithm that answers the following:
Given a pseudoforest gridding matrixM and permutations π1, . . . ,πk ∈ Grid(M),
is C = Av(π1, . . . ,πk) ∩Grid(M) labelled well quasi-ordered?

Proof. Without loss of generality and by the discussions in Section 2, we may assume that M
is a partial multiplication matrix. By Theorem 4.1, we need to check whether C contains arbi-
trarily long coils. Since every coil stays within a single unicyclic component, we may assume
without loss that GM is connected, and has a cycle; let ℓ denote the length of this cycle. Let
n = max{|π1|, . . . , |πk|}. We claim the following:

Claim. If some πi embeds in a coil of lengthm > (n+ 5)ℓ+n, then it embeds in a coil of lengthm− ℓ.

Put another way, if πi embeds in a coil, then it embeds in a coil of length at most (n + 5)ℓ + n.
The underlying idea behind proving this claim is that if a ‘long’ coil is ‘disconnected’ into the
sum of two coils by the removal of some ‘middle’ subcoil which starts and ends in the same
cell c, it can be ‘reconnected’ into a coil again by the addition of one new point in c.

Given πi embeds in a coil of length m > (n + 5)ℓ + n, there exists an M-gridding π#
i that

embeds in a gridded coil ξ#. Let the points of ξ# be v1, v2, . . . , vm, and recall Definition 3.8 and
the notation used therein. The embedding of π#

i into ξ# corresponds to a subsequence σ of
v1, . . . , vm of length n ′ ⩽ n.

We now consider points of the coil ξ#, other than the first 2ℓ or the final 2ℓ points, that are not
part of the subsequence σ. The points of σ split the other points of v2ℓ+1, . . . , vm−2ℓ into at most
n ′ + 1 contiguous subsequences, some of which may be empty. The total number of points in
these subsequences is at least

m− 4ℓ− n ′ ⩾ m− 4ℓ− n > (n+ 1)ℓ ⩾ (n ′ + 1)ℓ.
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Figure 9: Inserting the entry z into ζ# to construct a coil of length m − ℓ. Some of the ℓ + 1
entries removed from ξ# to form ζ# are shown in grey (proof of Theorem 4.13).

Hence, by the pigeonhole principle, we can find a contiguous subsequence of v2ℓ+1, . . . , vm−2ℓ
of length at least ℓ + 1 which contains no points of σ. Thus, fix an index j with 2ℓ < j ⩽ m − 3ℓ
such that vj, . . . , vj+ℓ contains no points of σ.

The subpermutation ζ# of ξ# corresponding to the sequence v1, . . . , vj−1, vj+ℓ+1, . . . , vm also
contains the same embedding of π#

i. Furthermore, by Lemma 3.9, ζ# can be written as an M-
sum

ζ# = β# ⊞ α#

where α# is the permutation defined on the points v1, . . . , vj−1, and β# is the permutation de-
fined on the points vj+ℓ+1, . . . , vm.

Note that the sequence vj, . . . , vj+ℓ begins and ends in cell j (mod ℓ). We now insert a single
point z into ζ#, which will reconnect α and β into a coil, as illustrated in Figure 9. Specifically,
the point z goes into cell j (mod ℓ), and satisfies

vj+2ℓ+1 → z→ vj+ℓ+1 and vj−1 → z→ vj−ℓ−1.

We note that the four points vj+2ℓ+1, vj+ℓ+1, vj−1, vj−ℓ−1 all exist and are present in ζ# because
2ℓ < j ⩽ m− 3ℓ. Therefore, the sequence v1, . . . , vj−1, z, vj+ℓ+1, . . . , vm satisfies C1–C4, and thus
forms a gridded coil of length m − ℓ. Furthermore, this coil contains π#

i, as witnessed by the
subsequence σ, which has not been affected by the construction. This establishes the claim.

We now complete the proof of the theorem. Recall that there are at most 2ℓ coils of any length
n > ℓ, and these are partitioned into two sets by their chirality. Furthermore, note that if some
coil ξ contains some element πi, then every coil of the same chirality as ξ and of length at least
|ξ|+ ℓ also contains πi (since any such coil also contains ξ).

Thus, C contains arbitrarily long coils if and only if it contains all the coils of length (n+5)ℓ+n
of one chirality.

This leads to the following decision procedure in the case where GM is connected: for each coil
γ of length (n+ 5)ℓ+ n in Grid(M), check whether γ contains πi for each 1 ⩽ i ⩽ k. If, for one
chirality, none of the coils of that chirality contains any πi, then return that C admits arbitrarily
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long coils and is not lwqo. Otherwise at least one coil of each chirality contains a basis element,
and we return that C admits only bounded length coils and is lwqo.

The decision procedure for an arbitrary pseudoforest partial multiplication matrix M consists
of using the preceding procedure on each submatrix of M corresponding to a connected com-
ponent of GM. If for any single component we find that C admits arbitrarily long coils, then C

is not lwqo; if C admits only bounded length coils in every component, then C is lwqo.

5 Bases of pseudoforest grid classes

We now turn our attention to the bases of grid classes. IfM is acyclic, then, by the comments in
the introduction, Grid(M) is a geometric grid class, and so the results of [5] apply. In particular
Theorem 6.2 of [5] states that Grid(M) is finitely based.

We exhibit two pseudoforest grid classes that are not finitely based (thus disproving Conjecture
2.3 of [29]), but we also show that unicyclic grid classes are finitely based. The consequence of
these two results is that we now have a reasonably precise understanding regarding where the
(now false) conjecture ‘first’ breaks down.

Our counterexamples can be found in Subsection 5.3. Our positive result, whose proof is given
in Subsection 5.2, is as follows.

Theorem 5.1. LetM be a unicyclic gridding matrix. Then Grid(M) is finitely based.

As usual, we can assume that M is a partial multiplication matrix, but note here that we must
appeal to the unicyclic case of Proposition 2.5, rather than the more general assumptions for
pseudoforest gridding matrices that we have been using thus far.

5.1 Unique griddings

Before we can prove Theorem 5.1, we need some results concerning possible griddings of coils.
The first result in this direction shows that sufficiently long coils grid uniquely in their cycles.

Lemma 5.2 (Murphy and Vatter [32, Lemma 4.2]). Let M be a cyclic partial multiplication matrix
containing ℓ non-empty cells. Then every coil of length at least (ℓ+ 1)ℓ2 + 1 has only oneM-gridding.

We note here that the bound above is almost certainly not optimal. Indeed, consideration of the
short coils on relatively small cycles suggests the following should hold.

Conjecture 5.3. Let M be a cyclic partial multiplication matrix containing ℓ non-empty cells. Then
every coil of length at least 2ℓ+ 1 has only oneM-gridding.

This result would be the best possible in general, since there exists a coil of length 8 in a 2 × 2
matrix that has more than one gridding; see Figure 10 parts (i) and (ii).

Given a gridding of a coil in a unicyclic grid class, we say that a point is misplaced if it is placed
in a cell that does not correspond to an edge of the cycle. Lemma 5.2 does not extend directly
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(i) (ii) (iii) (iv)

Figure 10: (i) A gridded coil in Grid#
( )

of length 8, order isomorphic to 28476153. (ii) A
different gridding of 28476153 in the same grid. (iii) A gridded coil of length

9 in Grid#
( )

order isomorphic to 294786153. (iv) A gridding of 294786153 in

Grid#
( )

with two misplaced points.

to unicyclic classes, since griddings with misplaced points are possible; see Figure 10 parts (iii)
and (iv). Rather than attempting to exclude misplaced points entirely, we will instead bound
how many such points there can be in coils gridded in unicyclic classes.

Given a permutation (or gridded permutation), we say that two points u and v are horizontally
separated if there exists a third point w such that w lies between u and v by value, but not by
position. Similarly, if there exists a point x that lies between u and v by position, but not by
value, then we say that u and v are vertically separated. Note that neither of the sets of points
{u, v,w} or {u, v, x} can form a monotone pattern, and thus if u and v belong to the same cell of
a gridded permutation, then neither w nor x can belong to that cell.

The following observation follows readily from the axioms defining coils, C1–C4.

Observation 5.4. If u, v are nonconsecutive points in some cell of a gridded M-coil, then u and v are
separated both horizontally and vertically.

Next, we establish a technical proposition that provides a bound, for any gridding of a coil, on
the number of points in any cell, in terms of the number of points in other cells in the same row
or column.

Proposition 5.5. LetM be a partial multiplication matrix with at least one cycle, and let π♮ be a gridded
M-coil defined on a cycle inM of length ℓ.

Let π# be any other M-gridding of π, and denote by c1, . . . , cr the non-empty cells of π# that belong to
some single row or column of M. If cell ci contains ki points for 1 ⩽ i ⩽ r, and Si =

∑
j̸=i kj, then

ki ⩽ 2ℓ(Si + 1).

Proof. Without loss of generality, suppose that c1, . . . , cr are the non-empty cells belonging to
some row of π#. For a contradiction, suppose that the cell ci contains at least 2ℓ(Si+1)+1 points.
By the pigeonhole principle, this implies that ci must contain at least 2(Si + 1) + 1 points that
belong to a single cell in the griddedM-coil π♮.

Within this collection of points we can identify at least Si + 1 nonoverlapping nonconsecutive
pairs of points, as illustrated in Figure 11. By Observation 5.4 each of these pairs must be sep-
arated in π♮ by some other entry in the same row, giving a collection of at least Si + 1 distinct
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Figure 11: Nine points of a coil in a cell can be divided into four nonoverlapping noncon-
secutive pairs of points, each of which must be separated horizontally (proof of
Proposition 5.5).

separating points in π♮. In the gridding π#, all these separating points must belong to the cells
c1, . . . , cr, except none can lie in ci. However, there are only Si points available in the other cells
of this row.

Now let M be a unicyclic partial multiplication matrix, and define π♮ and π# as in Proposi-
tion 5.5. Consider a cell c of π# that corresponds to an edge incident with a leaf of GM. Such a
cell is necessarily the only non-empty cell in its row or column, and by applying Proposition 5.5
to this row or column, we conclude that cell c contains at most 2ℓ (misplaced) points.

Similarly, if c1, . . . , cr are the non-empty cells of a row of π# with the property that c1, . . . , cr−1
correspond to edges incident with leaves of GM, then the remaining non-empty cell cr in that
row can contain at most

2ℓ
(
2ℓ(r− 1) + 1

)
= 4ℓ2(r− 1) + 2ℓ

misplaced points.

We now iterate this process: as soon as all but one of the non-empty cells in a row or column
have a bound on the number of misplaced points they contain, we can apply Proposition 5.5
to establish a bound for the misplaced points in the final non-empty cell (which by definition
is not part of the cycle). This process will eventually bound the number of points in each non-
empty cell of π# that is not associated with an edge from the single cycle of M. While these
bounds are surely a significant overestimate of the actual number of points that the cells can
contain, this quantity depends only on properties of the matrix M, rather than of the coil π.
Considering the sum of the bounds on all such cells, we conclude the following.

Lemma 5.6. Let M be a unicyclic partial multiplication matrix. There is a bound B, depending only
on M, such that the following holds: if π# is any M-gridding of an M-coil π, then π# has at most B
misplaced points.

As well as there being a bound on the number of misplaced points, there are also restrictions
on which points can be misplaced, as a consequence of the following simple observation con-
cerning points sandwiched between two others in a cell.

Observation 5.7. Given any gridding matrix M, let π♮ and π# be two M-griddings of an arbitrary
π ∈ Grid(M). Suppose u, v,w is a monotone triple of points from a single cell c of π♮. If u and w also
share a common cell c ′ in π#, then v lies in c ′ too.

In the case thatM is unicyclic and π is a coil, we have the following specialisation, given that π
has a standard gridding on the cycle.
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Corollary 5.8. Let M be a unicyclic partial multiplication matrix whose cycle has length ℓ, and let π#

be any griddedM-coil with points v1, . . . , vn. For any suitable i, j,k, if vi−jℓ and vi+kℓ share a common
cell in π#, then vi also lies in that cell in π#.

5.2 Proof of Theorem 5.1

The proof of Theorem 5.1 will be completed by considering the longest possible coil that can be
contained in a basis element β of some Grid(M), where M is a unicyclic partial multiplication
matrix. We will establish a bound on the length of such coils that depends only on M and not
on β. We can then conclude that each basis element can be formed by adding a single point to
a permutation that belongs to an lwqo subclass of the given grid class. In turn, this is sufficient
to establish that the basis elements themselves belong to an lwqo class, and consequently the
basis (which forms an unlabelled antichain) must be finite. The bulk of the remaining work is
in the following lemma.

Lemma 5.9. LetM be a unicyclic partial multiplication matrix, and let C = Grid(M). There is a bound,
which depends only onM, on the length of the longest coil contained in any basis element β of C.

Proof. Let the length of the cycle inM be ℓ, and let L = (ℓ+ 1)ℓ2 + 1. Recall that, by Lemma 5.2,
any coil of length at least L has only one gridding on the cycle of M. Also, let B denote the
bound from Lemma 5.6 on the total number of misplaced points in any M-gridding of a coil.
We claim that any coil contained in β has length less than K = (4B+ 2)L+ 2ℓ+ 1.

To derive a contradiction, suppose that β contains anM-coil ξwith at least K points. Note that
β has at least one point not on ξ because ξ is M-griddable; indeed ξ can be gridded on the
cycle. Note also that, by Lemma 5.2, ξ only has one gridding, ξ# say, on the cycle.

Fix an embedding v1, . . . , vK of ξ in β. Let m = (2B + 1)L + 2ℓ + 1 and let p be the point vm.
Let σ be the subpermutation of β formed of the points of ξ before p, and τ the subpermutation
formed of the points of ξ after p. Note that both σ and τ areM-coils of length at least (2B+ 1)L,
this bound being tight for τ.

Consider βp = β − p, and note that since β is a basis element of Grid(M), we have βp ∈
Grid(M). Fix any M-gridding β#

p of βp, and let σ# and τ# denote the inherited M-griddings of
the subpermutations σ and τ of βp.

Let us now consider in detail the structure of σ#; exactly the same analysis will apply to τ#. By
Lemma 5.6, at most B points of σ are misplaced in σ#, the remaining points of σ being gridded
on the cycle of C. These points are divided (by the removal of the misplaced points) into at most
B+ 1 contiguous portions.

If one of these portions of σ has length L or greater, then by Lemma 5.2, there is only one way
in which it can be gridded on the cycle. Suppose there were two such portions, φ = va, . . . , vb
and ψ = vc, . . . , vd (where b < c− 1), each of length at least L. Then each would have a unique
gridding, φ# and ψ# say, on the cycle. Moreover, since their M-sum ψ# ⊞ φ# is contained in ξ#

(the unique gridding of ξ on the cycle), we know that this is how φ and ψ would be gridded.
Thus, by Corollary 5.8, each point vi, b < i < c, would also be gridded on the cycle, and so
would not be misplaced, since for each such i there would be a point of φ# and a point of ψ#
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sandwiching vi in a common cell of the cycle. Hence only one portion of σ can have length L
or greater.

As a consequence, the only points of σ that can be misplaced in anyM-gridding are its first BL
points and its last BL points. In particular, there is a contiguous portion of σ of length at least L
all of whose points are gridded on the cycle in anyM-gridding. Similarly, there is a contiguous
portion of τ of length at least L that contains no misplaced points in anyM-gridding. Call these
portions α andω, respectively. Because of their length and the fact that they are gridded on the
cycle, by Lemma 5.2, their M-griddings, α# and ω#, are unique. Moreover, since their M-sum
ω# ⊞ α# is contained in ξ#, we know that this is how α and ω are gridded. Furthermore, by
Corollary 5.8, no point of ξ − p that succeeds α# and precedes ω# is misplaced. Thus we may
assume that α is a suffix of σ and thatω is a prefix of τ.

Let c denote the cell that contains the points vm−ℓ (belonging to α#) and vm+ℓ (belonging to
ω#), and let Sc denote the entries of β#

p that lie in cell c. Note that Sc consists of entries from
α# and ω#, as well as possibly some other entries of βp, but all of the entries must form a
monotone sequence. Without loss of generality, we may assume that the entries in Sc form a
monotone increasing sequence, oriented from bottom left to top right.

We now consider the action of re-inserting p into β#
p. It must be placed in cell c, and within

this cell it must be placed above and to the right of vm+ℓ, and below and to the left of vm−ℓ.
However, were Sc ∪ {p} still monotone increasing, then we would have a valid M-gridding of
β, which is not possible. Thus there exists p ′ ∈ Sc such that {p,p ′} is a copy of 21. Furthermore,
since Sc is monotone, we conclude that p ′ must also lie above and to the right of vm+ℓ, and
below and to the left of vm−ℓ.

Now let q = vm−ℓ and r = vm−2ℓ, so that in β#
p the points p,q, r belong to cell c, and are

(from left to right) successive entries of the coil. Consider βr = β − r. We have βr ∈ Grid(M),
and in any gridding β#

r, the coil points v1, . . . , vm−2ℓ−1 and vm−2ℓ+1, . . . , vK form M-coils each
of length at least (2B + 1)L, this bound being tight in the former case. By the same argument
as that applied to σ and τ, we conclude that in β#

r the cell c must contain vm+ℓ, p, and q.
Furthermore, cell c must also contain p ′ (since p ′ is sandwiched by vm+ℓ and q), but {p,p ′}
was a copy of 21, while {p ′,q} is a copy of 12. This is a contradiction to the monotonicity of the
entries in cell c of β#

r, and completes the proof.

We require one final ingredient in order to prove Theorem 5.1. Given a permutation class C, the
one-point extension of C is the class

C+1 = {π : π− p ∈ C for some point p of π}.

Lemma 5.10 (See Brignall and Vatter [20, Theorem 4.5]). If C is an lwqo permutation class, then the
one-point extension class C+1 is also lwqo.

We are finally in a position to complete the proof that Grid(M) is finitely based when M is
unicyclic.

Proof of Theorem 5.1. By Proposition 2.5, we can assume thatM is a unicyclic partial multiplica-
tion matrix.
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Let B be the basis of C = Grid(M), and recall that B must be an antichain. By Lemma 5.9, there
is an absolute bound K on the length of the longest coil contained in any basis element of B.
The same statement holds for any one-point deletion of an element in B.

Let D denote the subclass of C comprising all permutations whose coils have length less than
K. By Theorem 4.1, D is labelled well quasi-ordered.

Take β ∈ B. Any one-point deletion β− must, by definition, belong to C, but since β− contains
only coils of length less than K, we must in fact have β− ∈ D. Thus, β ∈ D+1. Hence B ⊂ D+1,
and D+1 is lwqo by Lemma 5.10, which means that Bmust be finite.

5.3 Two grid classes that are not finitely based

Our proof of Theorem 5.1 relies on Lemma 5.6, which limits how many points of a coil can be
gridded in cells that are not part of the unique cycle. By contrast, if M is a gridding matrix
which has two (or more) cycles that are identical (that is, the submatrices corresponding to the
rows and columns involved in each cycle are equal), then any coil that can be gridded in one
cycle can equally well be gridded in the other. Our counterexamples to Conjecture 2.3 of [29]
harness this property.

Proposition 5.11. The classes Grid(M) and Grid(N), where M = and N = , are

not finitely based.

Note that in Proposition 5.11, GM comprises a single component with two identical cycles,
while GN has two unicyclic components (and again the two cycles are identical).

Proof. We claim that the sequence of permutations

π1 = 3 5 1 6 4 8 2 7, π2 = 5 9 1 7 3 8 6 10 4 12 2 11, π3 = 7 13 1 11 3 9 5 10 8 12 6 14 4 16 2 15, . . .

is an infinite antichain in the basis of each of these classes. These permutations are contained in
Grid

( )
, and the permutation πk is constructed within this class by taking a coil of length

4k+1, and adding a single point to each of the cells corresponding to the edges not on the cycle
– see Figure 12.

To establish the claim, first note that Grid(N) ⊆ Grid(M). It suffices to show that each πk does
not lie in Grid(M), while the removal of any point results in a permutation in Grid(N).

First, consider removing some point p from πk, to form the permutation πk − p. If p is the
leftmost point, then the same gridding as was used to construct πk shows that πk − p belongs
to Grid

( )
, and is a submatrix ofN, which establishes that πk−p ∈ Grid(N). A similar

argument applies if p is the rightmost point. Lastly, if p is a point of the coil, then πk − p can
be written as a ⊞ sum of a permutation in Grid( ) and a permutation in Grid( ). This
partition of the points of πk − p naturally defines anN-gridding of πk − p, and establishes that
πk − p ∈ Grid(N) for any point p.
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Figure 12: Griddings with respect to the matrix of the first three elements of the
infinite antichain {π1,π2, . . . }, which is contained in the bases of both Grid(M) and
Grid(N) (proof of Proposition 5.11).

of two components in Grid
( )

. (The gridding used for πk − p is the same as the one used
to define πk, as in Figure 12.) The leftmost point of πk − p belongs to one of these components,
and the rightmost point to the other, and this partition of the points of πk − p naturally defines
an N-gridding of πk − p. This establishes that πk − p ∈ Grid(N) for any point p.

It remains to show that πk ̸∈ Grid(M). To do this, we consider the permutation λ = 3516472,
and note that (1) λ ⩽ πk (since λ is formed from the leftmost point of πk together with the
first six points of the coil) and (2) λ has a unique gridding in Grid

( )
(since no point

can be placed in the rightmost column, thus points in the upper row must avoid 231 and 132,
from which it follows routinely that there is a single gridding). These two facts are enough to
establish that there is exactly one embedding of λ in πk.

We claim further that the following is a uniqueM-gridding of λ:

This claim can be easily established by an exhaustive computer search, but below we give an
outline of a direct proof.

Consider any M-gridding of λ. First, note that in this gridding no point can be in
the rightmost column, as this would require at least the top six points to be in the
top row, but these points form the pattern 245361 which is not in Grid( ).

Next, the leftmost point must be in the leftmost column. If not, then λ ∈ Grid
( )

⊆

Grid
( )

= Av(2143, 3412), yet λ contains both 2143 and 3412.

Since the rightmost column is empty, the top two rows of any gridding must avoid
231 and 132, and thus the top two rows can contain at most the top three points
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of λ. In particular, the leftmost point of λmust be in one of the lower two rows. Fur-
thermore, the leftmost point cannot be in the bottom row, as then the lowest three
points (which form a copy of 312) are in the bottom row, and this is not possible.
Thus the leftmost point must lie in the first column, and in the second row.

Now, suppose that the top point is placed in the top row. It clearly cannot be in the
leftmost column, so it would need to be in the second column from the right. In
turn, this implies that the rightmost point is in the same column, but in the bottom
row. We now follow the points round the coil, with every point belonging either
to the top row or the bottom, which eventually leads to a contradiction with the
placement of the leftmost point. Thus, there are no points in the top row.

A similar argument shows that the bottom point cannot be in the bottom row. Con-
sequently, λ must embed in the middle two rows, but since we know that λ has a
unique gridding as a member of Grid

( )
, the claim follows.

To complete the proof, we now attempt to grid πk. The leftmost point and the first six points of
the coil of πk form a copy of λ, and thus have a unique M-gridding that uses only the middle
two rows. We now consider each successive point from the coil in turn: each must also be placed
in the middle two rows in any gridding. This eventually forces the rightmost point to be placed
in the middle two rows, but this is impossible. Thus, πk ̸∈ Grid(M).

6 Well quasi-ordering in cyclic classes

We now turn our attention to characterising well quasi-ordering (without labels) in subclasses
of grid classes. Here, we restrict our scope to cyclic grid classes only; we will discuss obstruc-
tions to the broader question of wqo in subclasses of pseudoforest grid classes in the concluding
remarks.

Throughout this section, M denotes a partial multiplication matrix whose graph is a cycle of
length ℓ, and we consider a subclass C ⊆ Grid(M).

First, clearly if C contains only bounded length coils then it is lwqo by Theorem 4.1, and hence
it is wqo. On the other hand, if C contains arbitrarily long coils, then we cannot immediately
conclude that the class is not well quasi-ordered. Indeed, it is shown in [18] that the class

Av
(

2143, 2413, 3412, 314562, 412563, 415632, 431562,
512364, 512643, 516432, 541263, 541632, 543162

)
is wqo, yet this class is contained in Grid

( )
and admits arbitrarily long coils.

Roughly speaking, to construct an antichain from a collection of coils, we need to use additional
points to mimic the labelling used in Lemma 4.11, in which the first and last points of the coil are
given a different label from the interior vertices. In the case of cyclic classes, there is essentially
only one way in which this can happen, which we now describe.

Given a gridded coil O = v1, v2, . . . , vn, let α#
O be theM-gridded permutation with point set

{v1
1, v2

1, v2, . . . , vn−1, v1
n, v2

n},
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Figure 13: The end-inflated gridded coil α#
O, where O is a gridded coil of length 18 in the

cyclic class Grid#
( )

.

in which the point v1 of O is inflated to a pair of points v1
1, v2

1, forming a copy of 12 or 21
(according to the entry ofM corresponding to the cell containing v1), and similarly vn is inflated
to the pair v1

n, v2
n. We call these end-inflated gridded coils; see Figure 13 for an example.

Note that vi1, v2, . . . , vn−1, vjn is order isomorphic to v1, . . . , vn, for any pair i, j ∈ {1, 2}, and
thus each such subpermutation of α#

O is a coil. By Lemma 5.2, if n ⩾ (ℓ + 1)ℓ2 + 1 then there
are no other M-griddings of the underlying permutation v1, . . . , vn, and thus by considering
the subpermutations vi1, v2, . . . , vn−1, vjn we conclude that α#

O is the only M-gridding of the
ungridded permutation αO. We call αO an end-inflated coil.

We now construct a collection of 2ℓ2 infinite antichains, using these permutations αO. As noted
in Subsection 3.2, there are 2ℓ coils of any specified length, determined by the cell containing
the first point and which of the two neighbouring cells contains the second point. Now con-
sider the collection of all coils of length at least (ℓ + 1)ℓ2 + 1 in Grid(M). We reiterate that each
such ungridded coil has a uniqueM-gridding, and hence we can allow ourselves the liberty of
conflating these coils with their gridded versions. Next, we partition the coils under consider-
ation according to the two cells containing the first two points, and also the cell containing the
last point.

More precisely, we say that a coil O has type (s1, s2, f) if its first entry is in cell s1, its second is in
s2, and its final entry is in f. Note that s2 must be one of the two neighbouring cells of s1, and
any two coils of the same type have lengths that differ by a multiple of ℓ. Now let

A(s1,s2,f) =
{
αO : O has type (s1, s2, f) and |αO| ⩾ (ℓ+ 1)ℓ2 + 3

}
.

(Note that the length of these end-inflated coils accounts for a coil of length at least (ℓ+ 1)ℓ2 + 1
plus the two additional points required to inflate the ends.)

Proposition 6.1. For any triple of cells (s1, s2, f) of M in which s2 is in the same row or column as s1,
the set A(s1,s2,f) is an infinite antichain.

Proof. Let O = v1, . . . , vn and Q = u1, . . . ,um be distinct coils of type (s1, s2, f), both of lengths
at least (ℓ+1)ℓ2+1. Without loss of generality assume thatm < n, which implies thatm ⩽ n−ℓ.
To prove the proposition, we will show that αQ ̸⩽ αO.
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First, as both coils have lengths at least (ℓ+1)ℓ2+1, theirM-griddings are unique by Lemma 5.2.
In order to show that αQ ̸⩽ αO, it suffices to show that α#

Q ̸⩽ α#
O. Indeed, by Observation 2.2, it

suffices to show that the orientation digraph Dα#
Q

is not an induced subdigraph of Dα#
O

.

Without loss of generality, we may assume that in Dα#
Q

, we have u1
1 → u2

1 and u1
n → u2

n, and
similarly in Dα#

O
.

We claim that the only vertex of outdegree 2 in Dα#
Q

is u1
1, and that there are precisely ℓ − 1

vertices of outdegree 1, namely u2
1,u2, . . . ,uℓ−1. This claim follows readily by inspecting the

following diagram, and by noting that uj has outdegree ⩾ 3 for all j ⩾ ℓ.

u2 u3

u1
1

u2
1

uℓ−1 uℓ uℓ+1 uℓ+2

A similar comment (replacing ‘outdegree’ with ‘indegree’) applies to the last ℓ vertices, and
then the obvious analogues apply to Dα#

O
.

Now suppose, for a contradiction, that there exists some embedding of Dα#
Q

in Dα#
O

. Such an
embedding naturally induces an embedding of the coil Q in O, and we note that this induced
embedding must use a contiguous set of vertices ofDO by an argument similar to the one used
in the proof of Lemma 4.11. Consequently, sincem ⩽ n− ℓ ⩽ n− 4, it is not possible to embed
Dα#

Q
in Dα#

O
so that at least one vertex in {v1

1, v2
1} and at least one vertex in {v1

n, v2
n} is used. We

will consider the case in which an embedding uses neither v1
1 nor v2

1; the other case follows by
an analogous argument.

Let j > 1 be the smallest index such that some vertex of Dα#
Q

maps to vj. Note that in the
induced subdigraph of Dα#

Q
on {vj, . . . , vn−1, v1

n, v2
n}, only the vertices vj, . . . , vj+ℓ−1 have out-

degree less than 3. All these vertices must be used in the embedding ofDα#
Q

, and thus it must be
the vertices u1

1,u2
1,u2, . . . ,uℓ−1 that map to vj, . . . , vj+ℓ−1, in some order. However, the digraph

induced on vj, . . . , vj+ℓ−1 is a directed cycle of length ℓ, while that on u1
1,u2

1,u2, . . . ,uℓ−1 is not,
and thus clearly there is no such embedding.

For a class C ⊆ Grid(M) to be wqo, it must clearly have only finite intersection with each
A(s1,s2,f). We will show that this condition is sufficient: that is, if C ∩ A(s1,s2,f) is finite for all
types (s1, s2, f), then C is wqo. To do this, we take a similar approach to the proof of Theorem 4.1:
for a class C that has finite intersection with each A(s1,s2,f), we seek to identify a refined acyclic
gridding matrix N so that permutations in C can be constructed using members of Grid(N).
However, unlike the case for labelled well-quasi ordering, here it is possible for C to contain
long M-coils (providing the ends of such coils cannot be inflated). This means that the earlier
approach of simply taking the coil decomposition of each π ∈ C to construct a suitable N will
not work, as there is no bound on the length of such a decomposition.
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B1

B2 B3

B4B5

B6 B7

B8B9

B10

Figure 14: On the left, a gridded coil of length 12 in Grid#
( )

, and on the right, a coil de-
composition of the same gridded coil into boxes B1, . . . ,B10 where B3 and B4 are
nonsingleton.

Instead, consider any indivisible π# ∈ C# ⊆ Grid#(M) with coil decomposition B1,B2, . . . ,Bm

and associated coil v1, . . . , vm. Roughly speaking, we seek to identify indices i and j, with 1 ⩽
i < j ⩽ m, so that the points in B1, . . . ,Bi−1 are order isomorphic to a coil (the ‘leading’ coil),
the points in Bi, . . . ,Bj are order isomorphic to an element of Grid(N) (the ‘body’), and those in
Bj+1, . . . ,Bm are order isomorphic to another coil (the ‘trailing’ coil). For the body to belong to
an acyclic grid class Grid(N), we need to ensure that |j− i| is bounded.

Since the points in B1, . . . ,Bi−1 must form a coil, one might hope that each box Bk in this range
contains precisely one point, namely vk. One could then choose the index i so that Bi is the first
non-singleton box. Analogous comments apply to the boxes Bj+1, . . . ,Bm and the choice of j.
However, not all coil decompositions of gridded coils are formed entirely of singleton boxes,
as illustrated in Figure 14. Thus, our first task is to select ‘good’ coil decompositions when this
is possible, and this is done in the following technical proposition.

Proposition 6.2. LetM be a cyclic partial multiplication matrix and let ℓ denote the length of the cycle.
For anyM-indivisible π# ∈ Grid#(M) there exists a coil decomposition

B1,B2, . . . ,Bm

and associated coil v1, . . . , vm such that at least one of the following holds.

(a) |B1| = |B2| = · · · = |Bℓ| = 1;

(b) |Bℓ+1| ⩾ 2;

(c) For some 1 ⩽ i ⩽ ℓ, there exists x ∈ Bi \ {vi} such that x→ vi+1 inDπ# . (That is, x and vi have
the same relationship to the rest of the coil v1, . . . , vm.)

Proof. Take any coil decomposition B1, . . . ,Bm of π#, and let the associated coil be v1, . . . , vm.
Let z1, . . . , zℓ denote the last points in each cell (indexed so that zi ∈ Bi for 1 ⩽ i ⩽ ℓ). Note that
v1 = z1, and indeed vi = zi if and only if |Bi| = 1.
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Suppose the decomposition B1, . . . ,Bm satisfies none of (a), (b) or (c); we will show how to
modify it to form another decomposition that does satisfy one of the conditions. Let i (⩽ ℓ)
denote the smallest index such that |Bi| > 1. Thus vi ̸= zi (and both of these vertices are
contained in box Bi), but vj = zj for all j < i. Furthermore, to avoid condition (c) we know that
vi+1 → zi in Dπ# . However, we also know that zi → zi+1 which establishes that vi+1 ̸= zi+1,
and thus |Bi+1| > 1. Similar comments apply to the relationship between the points in Bi+1 and
Bi+2 (assuming i+ 2 ⩽ ℓ), and iterating this argument we establish that

vj ̸= zj, and vj+1 → zj

for all i ⩽ j ⩽ ℓ. The following diagram illustrates a typical configuration (with ℓ = 6 and i = 3).

z1 = v1

z2 = v2

z3

v3

z4

v4

z5

v5

z6
v6

v7

We now split the considerations into two cases, depending on the sizes of the blocks Bi, . . . ,Bℓ.

Case 1: |Bj| ⩾ 3 for some i ⩽ j ⩽ ℓ. Take x ∈ Bj \ {zj, vj}, and note that vj → x→ zj. Take the coil
decomposition B ′

1,B ′
2, . . . that begins with B ′

1 = {zj}. Since

zj → · · · → zℓ → z1 → v2 → · · · → vj−1 → {vj, x}

we see that B ′
ℓ+1 contains two entries. Thus the coil decomposition B ′

1,B ′
2, . . . satisfies (b).

Case 2: |Bj| = 2 for all i ⩽ j ⩽ ℓ. Thus Bj consists precisely of the points vj and zj. In this case,
take the coil decomposition starting with B ′′

1 = {zi}. By our assumptions, it is straightforward
to verify that this decomposition begins with ℓ singleton boxes, and thus (a) is satisfied by this
coil decomposition.

We can now present our key structural lemma for permutation classes that have finite intersec-
tion with the antichains introduced earlier. We let A =

⋃
(s1,s2,f)∈[ℓ]3 A(s1,s2,f) denote the set of

all sufficiently long end-inflatedM-coils.

Lemma 6.3. Let M be a cyclic partial multiplication matrix, and let C ⊆ Grid(M) such that C ∩
A is finite. Then there exists a constant K such that any M-indivisible element π# of C# has a coil
decomposition

B1, . . . ,Bm

with the property that whenever |Bi| > 1 and |Bj| > 1, then |j− i| ⩽ K.
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Proof. Consider any M-indivisible π# ∈ C# and take a coil decomposition B1, . . . ,Bm with as-
sociated coil v1, . . . , vm which satisfies one (or more) of the conditions in Proposition 6.2. Now
take i, j (and without loss suppose i < j) as in the statement of the lemma, and consider points
x,y, distinct from vi and vj, such that x ∈ Bi and y ∈ Bj.

In the digraph Dπ# , we know that vi → x and vj → y. Furthermore, by construction we know
that vj−1 → y, while there are two possibilities for the relationship between x and the coil point
vi+1 in the cell i + 1: either x→ vi+1, or vi+1 → x. We will show in each case how to construct
an element of A.

Case 1: x→ vi+1. We claim that the set of points

S = {x, vi, vi+1, . . . , vj,y}

forms a gridded subpermutation of π# that is order isomorphic to an element of A. To see this,
note that vi, . . . , vj is a coil, so it suffices to show that {vi, x} and {vj,y} form intervals within the
subpermutation defined by the set S. Since vi and x belong to Bi, they belong to the same cell in
π#. Consequently the only points in S that can separate {vi, x} must belong to Bi−1 ∪ Bi ∪ Bi+1.
However, S ∩ (Bi−1 ∪ Bi ∪ Bi+1) = {vi, x, vi+1}, yet x → vi+1 and vi → vi+1, which establishes
that nothing in S separates {vi, x}. A similar argument applies to the pair {vj,y}, and so the
points in S form an element of A of length j− i+ 3.

Case 2: vi+1 → x. There are two subcases, depending on whether i ⩽ ℓ or i > ℓ.

If i > ℓ, then we claim that the set of points

S = {x, vi−ℓ, vi−ℓ+1, . . . , vj,y}

forms a gridded subpermutation of π# of length j−i+ℓ+3 that is order isomorphic to an element
of A. The argument is similar to the previous case: note that x → vi−ℓ and vi−ℓ → vi−ℓ+1
together imply that x→ vi−ℓ+1.

If i ⩽ ℓ then the coil decomposition of π# cannot satisfy condition (a) of Proposition 6.2, so it
must satisfy (b) and/or (c). If the decomposition satisfies (b), then instead of considering x ∈ Bi,
we take x ′ ∈ Bℓ+1 with the property that x ′ ̸= vℓ+1. The point x ′ lies in a cell of index greater
than ℓ so is covered by one of the two earlier arguments, and we obtain an element of A of
length at least j− i− ℓ+ 2.

On the other hand, if the decomposition satisfies neither (a) nor (b), then it must satisfy (c),
which means that there exists some index i ′ ⩽ ℓ and a point x ′ ∈ Bi ′ \{vi ′} such that x ′ → vi ′+1.
If we consider the point x ′ instead of x, then this case is again covered by one of the three earlier
arguments, and we obtain an element of A of length at least j− i− ℓ+ 2.

This completes the case analysis. In every case we have constructed an end-inflated coil in A,
and the shortest this permutation can be is j − i − ℓ + 2. If K ′ denotes the length of the longest
element in C∩A, then we have j−i−ℓ+2 ⩽ K ′, and so the result follows with K = K ′−2+ℓ.

We are now nearly ready to state and prove our characterisation of wqo for subclasses of cyclic
classes. As noted earlier, the proof follows roughly the same argument as that for Theorem 4.1,
with the added complications that arise by the need to handle leading and trailing coils. Thus,
before we state and prove our characterisation, we construct our decomposition in one final
technical lemma.
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Lemma 6.4. Let M be a cyclic partial multiplication matrix, let K be as in Lemma 6.3, and let C ⊆
Grid(M) such that C ∩ A is finite. For any M-indivisible element π# ∈ Grid#(M), there exists an
acyclic matrix N with at most K+ 2 non-zero entries, such that π# can be reversibly encoded as a triple
(σ♮π,aπ,bπ) ∈ Grid#(N)× N× N.

Proof. Consider any M-indivisible gridded permutation π# ∈ C#. If π# occupies a single cell,
then it has length 1. In this case, the lemma is satisfied by constructing N to have the same
dimensions as M, but with a single non-zero entry that corresponds to the cell containing the
one point of π#. We set σ♮π = π#, and aπ = bπ = 0.

Thus we may assume from now on that π# occupies all ℓ cells of the cycle. Take a coil decom-
position B1, . . . ,Bm of π# that satisfies Lemma 6.3, and note thatm ⩾ ℓ.

If there are boxes with more that one point, let i (resp. j) be the smallest (resp. the largest) index
of such a box. Otherwise set i = j = 2. Thus, the only nonsingleton boxes are among

Bi,Bi+1, . . . ,Bj,

and by Lemma 6.3 we have |j− i| ⩽ K.

Now let σ be the subpermutation of π# formed from the points in Bi−1 ∪ Bi ∪ · · · ∪ Bj+1. Note
that i > 1 since |B1| = 1. If Bj+1 does not exist (which occurs only if j = m), then we ‘pad’ our
coil decomposition by creating an empty final box Bj+1, placed in the same cell as Bj−ℓ+1, and
preceding Bj−ℓ+1 according to that cell’s orientation.

We grid σ according to the coil decomposition: let N denote the acyclic partial multiplication
matrix whose non-zero entries correspond to the boxes Bi−1, . . . ,Bj+1 (essentially following the
same process as in the proof of Lemma 3.12). By construction, σ ∈ Grid(N), and let σ♮ denote
the N-gridding inherited from the coil decomposition of π#. (Note, we use ♮ to emphasise that
this is an N-gridding.)

Next, we specify the two positive integers aπ and bπ. We set aπ = i − 1 to record the number
of coil points that precede the first non-singleton block Bi of π#. Similarly, we set bπ = m− j to
record the number of coil points that follow the last non-singleton block Bj. Note that aπ ⩾ 1,
and that bπ = 0 if and only if j = m (indicating that there is no final coil).

To complete the proof, we need to show that the triple (σ♮,aπ,bπ) ∈ Grid#(N) × N × N is a
reversible encoding of π#: that is, we must demonstrate how to recover π# from this triple.
This is clear for the encodings of permutations of length 1, so we need only consider those of
permutations of length ⩾ ℓ. We begin by constructing the boxes Bi−1, . . . ,Bj+1 of π#, which
contain precisely the points in the corresponding cells of σ♮. The boxes Bi−1 and Bj+1 are easily
identified.

We now re-insert the coil points at the beginning and the end of π#, which we do iteratively.
Given the placement of a singleton cell Bk = {vk}, there is a unique way in which to insert
the preceding singleton cell Bk−1 = {vk−1}: we have vk−1 → vk, while for any k ′ > k such
that Bk ′ is in the same row or column of π#, we have x → vk−1 for all x ∈ Bk ′ : that is, Bk−1
comes after all entries in its row or column except for vk. On the other hand, the position of
vk−1 relative to any other entries in π# is determined by M. Thus, we may place vk−1 relative
to all later points in a unique way. A similar process allows us to reinsert entries to the other
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end of the coil, and the numbers of times we iterate these steps is governed by the integers aπ
and bπ, respectively. Note that the case where bπ = 0 corresponds precisely to the case that
Bj+1 is empty. Finally, we forget the partition of the points of π# into the boxes Bi in favour of
the underlyingM-gridding, observing that Bi, Bi+ℓ, Bi+2ℓ, . . . end up in one cell, Bi+1, Bi+1+ℓ,
. . . in another, and so on. Thus, we have recovered π#, and the proof is complete.

Theorem 6.5. Let M be a cycle partial multiplication matrix, and let C ⊆ Grid(M). Then C is wqo if
and only if C contains only finitely many end-inflatedM-coils.

Proof. One direction is immediate from Proposition 6.1: If C ∩A is not finite, then C ∩A(s1,s2,f)
is infinite for some triple of cells (s1, s2, f), thus C contains an infinite antichain.

Now suppose that C∩A is finite, and let K be the constant from Lemma 6.3. By Lemma 6.4, for
eachM-indivisible π# ∈ C#, there exists an acyclic matrixNwith at most K+ 2 non-zero entries
such that π# can be encoded as a triple (σ♮π,aπ,bπ) ∈ Grid#(N) × N × N. Note that Grid#(N) is
labelled well quasi-ordered by Proposition 4.10, and thus Grid#(N)×N×N is well quasi-ordered
by Proposition 4.4, when N is endowed with the usual (total) ordering on natural numbers.

In general, two M-indivisible permutations in C# do not need to be encoded using the same
acyclic matrix. However, every such matrix contains at most K+2 non-zero entries, and so there
can be only finitely many distinct matrices arising from the encodings provided by Lemma 6.4.

For any such acyclic gridding matrix N, define

CN = {π# ∈ C# : π# isM-indivisible and σ#
π ∈ Grid#(N)}.

We need to show that any such set CN is well quasi-ordered. Since Grid#(N) × N × N is well
quasi-ordered, this will follow by Lemma 4.5(ii) if we can show that the mapping

ϕ : CN → Grid#(N)× N× N,

which sends each π# to its encoding (σ♮π,aπ,bπ), is order-reflecting.

To this end consider π# and τ# in CN whose encodings (σ♮π,aπ,bπ) and (σ♮τ,aτ,bτ) have the
property that

(σ♮π,aπ,bπ) ⩽ (σ♮τ,aτ,bτ).

This means that σ♮π ⩽ σ♮τ (as N-gridded permutations), aπ ⩽ aτ, and bπ ⩽ bτ.

To show that π# ⩽ τ#, we begin with an embedding that witnesses σ♮π ⩽ σ
♮
τ, noting that the

points in the singleton cells of σ♮π at the beginning and end (when they exist) must embed
into the corresponding points in the singleton cells of σ♮τ. We now follow the process described
above to embed successive points at the beginning and end of the coil decomposition of π# into
the corresponding points of τ#. Since aπ ⩽ aτ, and bπ ⩽ bτ, we are guaranteed to embed all
such points of π# before we run out of points in τ#. Thus, π# ⩽ τ#, which completes the proof
that CN is well quasi-ordered.

Since every M-indivisible permutation in C# is encoded using some matrix N, and since there
are only finitely many possible matrices N, the set of all M-indivisible permutations in C# is
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contained in a finite union of well quasi-ordered sets CN. Consequently, C# is itself well quasi-
ordered. Lemma 4.8 now gives that C# is well quasi-ordered.

Finally the fact that C is well quasi-ordered now follows by observing that the mapping

C# → C, π# 7→ π,

that removes the gridding (first considered in the proof of Lemma 4.7) is order-preserving.

7 Concluding remarks

Enumeration We have not considered the enumeration of pseudoforest grid classes in this
study. It is known (by [5]) that acyclic grid classes (and their subclasses) all possess rational
generating functions. In his PhD thesis, Bevan [13, Theorem 4.6] used a ‘diagonalisation’ ar-
gument to show that the gridded permutations in a pseudoforest grid class have an algebraic
generating function. He further conjectures that all pseudoforest grid classes have algebraic
generating functions.

The barrier to making progress on the question of enumeration lies in our ability (or lack of) to
handle permutations that possess multiple griddings. Even if Conjecture 5.3 could be proved,
this is likely to be insufficient for what would be needed for a direct approach. Alternatively,
one might wonder whether it is possible to combine the methods in [5] (where rationality is
established by subtracting ‘bad’ griddings from the set of all griddings, and showing that both
sets of griddings are encoded by regular languages) with those in [13] (where pseudoforest
classes are formed from acyclic classes by identifying the points in pairs of cells), but this has
so far not met with success.

Bases While we have roughly indicated a boundary between grid classes that are finitely
based and those that are not, there is certainly still scope for this to be tightened further. The
construction employed in Proposition 5.11 only works in cases where the gridding matrix M
possesses two identical cycles that are arranged around each other in a very particular way.
Other constructions may well exist, but it is probably also the case that the methods used here
to show that unicyclic classes are finitely based can be applied slightly more generally.

Well quasi-ordering for unicyclic classes The question of well quasi-ordering in unicyclic
grid classes, let alone pseudoforest grid classes, is more nuanced than the arguments given
in this paper for cyclic classes. While we know that every infinite antichain necessarily must
include elements that contain arbitrarily long coils, there are multiple ways for these to be
‘anchored’ in unicyclic classes. An example is given in Figure 15. Further results are likely
possible, but may descend rapidly into a technical case analysis.

Polycyclic classes We have significantly extended our understanding of pseudoforest grid
classes in this article, but the corresponding questions for polycyclic grid classes still seem out
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Figure 15: Three elements from a variant of the ‘Widdershins’ antichain, which is contained
in Grid

( )
.

of reach. The first issue is that not all gridding matrices can be replaced by partial multipli-
cation matrices, since Proposition 2.4 does not apply to matrices that contain a negative cycle
connected to another cycle. Indeed, in his PhD thesis, Waton [41, Proposition 4.5.14] gives the
following example. With M = , Grid(M) can be expressed as the union of two distinct
proper subclasses, comprising the permutations that can be drawn in the following two dia-
grams.

Note that both of these pictures are essentially formed from the doubled matrixM×2, but with
deformations in the top right corner. In particular, cell C54 in the left picture and C63 in the
right can be non-empty, and thus there are permutations in Grid(M) that are not present in
Grid(M×2).

However, there are further issues even for polycyclic gridding matrices that can be expressed
as partial multiplication matrices. The coil decomposition of indivisible gridded permutations,
as established in Theorem 3.13, simply does not apply when a component contains more than
one cycle. One strong indicator that polycyclic classes will be hard to understand can be found
in Opler’s PhD thesis [33, Theorem 6.1]: the tree-width of acyclic grid classes6 is constant, and
that of pseudoforest grid classes grows like

√
n (where n is the length of the permutation),

but the tree-width of polycyclic classes grows linearly in n. In other words, we should expect
the structural complexity of polycyclic classes to be an order of magnitude harder than that of
pseudoforest classes.
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