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Abstract

A permutation class which is closed under pattern involvement may be described
in terms of its basis. The wreath product construction X o Y of two permutation
classes X and Y is also closed, and we investigate classes Y with the property that,
for any finitely based class X, the wreath product X o Y is also finitely based.

1 Introduction and Statement of Theorem

Two finite sequences of the same length, α = a1a2 · · ·an and β = b1b2 · · · bn, are said to be
order isomorphic if, for all i, j, we have ai < aj if and only if bi < bj. Viewing permutations
of length n as orderings on the numbers 1, 2, . . . , n, every sequence of n distinct symbols is
order isomorphic to a unique permutation. A permutation σ is said to be involved in the
permutation π (denoted σ ≤ π) if there is a subsequence (or pattern) of π order isomorphic
to σ†. For example, 1324 ≤ 6351427 because of the subsequence 3547. A book introducing
the study of these permutation patterns has been written by Bóna [6].

This involvement order forms a partial order on the set of all finite permutations; sets of
permutations which are closed downwards under this order are called permutation classes.
These classes are specified primarily in one of three ways:

• Pattern avoidance. A permutation class X can be regarded as a set of permutations
which avoid certain patterns. The set B of minimal permutations not in X forms an
antichain, and is known as the basis of X. We write X = Av(B) to mean the class
X = {π | β 6≤ π for all β ∈ B}. Antichains (and hence bases) need not be finite –
see, for example, Atkinson, Murphy and Ruškuc [3], Murphy [11] and Murphy and
Vatter [12].

†For a sequence α (not necessarily a permutation) and set of permutations Y , with a slight abuse of
notation, we will sometimes write statements like “α ∈ Y ”, meaning “the permutation order isomorphic
to α lies in Y .”
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• Permuting machines. Permutation classes arise naturally as a result of machines
which permute an input stream of symbols. The first such class to appear was the
set of stack-sortable permutations, presented by Knuth [10].

• Constructions. New permutation classes can be formed using constructions involv-
ing one or more old classes. Atkinson [2] gives the first study of these, and some
further constructions can be found in Atkinson and Stitt [4] and Murphy [11].

In all but the first of these, a natural question to ask is if the class is finitely based.
In the case of permuting machines – more specifically, stack sorting – Bóna’s survey [5]
reviews several answers to this question. In the case of constructions, there are many with
only partial answers. Here, we will consider the question of basis for the wreath product, a
construction which is intrinsically connected to simple permutations and the substitution
decomposition – see Albert and Atkinson [1] and Brignall, Huczynska and Vatter [8]. A
special case of the wreath product – the “profile classes” of [2] – was also used to give
alternative proofs of the enumeration results in West [13].

Given a permutation π ∈ Sn and nonempty permutations α1, α2, . . . , αn, the inflation of
π by α1, α2, . . . , αn is the permutation obtained by replacing each point π(i) by an interval
order isomorphic to αi, and is denoted π[α1, α2, . . . , αn]. For example, 132[21, 2413, 321] =
217968543. Conversely, a deflation of π is any permutation σ arising from a decomposition
π = σ[π1, π2, . . . , πm].

The wreath product of two sets of permutations X and Y (not necessarily permuta-
tion classes) is the set X o Y of all permutations which can be expressed as an inflation
of a permutation in X by permutations in Y , i.e. the set of permutations of the form
π[α1, α2, . . . , αn] with π ∈ X and α1, α2, . . . , αn ∈ Y . It is easy to check that the wreath
product of two permutation classes is again a permutation class, but in only a few cases is
the question of finite basis answerable. It is proved in [4] that for any finitely based class
X, the wreath product X o Av(21) is also finitely based, and that Av(21) o Av(321654) is
not finitely based. Our primary aim here is to establish the following general theorem:

Theorem 1.1. For any finitely based class Y not admitting arbitrarily long pin sequences,
the wreath product X o Y is finitely based for all finitely based classes X.

The approach is constructive; first we introduce Y -profiles, which give us the ability
to decompose permutations arising in wreath products into components belonging to the
two original classes. For a permutation not arising in such a wreath product, we prove the
existence of a subsequence order isomorphic to a basis element of the class X. Moreover,
there is a basis element of Y lying within the “minimal block” defined by any two points of
this subsequence. It is then a matter of using these considerations to show that, when the
class Y admits only finite pin sequences, the minimal elements not in the wreath product
have bounded size.

Our secondary aim, arising as a result of the above considerations, is to exhibit a number
of classes of the form Y = Av(α) for |α| ≤ 3, or Y = Av(α, β) with |α| ≤ 4, |β| ≤ 4 which
do not satisfy Theorem 1.1, and to demonstrate how an infinitely based wreath product
X o Y can be found in each case.

2



Figure 1: Two intervals and their intersection.

2 Simplicity and Substitution Decomposition

As mentioned earlier, the wreath product is closely related to simple permutations and the
substitution decomposition, both of which we will need, so here we review these concepts.
Often we are going to view permutations as points in a plane; the plot of a permutation
π is the set of coordinates {(i, π(i))} in the plane. This viewpoint will provide invaluable
insight into many of the structural considerations discussed later on.

An interval or block of a permutation π is a segment π(i)π(i+1) · · ·π(i+j) in which the
set of values forms an interval of natural numbers. In the plot of a permutation, intervals
can be seen as a set of points enclosed in an axis-parallel rectangle, with no points lying in
the regions above, below, to the left or to the right. It is worth noting that the intersection
of two intervals is itself an interval, an observation clearly seen in Figure 1.

The permutation π is simple if its only intervals are singletons, or the whole of π. Note
that simple permutations have only trivial deflations, and are the only permutations with
this property. As such, they can be regarded as the building blocks of permutation classes.
Every permutation can be written as the inflation of a unique simple permutation, and this
decomposition is known as the substitution decomposition. We shall refer to the unique
simple permutation in this decomposition as the skeleton. If the skeleton has length at
least 4, then the whole decomposition is unique:

Proposition 2.1. If π has a substitution decomposition σ[π1, π2, . . . , πm] with m ≥ 4, then
every πi is determined uniquely.

When m = 2, we may write π = 12[π1, π2], in which case π is sum decomposable, or
π = 21[π1, π2], in which case π is skew decomposable, and in both cases the choice of π1, π2

is not necessarily unique. A permutation that is not sum (respectively, skew) decomposable
is sum (resp. skew) indecomposable.

3 Y -Profiles

We need to be able to know when a given permutation lies in the wreath product of two
permutation classes. This could be done by inspecting all possible decompositions and
checking for membership of the orignal classes, but this is liable to be computationally
intensive. Instead, we would prefer only to check a single decomposition, from which
membership or otherwise of the wreath product is immediately obvious.
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The profile of a permutation π is the unique permutation obtained by contracting every
maximal consecutive increasing sequence in π into a single point [2]. For example, the
profile of 3415672 is 3142 because of the segments 34, 1, 567 and 2.

The notion of a “Y -profile” connects this idea with the definition of the substitution
decomposition π = σ[π1, . . . , πm] of π. We want the Y -profile of π to be the shortest possible
deflation of π, given we may only deflate by elements from the class Y . However, this is
not clearly well-defined, so before we can proceed, we must first introduce Y -deflations.

Formally, let Y be a permutation class, and π any permutation. Then a Y -deflation of π
is a permutation π′ for which π can be expressed as π′[α1, α2, . . . , αk] with α1, α2, . . . , αk ∈
Y . For an arbitrary permutation π, there are many different Y -deflations. However, the
shortest one is unique, and it is this one that gives rise to the Y -profile.

Lemma 3.1. For every closed class Y and permutation π, the shortest Y -deflation of π is
unique.

Proof. We proceed by induction on n = |π|. The case n = 1 is trivial, so now suppose
n > 1. Fix a shortest Y -deflation of the permutation π, and label this permutation πY . If
π ∈ Y then πY = 1 is unique, so we will assume π /∈ Y .

Let σ, of length m ≥ 2, be the skeleton of π, and first consider the case where m ≥ 4,
whereby we have the unique substitution decomposition π = σ[π1, π2, . . . , πm]. By the
inductive hypothesis, the shortest Y -deflations of π1, π2, . . . , πm are unique, and we will
label them πY

1 , πY
2 , . . . , πY

m. We claim that πY = σ[πY
1 , πY

2 , . . . , πY
m]. Consider any other

Y -deflation of π, π = π′[α1, α2, . . . , αk]. Since π /∈ Y , π′ cannot be trivial, and so σ ≤ π′,
and indeed σ is the skeleton of π′, giving a unique deflation π′ = σ[π′

1, . . . , π
′
m]. Moreover,

π′
i is a Y -deflation of πi for all i. Since πY

i is the unique shortest Y -deflation, we must have
πY

i ≤ π′
i, which implies πY ≤ π′.

When m = 2, more care is required. In this case π is either sum or skew decomposable,
and without loss of generality we may assume the former. Write π = 12 · · · t[π1, π2, . . . , πt]
where each πi is sum indecomposable. If every πi ∈ Y , then any shortest Y -deflation of π
will be an increasing permutation of length at most t, and as there is only one increasing
permutation of each length, πY will be unique. So now suppose that there exists at least
one i such that πi /∈ Y , so that |πY

i | ≥ 2. Since πi is sum indecomposable, πY
i is also sum

indecomposable. We claim the shortest Y -deflation of π will be

πY = (π1 ⊕ · · · ⊕ πi−1)
Y ⊕ πY

i ⊕ (πi+1 ⊕ · · · ⊕ πt)
Y .

Any other Y -deflation will also have to be written as a direct sum of three permutations in
this way, and by induction each of these will involve the respective shortest Y -deflation.

Thus, for any class Y and permutation π, the Y -profile of π is the unique shortest
Y -deflation of π, and is denoted πY . Note that setting Y = Av(21), the set of increasing
permutations, returns the original definition of the profile, but if we set Y = S, the set of
all permutations, we do not get the substitution decomposition back, as πS = 1 for any
permutation. However, an easy consequence of the above proof is that if π /∈ Y , and σ is
the skeleton of π, then σ ≤ πY .
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As mentioned at the beginning of this section, our aim with Y -profiles is to be able to
to move from the permutations of the wreath product X o Y down to the permutations in
the two classes X and Y in a single step. Thus although initially we may know very little
about the structure of a permutation in the basis of X oY , by taking its Y -profile we should
be left with a permutation involving a (known) basis element of X. Conversely, we want
to be able to construct basis elements of X o Y given only the bases of X and Y . These
ideas are encapsulated in the following theorem.

Theorem 3.2. Let X and Y be two arbitrary permutation classes. Then π ∈ X o Y if and
only if πY ∈ X.

Proof. One direction is immediate. For the converse, since π ∈ X o Y , there exists π ′ ∈ X
which is a deflation of π by permutations in Y . The proof of Lemma 3.1 then tells us that
πY ≤ π′, completing the proof.

Any expression of the form π = πY [α1, . . . , αk] is called a Y -profile decomposition of π,
and the blocks αi are called the Y -profile blocks. These blocks are not typically uniquely
defined. For example, the Av(123)-profile of 234615 is 23514, but it can be decomposed
either as 23514[12, 1, 1, 1, 1] or 23514[1, 12, 1, 1, 1]. Thus it will be useful to fix a particular
Y -profile decomposition, especially as later we are going to need to know about the structure
of each of the Y -profile blocks.

The left-greedy Y -profile of π is the decomposition π = πY
λ [λ1, λ2, . . . , λ`] with λi ∈ Y

for all i, in which λ1 is first chosen maximally, then λ2, and so on. Each λi is called a
left-greedy Y -profile block of π. This yields the usual, unique, Y -profile:

Lemma 3.3. For any class Y and permutation π, πY = πY
λ .

Proof. Again, we use induction on n = |π|. The base case n = 1 is trivial, so now suppose
n > 1. Assume further that π /∈ Y , as otherwise πY = πY

λ = 1 follows immediately. Let
π = πY

λ [λ1, λ2, . . . , λ`] be the left-greedy Y -profile of π, let πY [α1, α2, . . . , αk] be any other
Y -profile decomposition of π, and let σ[π1, π2, . . . , πm] be the substitution decomposition.

Consider first the case where m = |σ| ≥ 4. By the proof of Lemma 3.1, we have
πY = σ[πY

1 , πY
2 , . . . , πY

m]. A similar argument shows that πY
λ = σ[(π1)

Y
λ , (π2)

Y
λ , . . . , (πm)Y

λ ],
and by induction πY

i = (πi)
Y
λ for all i, giving the required result.

When m = 2, π is either sum or skew decomposable, and we may assume the former.
Write π = 12 · · · t[π1, π2, . . . , πt] where each πi is sum indecomposable. In the case where
every πi ∈ Y , both πY and πY

λ will be increasing permutations with k ≤ ` ≤ t. When
using the left-greedy Y -profile decomposition, the block λ1 was chosen maximally, and so
α1 ≤ λ1. Then the block λ2 was taken maximally, so the Y -profile block α2 cannot extend
further right than the end of λ2, hence α2 ≤ λ1 ⊕ λ2. Continuing in this manner, we see
that, for all i, αi ≤ λ1 ⊕ λ2 ⊕ · · · ⊕ λi, and in particular αk ≤ λ1 ⊕ λ2 ⊕ · · · ⊕ λk. But we
must have k ≤ `, and so k = `. The remaining case is where at least one πi /∈ Y . Pick i to
be minimal with this property, and then by the proof of Lemma 3.1,the Y -profile breaks
into three pieces,

πY = (π1 ⊕ · · · ⊕ πi−1)
Y ⊕ πY

i ⊕ (πi+1 ⊕ · · · ⊕ πt)
Y .
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Figure 2: The minimal block mb(π; 2, 3) in π = 236745981.

A similar argument holds for the left-greedy Y -profile, and then by induction each of
the three pieces in the left-greedy Y -profile is equal to the corresponding piece in the
Y -profile.

There is, of course, nothing special about the left-greedy Y -profile; it can be seen that
any algorithm to compute a Y -profile-like decomposition in which at each stage the blocks
are chosen maximally will yield a Y -profile deflation. For our purposes, however, when
required we will always use the left-greedy algorithm.

4 The Minimal Block

The primary aim of this section is to be able to tell if any two points in a permutation
belong to the same left-greedy Y -profile block, and also a partial converse: given the Y -
profile deflation, what can we say about the points “between” two specified points? To
this end, we define a new concept as follows. Let π be any permutation of length n. For
all 1 ≤ i < j ≤ n, the minimal block of π that contains π(i) and π(j), denoted mb(π; i, j),
is the set of points of π which forms the shortest interval involving both π(i) and π(j).
In other words, there exists k ≤ i and ` ≥ j − k such that mb(π; i, j) = π(k) · · ·π(k + `)
forms an interval but no subsegment of this contains both π(i) and π(j) and forms an
interval. For example, if π = 236745981, then the minimal block on π(2) = 3 and π(3) = 6
is mb(π; 2, 3) = 36745 (See Figure 2).

It follows from the observation that the intersection of two intervals itself forms an
interval that the minimal block is always uniquely defined. Before we can proceed to the
main result, we make one further observation.

Lemma 4.1. Let π be any permutation and let i 6= j be any pair of positions in π. Then
if k, ` ∈ mb(π; i, j) with k 6= ` we have

mb(π; k, l) ⊆ mb(π; i, j).

Moreover, if both i and j separate k from ` by position, then mb(π; k, `) = mb(π; i, j).
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Proof. That mb(π; k, `) is contained in mb(π; i, j) is obvious. Now suppose i and j separate
k from ` by position, i.e. k ≤ i < j ≤ `. Then mb(π; k, `) is an interval of π involving both
π(i) and π(j). As mb(π; i, j) is minimal with this property, we have mb(π; i, j) ⊆ mb(π; k, `)
and so mb(π; i, j) = mb(π; k, `).

We are now ready to prove our main technical result of this section.

Lemma 4.2. Let Y be a permutation class, and let π ∈ Sn be any permutation. Then for
any pair i, j with 1 ≤ i < j ≤ n:

(i) If the permutation order isomorphic to mb(π; i, j) does not lie in Y , then π(i) and
π(j) lie in different Y -profile blocks.

(ii) Conversely, if π(ai) and π(aj) are the first symbols of two distinct left greedy Y -profile
blocks αi and αj respectively, then the permutation order isomorphic to mb(π; i, j)
does not lie in Y .

Proof. (i) By minimality and uniqueness of the minimal block, every block in π containing
both π(i) and π(j) must contain the minimal block mb(π; i, j). Hence every such block
does not lie in Y , so cannot be a Y -profile block.

(ii) Write π = πY [α1, α2, . . . , αk], and let the sequence π(a1), π(a2), . . . , π(ak) represent
the leading points in π of the left-greedy Y -profile blocks α1, α2, . . . , αk. Let αi and αj,
i < j, be a pair of Y -profile blocks. We prove the statement by induction on i.

When i = 1, the block α1 was picked maximally subject to α1 ∈ Y . For any j >
1, the minimal block mb(π; a1, aj) strictly contains α1 and then the maximality of α1 is
contradicted unless mb(π; a1, aj) /∈ Y .

Suppose now that i > 1, and that mb(π; a`, aj) /∈ Y for any ` < i and j > `. The
Y -profile block αi was picked maximally to avoid basis elements of Y , subject to starting
at symbol π(ai). Consider, for some j > i, the minimal block mb(π; ai, aj), necessarily
containing all of αi. If the leftmost point of mb(π; ai, aj) is π(ai), then since αi is the
maximal block lying in Y which starts at π(ai), we must have mb(π; ai, aj) /∈ Y . So now
suppose that mb(π; ai, aj) contains at least one symbol π(h) from π with h < ai. Let
the Y -profile block containing π(h) be α`; we claim that α` is completely contained in
mb(π; ai, aj). If not, then part of α` lies outside mb(π; ai, aj) in both position and value,
and so the part lying inside mb(π; ai, aj) itself forms an interval in either the top-left
or bottom-left corner of the minimal block, but yet it contains neither π(ai) nor π(aj),
contradicting the minimality of mb(π; ai, aj). In particular, the first symbol π(a`) of α` is
in mb(π; ai, aj), and by Lemma 4.1, we have mb(π; a`, aj) = mb(π; ai, aj). By the inductive
hypothesis mb(π; a`, aj) /∈ Y , and so mb(π; ai, aj) /∈ Y .

Using this result, we now know when two points of a permutation will lie in the same
Y -profile block, and, more importantly for what follows, we know that a basis element of
Y exists in the minimal block of the first symbols of any two Y -profile blocks. What we
do not yet know is how to find it; given such a minimal block, we need a method to search
through the block systematically and locate the points that form this basis element within
a bounded number of steps. This is the subject of the next section.
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Figure 3: A pin sequence.

5 Pin Sequences and the Wreath Product

Pin sequences were introduced by Brignall, Huczynska and Vatter [7] in the study of sim-
ple permutations. The idea there is that, since simple permutations have no non-trivial
intervals, if we begin with any two points we can use pin sequences to get to any chosen
edge of our simple permutation. Here we are not working solely with simple permutations,
and we cannot expect the same result to hold in the general case. However, we can obtain
the same result for the minimal block. We begin by reviewing some terminology from [7],
and to do this it is best to revert to viewing permutations as plots in the plane.

For points p1, p2, . . . , pm in the plane, let rect(p1, p2, . . . , pm) be the smallest axis-parallel
rectangle containing them. Note that this is different to the minimal block, as we do not
require that rect(p1, p2, . . . , pm) be an interval.

Let π be a permutation. A pin sequence is a sequence of points p1, p2, . . . of π which for
i ≥ 3 obey, when plotted in a plane, the following two conditions.

• pi /∈ rect(p1, p2, . . . , pi−1),

• pi slices rect(p1, p2, . . . , pi−1) either horizontally or vertically. That is pi lies between
two points of rect(p1, p2, . . . , pi−1) either by position or value.

For each pin pi, i ≥ 3, we also specify a direction, being left, right, up or down. For
example, a left pin is one that lies between two point of rect(p1, p2, . . . , pi−1) by value, but
whose position is smaller than any point of rect(p1, p2, . . . , pi−1). In Figure 3, p3, p5 and p6

are right pins, p4 is an up pin, p7 a down pin and p8 a left pin.
We create a proper pin sequence by adjoining two further conditions:

• Maximality : each pin must be taken maximally in its direction. For example, a proper
left pin out of rect(p1, p2, . . . , pi−1) must be the left pin slicing rect(p1, p2, . . . , pi−1)
with smallest position.

• Separation: in slicing rect(p1, p2, . . . , pi), pi+1 must lie between pi and rect(p1, p2, . . . , pi−1)
either by position or value.

For example, in Figure 3, p8 is a proper left pin as it slices p7 from rect(p1, p2, . . . , p6) and is
maximal in its direction. Similarly, p4 and p7 are proper pins, but p3, p5 and p6 are not, as
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p3 does not obeying maximality, p5 does not separate p4 from rect(p1, p2, p3), and p6 does
not separate p5 from rect(p1, p2, p3, p4).

In a proper pin sequence, the maximality and separation conditions force the pin pi+1

to have direction perpendicular to the direction of pi, so for example a left pin can only be
followed by an up pin or a down pin.

If a pin sequence p1, p2, . . . , pm of π is such that rect(p1, p2, . . . , pm) encloses all of π,
then we say that it is saturated. When we restrict to proper pin sequences this is likely to
be impossible to acheive, even in simple permutations. However a weaker condition does
hold. A pin sequence p1, p2, . . . , pm of π is said to be right-reaching if rect(p1, p2, . . . , pm)
encloses all of π:

Proposition 5.1 (Brignall, Huczynska, Vatter [7]). From any pair of points in a simple
permutation, there exists a proper right-reaching pin sequence.

Since we are not working solely with simple permutations, we need to modify this
proposition. Instead, we want the same to hold within a minimal block, defined as usual
by two points, which also form the first two points of our proper pin sequence. Here, right-
reaching means that the last pin is the right-most point of the minimal block, rather than
of the whole permutation. Hence:

Lemma 5.2. Let π ∈ Sn be any permutation, and let 1 ≤ i < j ≤ n. Then there exists a
proper pin sequence with starting points p1 = (i, pi) and p2 = (j, pj) which is right-reaching
in mb(π; i, j).

Proof. In the minimal block mb(π; i, j), there exists a saturated (non-proper) pin sequence
p1, p2, . . . starting from the pins p1 = (i, π(i)) and p2 = (j, π(j)). If there were no such
sequence, then some corner of the minimal block, not including either π(i) or π(j), would
form an interval by itself, contradicting the minimality of mb(π; i, j). Moreover, we may
assume, by removing unnecessary pins and relabelling, that every pin is maximal in its
direction.

The proof then follows the proof in [7] of Proposition 5.1. Since the pin sequence
is saturated, it includes the rightmost point of π. Label this point pi1 . Next, take the
smallest i2 < i1 such that p1, p2, . . . , pi2 , pi1 is a valid pin sequence, and observe that pi1

separates pi2 from rect(p1, p2, . . . , pi2−1), as p1, p2, . . . , pi2−1, pi1 is not a valid pin sequence.
Continue in this manner, finding pins pi3 , pi4 , . . . until we reach pim+1

= p2, and then
p1, p2, pim , pim−1

. . . , pi1 is a proper right-reaching pin sequence.

Proposition 5.1 is easily recovered from Lemma 5.2 by setting π to be a simple per-
mutation, and observing that all minimal blocks in a simple permutation are the whole
permutation.

We are now ready to prove our main result.

Theorem 5.3. Let Y = Av(B) be a finitely based permutation class not admitting arbitrar-
ily long pin sequences. Then X oY is finitely based for all finitely based classes X = Av(D).

Proof. Let b = maxβ∈B(|β|), d = maxδ∈D(|δ|), and π be any permutation in the basis of
X o Y . By Theorem 3.2, we have πY /∈ X, and so there exists some δ ∈ D such that
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δ ≤ πY . We will be done if we can identify a bounded subsequence of π order isomorphic
to a permutation ω, say, for which δ ≤ ωY , as then ωY /∈ X implies ω /∈ X o Y , and hence
ω = π.

First include in our subsequence of π the set of points order isomorphic to δ with
positions d1, d2, . . . , dk (k = |δ|), chosen so that each π(di) is the leftmost point of a distinct
left greedy Y -profile block, and the choice of blocks is also leftmost. For every pair di, di+1,
Lemma 4.2 tells us that the minimal block mb(π; di, di+1) involves some β ∈ B, and we
include one such occurrence of this β in our subsequence. Our aim now is to add a bounded
number of points so that β still lies in the minimal block of the permutation ω on the points
corresponding to π(di) and π(di+1), as then these two points are preserved distinctly in ωY .
We do this by taking a proper right-reaching and a proper left-reaching pin sequence of
mb(π; di, di+1) (which exist by Lemma 5.2), and including them in the subsequence. These
pin sequences are only guaranteed to be bounded when Y does not admit arbitrarily long
pin sequences, as then there exists a number N so that every pin sequence of length N + 2
involves some basis element of Y .

Thus ωY still involves a subsequence order isomorphic to δ, and |ω| ≤ d+(d−1)(2(N −
1) + b).

Brignall, Ruškuc and Vatter [9] proved that determining whether a finitely based class
does not admit arbitrarily long pin sequences is decidable, and therefore given any pattern
class we can tell whether Theorem 5.3 applies.

6 Infinitely Based Examples

For a class Y which admits infinite pin sequences, Theorem 5.3 gives us no information on
whether the basis of X o Y (here for a specified class X) is finite. However, the proof does
tell us what some of the basis elements look like, namely permutations built around a basis
element of X, and in the minimal block between each pair of these points, there is a basis
element of Y . Constructing arbitrarily long basis elements of this type is then achieved
by embedding arbitrarily long pin sequences in the minimal blocks. For example, the class
Av(321) admits the infinite pin sequence formed by alternating between up and right pins,
and so we have:

Theorem 6.1. Av(25134) o Av(321) is not finitely based.

Proof. We exhibit an antichain generated by repeatedly taking up and right pins lying in
the basis of Av(25134) o Av(321). The first few elements of the antichain are

β1 = 2, 5, 1, 3, 7, 6, 4

β2 = 2, 5, 1, 3, 7, 4, 9, 8, 6

βk = 2, 5, 1, 3, 7, 4 | 9, 6, 11, 8, . . . , 2k + 3, 2k | 2k + 5, 2k + 4, 2k + 2 (k ≥ 3).

Here, as in [3], the | symbol is used only to clarify the structure of the permutation. See
Figure 4 for an illustration of a typical member of this antichain. We observe:

(i) The set {βk | k ≥ 1} is an antichain.
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Figure 4: The element β5 in the basis of Av(25134) o Av(321).

(ii) The only occurrence of 321 in each βk is 2k + 5, 2k + 4, 2k + 2.

(iii) The only occurrence of 25134 in each βk is 2, 5, 1, 3, ·, 4.

(iv) Each βk is neither sum nor skew decomposable.

(v) The Av(321)-profile of βk is 2, 5, 1, 3, 7, 4, . . . , 2k + 3, 2k, 2k + 4, 2k + 2 (the only

nontrivial deflation occurs between 2k+5 and 2k+4). In particular, 25134 ≺ β
Av(321)
k

for all k, hence by Theorem 3.2 βk /∈ Av(25134) o Av(321).

It only remains to show that βk is minimally not in Av(25134) o Av(321). Consider the
effect of removing any symbol j. If j = 2k + 5, 2k + 4 or 2k + 2 then by (ii) this no longer
involves 321 so βk − j ∈ Av(321) ⊂ Av(25134) o Av(321). Similarly, if j = 2, 5, 1, 3 or 4
then by (iii) βk − j no longer involves 25134 so βk − j ∈ Av(25134) ⊂ Av(25134) oAv(321).

For any other j, βk − j is sum decomposable. Under the Av(321)-profile, the first
(lower) component deflates to a single point, and hence (βk − j)Av(321) ∈ Av(25134). Thus
βk − j ∈ Av(25134) o Av(321), completing the proof.

Note that in the above example, the class X = Av(25134) was specifically chosen so
that the basis element 25134 is not contained in the repeated pin sequence used to build
the antichain, but it does lie in the class Y . This ensures that 25134 acts as an “anchor”
at the base of the antichain, but yet the only instance of the basis element 321 is in the
upper “anchor”.

As a result, for any class Y which contains both the infinite pin sequence formed by
alternating between up and right pins, and the permutation 25134, the wreath product
Av(25134) o Y will always contain an infinite antichain similar to the one above.

Example 6.2. (i) The classes Y = Av(321, 2341) and Y = Av(321, 3412) both avoid
the permutation 321 and so the antichain in the proof of Theorem 6.1 lies in the basis
of Av(25134) o Y in both cases.

(ii) All of the classes Y = Av(α, β) with (α, β) being (4321, 4312), (4321, 4231), (4321, 4213),

11



Figure 5: The element β5 in the basis of Av(25143) o Av(4321, 4123).

(4321, 3412) and (4321, 3214) avoid 4321, and so the antichain with terms

β1 = 2, 5, 1, 3, 8, 7, 6, 4

β2 = 2, 5, 1, 3, 7, 4, 10, 9, 8, 6

βk = 2, 5, 1, 3, 7, 4 | 9, 6, 11, 8, . . . , 2k + 3, 2k | 2k + 6, 2k + 5, 2k + 4, 2k + 2 (k ≥ 3)

lies in the basis of Av(25134) o Y in each case.

(iii) The classes Y = Av(4312, 4231), Y = Av(4312, 4213) and Y = Av(4312, 3421) all
avoid 4312, so reversing the final two points of each βk in case (ii) gives the required
antichain.

Example 6.3. The two classes Y = Av(4321, 4123) and Y = Av(4312, 4123) both admit
the pin sequence formed by repeatedly taking up and right pins, but do not contain the
permutation 25134, because of the basis element 4123. However, the class X = Av(25143)
may be used instead. In the first case, the antichain is (see Figure 5 for an illustration):

β1 = 2, 5, 1, 4, 8, 7, 6, 3

β2 = 2, 5, 1, 4, 7, 3, 10, 9, 8, 6

βk = 2, 5, 1, 4, 7, 3 | 9, 6, 11, 8, . . . , 2k + 3, 2k | 2k + 6, 2k + 5, 2k + 4, 2k + 2 (k ≥ 3).

All the examples so far have admitted the same “up-right” pin sequence. Another
commonly found infinite pin sequence is formed by repeating the pattern left, down, right,
up∗, and there are two classes of the form Y = Av(α, β) with |α| = |β| = 4 which admit
this sequence: Y = Av(3412, 2413) and Y = Av(3412, 2143). Each one must be handled
separately.

Example 6.4. (i) Y = Av(3412, 2413) may be paired with X = Av(31542) to produce
the antichain with terms

β1 = 8, 1, 6, 4, 9, 7, 5, 2, 3

βk = 4k + 4, 1, 4k + 2, 4, 4k, 6, . . . 2k + 6, 2k |

2k + 4, 2k + 2, 2k + 7, 2k + 5, 2k + 3 |

2k + 9, 2k + 1, . . . , 4k + 5, 5 | 2, 3 (k ≥ 2).

∗This repeating pattern is the foundation for the “Widdershins” antichain of [11].
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Figure 6: The basis element β3 in Av(31542) o Av(3412, 2413).

See Figure 6 for an illustration. Note that the occurrence of 3412 in any βk is not
unique, but every occurrence requires the final two symbols 2, 3 of βk, and so these
points still behave in the same way as in previous examples.

(ii) Y = Av(3412, 2143) may be paired with X = Av(412563) to produce the antichain
with terms:

β1 = 10, 1, 8, 4, 6, 9, 11, 7, 5, 2, 3

βk = 4k + 6, 1, 4k + 4, 4, 4k + 2, 6, . . . , 2k + 8, 2k |

2k + 6, 2k + 2, 2k + 4, 2k + 7, 2k + 9, 2k + 5, 2k + 3 |

2k + 11, 2k + 1, . . . , 4k + 7, 5 | 2, 3 (k ≥ 2).

7 Concluding Remarks

The above examples suggest, to some extent, a general method for finding infinite bases.
However, these examples rely on just one method for constructing antichains, and there
is no reason why this method should always work‡. Moreover, within this construction,
finding a suitable class X for a given class Y is very specific in each case.

In fact, it is unlikely that we can always find such a class X. For example, the
class of all subpermutations of the increasing oscillating sequence, 416385 · · · , is given
by Av(321, 2341, 3412, 4123) [9], and admits the infinite proper pin sequence alternating
between an up pin and a right pin. However, there are no other permutations in this class
which can be used to anchor an infinite antichain based around this pin sequence, so the
method described hitherto does not work here. We therefore pose the following question.

Question 7.1. Is there a finitely based class X for which X o Av(321, 2341, 3412, 4123) is
not finitely based?

‡A somewhat different construction was used by Atkinson and Stitt [4] to demonstrate an infinite
antichain in the basis of Av(21) o Av(321654), relying on the sum decomposability of the basis element
321654.

13



Acknowledgements. The author wishes to thank Nik Ruškuc and Vince Vatter for their
invaluable comments.

References

[1] M. H. Albert and M. D. Atkinson. Simple permutations and pattern restricted per-
mutations. Discrete Math., 300(1-3):1–15, 2005.

[2] M. D. Atkinson. Restricted permutations. Discrete Math., 195(1-3):27–38, 1999.

[3] M. D. Atkinson, M. M. Murphy, and N. Ruškuc. Partially well-ordered closed sets of
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