Pancakes and superpermutations

An invitation to permutation patterns

Robert Brignall
M500 Revision Weekend, Kent's Hill
11th May 2024

The pancake sorting problem

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different sizes. Therefore, when I deliver them to a customer, on the way to the table I rearrange them (so that the smallest winds up on top, and so on, down to the largest at the bottom) by grabbing several from the top and flipping them over, repeating this (varying the number I flip) as many times as necessary.

If there are n pancakes, what is the maximum number of flips (in terms of n) that I will ever have to use to rearrange them?

Jacob E. Goodman (a.k.a. Harry Dweighter), 1975

$$
n=4 \quad \text { \#flips }=0
$$

$$
n=4 \quad \text { \#flips }=0
$$

$$
n=4 \quad \text { \#flips }=1
$$

$$
n=4 \quad \text { \#flips }=1
$$

$$
n=4 \quad \text { \#flips }=1
$$

$$
n=4 \quad \text { \#flips }=2
$$

$$
n=4 \quad \text { \#flips }=2
$$

$$
n=4 \quad \text { \#flips }=2
$$

$$
n=4 \quad \text { \#flips }=3
$$

$$
n=4 \quad \text { \#flips }=3
$$

$$
n=4 \quad \text { \#flips }=3
$$

$$
n=4 \quad \text { \#flips }=4
$$

$$
n=4 \quad \text { \#flips }=4
$$

Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).

Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).

Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).

Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).

Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).

Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).

Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).

Reading from top to bottom: 25314 is a permutation.

Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).

Reading from top to bottom: 25314 is a permutation.
A sorted pancake stack would be 12345 .

Obligatory maths slide

For us, a permutation of length n is the symbols $1,2, \ldots, n$ in some order. Example: $\pi=314592687$

Obligatory maths slide

For us, a permutation of length n is the symbols $1,2, \ldots, n$ in some order. Example: $\pi=314592687$

There are $n!=n(n-1)(n-2) \cdots 1$ permutations of length n.
12, 21
$123,132,213,231,312,321$
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
$3124,3142,3214,3241,3412,3421,4123,4132,4213,4231,4312,4321$

Obligatory maths slide

For us, a permutation of length n is the symbols $1,2, \ldots, n$ in some order. Example: $\pi=314592687$

There are $n!=n(n-1)(n-2) \cdots 1$ permutations of length n.
12, 21
$123,132,213,231,312,321$
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321
The pancake flip operation is a prefix reversal:

$$
\begin{array}{llllll}
2 & 5 & 3 & 6 & 1 & 4
\end{array}
$$

Obligatory maths slide

For us, a permutation of length n is the symbols $1,2, \ldots, n$ in some order. Example: $\pi=314592687$

There are $n!=n(n-1)(n-2) \cdots 1$ permutations of length n.
12, 21
$123,132,213,231,312,321$
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
$3124,3142,3214,3241,3412,3421,4123,4132,4213,4231,4312,4321$
The pancake flip operation is a prefix reversal:

$$
\begin{array}{llllll}
2 & 5 & 3 & 6 & 1 & 4
\end{array}
$$

Obligatory maths slide

For us, a permutation of length n is the symbols $1,2, \ldots, n$ in some order. Example: $\pi=314592687$

There are $n!=n(n-1)(n-2) \cdots 1$ permutations of length n.
12, 21
$123,132,213,231,312,321$
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321
The pancake flip operation is a prefix reversal:

$$
\begin{array}{llllll}
5 & 2 & 3 & 6 & 1 & 4
\end{array}
$$

Obligatory maths slide

For us, a permutation of length n is the symbols $1,2, \ldots, n$ in some order. Example: $\pi=314592687$

There are $n!=n(n-1)(n-2) \cdots 1$ permutations of length n.
12, 21
$123,132,213,231,312,321$
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321
The pancake flip operation is a prefix reversal:

$$
\begin{array}{llllll}
5 & 2 & 3 & 6 & 1 & 4
\end{array}
$$

Obligatory maths slide

For us, a permutation of length n is the symbols $1,2, \ldots, n$ in some order. Example: $\pi=314592687$

There are $n!=n(n-1)(n-2) \cdots 1$ permutations of length n.
12, 21
$123,132,213,231,312,321$
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321
The pancake flip operation is a prefix reversal:

$$
\begin{array}{llllll}
5 & 2 & 3 & 6 & 1 & 4
\end{array}
$$

Obligatory maths slide

For us, a permutation of length n is the symbols $1,2, \ldots, n$ in some order. Example: $\pi=314592687$

There are $n!=n(n-1)(n-2) \cdots 1$ permutations of length n.
12, 21
$123,132,213,231,312,321$
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321
The pancake flip operation is a prefix reversal:

$$
\begin{array}{llllll}
6 & 3 & 2 & 5 & 1 & 4
\end{array}
$$

Obligatory maths slide

For us, a permutation of length n is the symbols $1,2, \ldots, n$ in some order. Example: $\pi=314592687$

There are $n!=n(n-1)(n-2) \cdots 1$ permutations of length n.
12, 21
$123,132,213,231,312,321$
1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321
The pancake flip operation is a prefix reversal:

$$
\begin{array}{llllll}
6 & 3 & 2 & 5 & 1 & 4
\end{array}
$$

The pancake sorting problem

If there are n pancakes, what is the maximum number of flips (in terms of n) that I will ever have to use to rearrange them?

$$
\text { Jacob E. Goodman (a.k.a. Harry Dweighter), } 1975
$$

Let $f(\pi)$ denote the number of flips needed to turn a permutation (or pancake) π into $12 \cdots n$.

The pancake sorting problem

If there are n pancakes, what is the maximum number of flips (in terms of n) that I will ever have to use to rearrange them?

Jacob E. Goodman (a.k.a. Harry Dweighter), 1975

Let $f(\pi)$ denote the number of flips needed to turn a permutation (or pancake) π into $12 \cdots n$.

Let f_{n} denote the worst case for length n. That is,

$$
f_{n}=\max _{\substack{\pi \text { of } \\ \text { length } n}} f(\pi) .
$$

Small n :

$$
\begin{array}{ll}
f_{1}=0 & \text { (no flips needed!) } \\
f_{2}=1 & (21 \rightarrow 12) \\
f_{3}=3 & (132 \rightarrow 312 \rightarrow 213 \rightarrow 123) \\
f_{4}=4 & (3142 \rightarrow 4132 \rightarrow 2314 \rightarrow 3214 \rightarrow 1234)
\end{array}
$$

Bounding f_{n}

We want:

$$
L_{n} \leqslant f_{n} \leqslant U_{n}
$$

where
U_{n} is an upper bound: need algorithm to sort any length n permutation in $\leqslant U_{n}$ flips.
L_{n} is a lower bound: need a length n permutation requiring L_{n} flips.

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Upper bound: A simple algorithm

1. Find the biggest pancake that's in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Worst case: Every pancake is in the wrong position. 2 flips to fix, so

$$
U_{n} \leqslant 2 n-3 .
$$

A better upper bound

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU* \dagger

Department of Electrical Engineering, University of Califomia, Berkeley, CA 94720, U.S.A.
Received 18 January 1978
Revised 28 August 1978
For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let $f(n)$ be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_{n}. We show that $f(n) \leq(5 n+5) / 3$, and that $f(n) \geq 17 n / 16$ for \boldsymbol{n} a multiple of 16 . If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function $g(n)$ is shown to obey $3 n^{\prime} 2-1 \leqslant g(n) \leqslant 2 n+3$.

$$
\text { So } U_{n} \leqslant \frac{5 n+5}{3} \approx 1.6667 n .
$$

A better better upper bound

An (18/11) n upper bound for sorting by prefix reversals

B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.O. Shields, I.H. Sudborough*, W. Voit

Computer Science Department, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080, United States

ARTICLE INFO

Keywords:

Pancake problem
Pancake network
Sorting by prefix reversals
Permutations
Upper bounds

ABSTRACT

The pancake problem asks for the minimum number of prefix reversals sufficient for sorting any permutation of length n. We improve the upper bound for the pancake problem to $(18 / 11) n+O(1) \approx(1.6363) n$.
© 2008 Elsevier B.V. All rights reserved.

$$
\text { So } U_{n} \leqslant \frac{18 n}{11}+\text { a bit } \approx 1.6363 n
$$

What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.

What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.
In a permutation: two consecutive entries of the form $i, i+1$ or $i+1, i$.

Example:

$$
\pi=314592687
$$

What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.
In a permutation: two consecutive entries of the form $i, i+1$ or $i+1, i$.

Example:

$$
\pi=314592687
$$

The sorted permutation $12 \cdots n$ has $n-1$ adjacencies.

What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.
In a permutation: two consecutive entries of the form $i, i+1$ or $i+1, i$.

Example:

$$
\pi=314592687
$$

The sorted permutation $12 \cdots n$ has $n-1$ adjacencies.

Each flip increases \#adjacencies by $\leqslant 1$.

What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.
In a permutation: two consecutive entries of the form $i, i+1$ or $i+1, i$.
Example:

$$
\pi=314592687
$$

The sorted permutation $12 \cdots n$ has $n-1$ adjacencies.
Each flip increases \#adjacencies by $\leqslant 1$.
So any permutation with zero adjacencies will need at least $n-1$ flips.

$$
L_{n} \geqslant n-1 .
$$

Example: $\pi=246 \cdots n 135 \cdots n-1 \quad$ (n even)

A better lower bound

Similar (but more complicated) ideas gives:

$$
L_{n} \geqslant \frac{15 n}{14} \approx 1.0714 n
$$

for $n \geqslant 6$.

State-of-the-art

If there are n pancakes, what is the maximum number f_{n} of flips (in terms of n) that I will ever have to use to rearrange them?

$$
\text { Jacob E. Goodman (a.k.a. Harry Dweighter), } 1975
$$

For $n \geqslant 6$:

$$
1.0714 n \leqslant f_{n} \leqslant 1.6363 n
$$

State-of-the-art

If there are n pancakes, what is the maximum number f_{n} of flips (in terms of n) that I will ever have to use to rearrange them?

Jacob E. Goodman (a.k.a. Harry Dweighter), 1975
For $n \geqslant 6$:

$$
1.0714 n \leqslant f_{n} \leqslant 1.6363 n
$$

For small n (by computer search):

$$
\begin{array}{c|cccccccccccccccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline f_{n} & 0 & 1 & 3 & 4 & 5 & 7 & 8 & 9 & 10 & 11 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline 22
\end{array}
$$

Applications: genomics

Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals

SRIDHAR HANNENHALLI
Bioinformatics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania

AND

PAVEL A. PEVZNER

University of Southern California, Los Angeles, California

Abstract

Genomes frequently evolve by reversals $\rho(i, j)$ that transform a gene order $\pi_{1} \ldots$ $\pi_{i} \pi_{i+1} \cdots \pi_{j-1} \pi_{j} \cdots \pi_{n}$ into $\pi_{1} \cdots \pi_{i} \pi_{j-1} \cdots \pi_{i+1} \pi_{j} \cdots \pi_{n}$. Reversal distance between permutations π and σ is the minimum number of reversals to transform π into σ. Analysis of genome rearrangements in molecular biology started in the late 1930's, when Dobzhansky and Sturtevant published a milestone paper presenting a rearrangement scenario with 17 inversions between the species of Drosophila. Analysis of genomes evolving by inversions leads to a combinatorial problem of sorting by reversals studied in detail recently. We study sorting of signed permutations by reversals, a problem that adequately models rearrangements in small genomes like chloroplast or mitochondrial DNA. The previously suggested approximation algorithms for sorting signed permutations by reversals compute the reversal distance between permutations with an astonishing accuracy for both simulated and biological data. We prove a duality theorem explaining this intriguing performance and show that there exists a "hidden" parameter that allows one to compute the reversal distance between signed permutations in polynomial time.

On the problem of sorting burnt pancakes

David S. Cohen*, ${ }^{*}$, Manuel Blum ${ }^{2}$
Computer Science Division, University of California, Berkeley, CA 94720, USA

Received 30 June 1992; revised 5 October 1993

Abstract

number of flips required in the worst case to sort a stack of n pancakes. Equivalently, we seek bounds on the number of prefix reversals necessary to sort a list of n elements. Bounds of $17 n / 16$ and $(5 n+5) / 3$ were shown by Gates and Papadimitriou in 1979. In this paper, we consider a traditional variation of the problem in which the pancakes are two sided (one side is "burnt"), and must be sorted to the size-ordered configuration in which every pancake has its burnt side down. Let $g(n)$ be the number of flips required to sort n "burnt pancakes". We find that $3 n / 2 \leqslant g(n) \leqslant 2 n-2$, where the upper bound holds for $n \geqslant 10$. We consider the conjecture that the most difficult case for sorting n burnt pancakes is $-I_{n}$, the configuration having the pancakes in proper size order, but in which each individual pancake is upside down. We present an algorithm for sorting $-I_{n}$ in $23 n / 14+c$ flips, where c is a small constant, thereby establishing a bound of $g(n) \leqslant 23 n / 14+c$ under the conjecture. Furthermore, the longstanding upper bound of $f(n)$ is also improved to $23 n / 14+c$ under the conjecture.

Superpermutations

Meet Haruhi Suzumiya

The Haruhi problem

What is the least number of Haruhi episodes that you would have to watch in order to see the original 14 episodes in every order possible?

The generalised Haruhi problem

What is the least number of Haruhi episodes that you would have to watch in order to see n distinct episodes in every order possible?

The Haruhi problem

What is the least number of Haruhi episodes that you would have to watch in order to see the original 14 episodes in every order possible?

In maths terms, we want to find the shortest superpermutation for each n.

Example: $n=3$

Watch episodes 1, 2 and 3 in these orders:
$\begin{array}{llllll}123 & 132 & 213 & 231 & 312 & 321\end{array}$

Example: $n=3$

Watch episodes 1, 2 and 3 in these orders:

$$
\begin{array}{llllll}
123 & 132 & 213 & 231 & 312 & 321
\end{array}
$$

The following sequence of length 9 contains all 6 of these:

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 1 & 2 & 1 & 3 & 2 & 1
\end{array}
$$

Example: $n=3$

Watch episodes 1, 2 and 3 in these orders:

$\begin{array}{llllll}123 & 132 & 213 & 231 & 312 & 321\end{array}$

The following sequence of length 9 contains all 6 of these:

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 1 & 2 & 1 & 3 & 2 & 1
\end{array}
$$

Example: $n=3$

Watch episodes 1, 2 and 3 in these orders:

$\begin{array}{llllll}123 & 132 & 213 & 231 & 312 & 321\end{array}$

The following sequence of length 9 contains all 6 of these:

$$
1 \begin{array}{llllllll}
1 & 3 & 1 & 2 & 1 & 3 & 2 & 1
\end{array}
$$

Example: $n=3$

Watch episodes 1, 2 and 3 in these orders:

$\begin{array}{llllll}123 & 132 & 213 & 231 & 312 & 321\end{array}$

The following sequence of length 9 contains all 6 of these:

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 1 & 2 & 1 & 3 & 2 & 1
\end{array}
$$

Example: $n=3$

Watch episodes 1, 2 and 3 in these orders:

$\begin{array}{llllll}123 & 132 & 213 & 231 & 312 & 321\end{array}$

The following sequence of length 9 contains all 6 of these:

$$
\begin{array}{llllllll}
1 & 2 & 3 & \underbrace{1}_{1} & 2 & 1 & 3 & 2
\end{array} 1
$$

Example: $n=3$

Watch episodes 1, 2 and 3 in these orders:

$\begin{array}{llllll}123 & 132 & 213 & 231 & 312 & 321\end{array}$

The following sequence of length 9 contains all 6 of these:

$$
\begin{array}{llllllll}
1 & 2 & 3 & 1 & \begin{array}{llllll}
2 & 1 & 3 & 2 & 1
\end{array} \\
\hline
\end{array}
$$

Example: $n=3$

Watch episodes 1, 2 and 3 in these orders:

The following sequence of length 9 contains all 6 of these:

$$
\begin{array}{llllllll}
1 & 2 & 3 & 1 & 2 & \left.\begin{array}{llll}
1 & 3 & 2 & 1
\end{array}\right)
\end{array}
$$

Example: $n=3$

Watch episodes 1, 2 and 3 in these orders:

The following sequence of length 9 contains all 6 of these:

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 1 & 2 & 1 & 3 & 2 & 1
\end{array}
$$

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

$$
\begin{array}{llllllll}
1234 & 1243 & 1324 & 1342 & 1423 & 1432 & 2134 & 2143 \\
2314 & 2341 & 2413 & 2431 & 3124 & 3142 & 3214 & 3241 \\
3412 & 3421 & 4123 & 4132 & 4213 & 4231 & 4312 & 4321
\end{array}
$$

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

$$
\begin{array}{llllllll}
1234 & 1243 & 1324 & 1342 & 1423 & 1432 & 2134 & 2143 \\
2314 & 2341 & 2413 & 2431 & 3124 & 3142 & 3214 & 3241 \\
3412 & 3421 & 4123 & 4132 & 4213 & 4231 & 4312 & 4321
\end{array}
$$

The following sequence of length 33 contains all 24 of these:

$$
123412314231243121342132413214321
$$

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

$$
\begin{array}{llllllll}
1234 & 1243 & 1324 & 1342 & 1423 & 1432 & 2134 & 2143 \\
2314 & 2341 & 2413 & 2431 & 3124 & 3142 & 3214 & 3241 \\
3412 & 3421 & 4123 & 4132 & 4213 & 4231 & 4312 & 4321
\end{array}
$$

The following sequence of length 33 contains all 24 of these:

$$
1234123142312431213442132413314321
$$

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

1234	1243	1324	1342	1423	1432	2134	2143
2314	2341	2413	2431	3124	3142	3214	3241
3412	3421	4123	4132	4213	4231	4312	4321

The following sequence of length 33 contains all 24 of these:

$$
1 £ 241,2314231243121342132413214321
$$

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

1234	1243	1324	1342	1423	1432	2134	2143
2314	2341	2413	2431	3124	3142	3214	3241
3412	3421	4123	4132	4213	4231	4312	4321

The following sequence of length 33 contains all 24 of these:

$$
123412314231243121342132413214321
$$

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

1234	1243	1324	1342	1423	1432	2134	2143
2314	2341	2413	2431	3124	3142	3214	3241
3412	3421	4123	4132	4213	4231	4312	4321

The following sequence of length 33 contains all 24 of these:
123412314231243121342132413214321

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

1234	1243	1324	1342	1423	1432	2134	2143
2314	2341	2413	2431	3124	3142	3214	3241
3412	3421	4123	4132	4213	4231	4312	4321

The following sequence of length 33 contains all 24 of these:

$$
1234 \underbrace{1231} 4231243121342132413214321
$$

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

1234	1243	1324	1342	1423	1432	2134	2143
2314	2341	2413	2431	3124	3142	3214	3241
3412	3421	4123	4132	4213	4231	4312	4321

The following sequence of length 33 contains all 24 of these:
$12341 \underbrace{2314} 231243121342132413214321$

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

1234	1243	1324	1342	1423	1432	2134	2143
2314	2341	2413	2431	3124	3142	3214	3241
3412	3421	4123	4132	4213	4231	4312	4321

The following sequence of length 33 contains all 24 of these:
$123412 \underbrace{3142} 31243121342132413214321$

Example: $n=4$

Watch episodes 1, 2, 3 and 4 in these orders:

1234	1243	1324	1342	1423	1432	2134	2143
2314	2341	2413	2431	3124	3142	3214	3241
3412	3421	4123	4132	4213	4231	4312	4321

The following sequence of length 33 contains all 24 of these:
123412314231243121342132413214321

Shortest superpermutations

For $n=1,2,3,4,5$, the shortest superpermutations have lengths

$$
1,3,9,33,153 .
$$

For $n=6$, the shortest known has length 872 . Best lower bound is 867 .

Shortest superpermutations

For $n=1,2,3,4,5$, the shortest superpermutations have lengths

$$
1,3,9,33,153 .
$$

For $n=6$, the shortest known has length 872 . Best lower bound is 867 .
For $n=7$, the shortest known has length 5906. Best lower bound is 5884 .

Shortest superpermutations

For $n=1,2,3,4,5$, the shortest superpermutations have lengths

$$
1,3,9,33,153 .
$$

For $n=6$, the shortest known has length 872 . Best lower bound is 867 .
For $n=7$, the shortest known has length 5906. Best lower bound is 5884 .
For $n=14$, it's between 93884313611 and 93924230411 .

Upper bounds (via explicit construction)

Best upper bound ($n \geqslant 7$):

$$
n!+(n-1)!+(n-2)!+(n-3)!+n-3 .
$$$\downarrow$ (a) :

Superpermutations

by Greg Egan

> ERMUTATUIOSNPSERP RMUTATUIOSNPSERPE MUTATUIOSNPSERPER UTATUIOSNPSERPERM TATUIOSNPSERPERMU ATUIOSNPSERPERMUT TUIOSNPSERPERMUTA

Very soon after Chaffin's result, Robin Houston announced ${ }^{[4]}$ the discovery of a superpermutation for $n=6$ with only 872 characters, one less than $L(6)=873$. He found this by treating the construction of superpermutations as an example of the Travelling Salesman Problem, and using algorithms designed to generate solutions to that problem. So the original minimal superpermutation conjecture was proved false!

By applying the usual recursion to Houston's shorter $n=6$ superpermutations. it becomes possible to generate superpermutations for any greater value of n that are also one character shorter than $L(n)$.

However, it turns out that for $n \geq 7$, there is a way to do even better. By adapting a construction devised by Aaron Williams ${ }^{[5]}$ in 2013 , it's possible to generate superpermutations of length:

$$
L_{2}(n)=n!+(n-1)!+(n-2)!+(n-3)!+n-3
$$

$n=7$ record published by \ldots piano?

$$
\begin{aligned}
& \equiv \text { YouTube }{ }^{\text {©B }} \\
& 9 \\
& \text { (a) }
\end{aligned}
$$

The full performance of 5906 (a superpermutation on $n=7$) by Greg Egan

Matt_Parker_2
144 K subscribers

B 379
\Rightarrow Share

12K views 5 years ago
This is it. The whole thing.

Lower bounds

Easy lower bound:

$$
n!+(n-1)
$$

Proof: There are n ! permutations of length n. Each must start at a different position in the superpermutation, so that's $n!$ symbols.
After the last permutation starts, there must be $n-1$ more symbols to complete this final permutation.

Lower bounds

Easy lower bound:

$$
n!+(n-1)
$$

Proof: There are n ! permutations of length n. Each must start at a different position in the superpermutation, so that's $n!$ symbols.
After the last permutation starts, there must be $n-1$ more symbols to complete this final permutation.

Now things get a little weird...

On an anime fan website far far away...

Lower bounds Anonymous Sat, Sep 17, 2011 03:35:54 No. 3751197

Quoted by: $\gg 3751366 \gg 3751370 \gg 3752047 _2 \gg 3752047 _25 \gg 3752047 _43 \gg 3752047 _64 \gg 3752047 _69 \gg 3752047 _74 \gg 3752047 _78$ $\gg 3752047 _1351 \gg 3752047 _1362 \gg 3752047 _1503 \gg 3752047 _3067 \gg 3752047 _3804 \gg 3752047 _3827$

I think I have a proof of the lower bound $n!+(n-1)!+(n-2)!+n-3$ (for n \geq 2[/spoiler]). I'll need to do this in multiple posts. Please look it over for any loopholes I might have missed.

As in other posts, let n (lowercase) $=$ the number of symbols; there are n ! permutations to iterate through.
The obvious lower bound is $n!+n-1$. We can obtain this as follows:

Let

$\mathrm{L}=$ the running length of the string
N_0[/spoiler] = the number of permutations visited
X_0 = L - N_0[/spoiler]
When you write down the first permutation, X_0[/spoiler] is already n-1. For each new permutation you visit, the length of the string must increase by at least 1 . So X_0[/spoiler] can never decrease. At the end, \mathrm{N} _0=\mathrm{n}!/ /$ spoiler], giving us L |geq $\mathrm{n}!+\mathrm{n}$-1 [/spoiler].

I'll use similar methods to go further, but first I'll need to explain my terminology...

A lower bound on the length of the shortest superpattern

Anonymous 4chan Poster, Robin Houston, Jay Pantone, and Vince Vatter

October 25, 2018

This proof is inspired by that posted anonymously at

```
http://mathsci.wikia.com/wiki/The_Haruhi_Problem
```

which itself was taken from a 4chan discussion archived at

```
https://warosu.org/sci/thread/S3751105#p3751197
```


Theorem (anonymous)

Every superpermutation for the permutations of length n has length at least

$$
n!+(n-1)!+(n-2)!+n-3
$$

Summary: state-of-the-art superpermutations

For $n=6$ the shortest superpermutation has length between 867 and 872 . (Aside: Over 100M CPU hours did not yield a better construction.)

For $n \geqslant 7$, the shortest superpermutation has length between

$$
n!+(n-1)!+(n-2)!+n-3
$$

and

$$
n!+(n-1)!+(n-2)!+(n-3)!+n-3
$$

Thanks!

