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The pancake sorting problem

The chef in our place is sloppy, and when he prepares a stack of pancakes they
come out all different sizes. Therefore, when I deliver them to a customer, on
the way to the table I rearrange them (so that the smallest winds up on top,
and so on, down to the largest at the bottom) by grabbing several from the top
and flipping them over, repeating this (varying the number I flip) as many
times as necessary.

If there are n pancakes, what is the maximum number of flips (in terms of n)
that I will ever have to use to rearrange them?

Jacob E. Goodman (a.k.a. Harry Dweighter), 1975
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Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).
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Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).
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Reading from top to bottom: 253 14 is a permutation.



Pancakes and permutations

Number the pancakes 1 (smallest) to n (biggest).

R 2
L —— >
N
— 1
——

Reading from top to bottom: 253 14 is a permutation.

A sorted pancake stack would be 12345.



Obligatory maths slide

For us, a permutation of length # is the symbols 1,2, ..., 7 in some order.
Example: 1=314592687
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For us, a permutation of length # is the symbols 1,2, ..., 7 in some order.
Example: 1=314592687

There are n! = n(n — 1)(n —2) - - - 1 permutations of length n. 1
12, 21

123, 132, 213, 231, 312, 321

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321
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Obligatory maths slide

For us, a permutation of length # is the symbols 1,2, ..., 7 in some order.
Example: 1=314592687

There are n! = n(n — 1)(n —2) - - - 1 permutations of length n. 1
12, 21
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The pancake flip operation is a prefix reversal:
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Obligatory maths slide

For us, a permutation of length # is the symbols 1,2, ..., 7 in some order.
Example: 1=314592687

There are n! = n(n — 1)(n —2) - - - 1 permutations of length n. 1
12, 21
123, 132, 213, 231, 312, 321
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Obligatory maths slide

For us, a permutation of length # is the symbols 1,2, ..., 7 in some order.
Example: 1=314592687

There are n! = n(n — 1)(n —2) - - - 1 permutations of length n. 1
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Obligatory maths slide

For us, a permutation of length # is the symbols 1,2, ..., 7 in some order.
Example: 1=314592687

There are n! = n(n — 1)(n —2) - - - 1 permutations of length n. 1
12, 21
123, 132, 213, 231, 312, 321

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431
3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321

The pancake flip operation is a prefix reversal:

6 32514



The pancake sorting problem

If there are n pancakes, what is the maximum number of flips (in terms of n)
that I will ever have to use to rearrange them?

Jacob E. Goodman (a.k.a. Harry Dweighter), 1975

Let f(7t) denote the number of flips needed to turn a permutation (or pancake)
minto 12---n.



The pancake sorting problem

If there are n pancakes, what is the maximum number of flips (in terms of n)
that I will ever have to use to rearrange them?

Jacob E. Goodman (a.k.a. Harry Dweighter), 1975

Let f(7t) denote the number of flips needed to turn a permutation (or pancake)
minto 12---n.

Let f,, denote the worst case for length n. That is,

fn = max f(T[)
7t of
length n

Small n:

fi =0 (no flips needed!)

HL=1 (@21—=12)

=3 (132 — 312 — 213 = 123)

Ja=4 (3142 — 4132 — 2314 — 3214 — 1234)



Bounding f,,

We want:
where

U, is an upper bound: need algorithm to sort
any length n permutation in < U, flips.

L, is a lower bound: need a length n permutation
requiring L, flips.



Upper bound: A simple algorithm

1. Find the biggest pancake that’s in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:
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Upper bound: A simple algorithm

1. Find the biggest pancake that’s in the wrong place.
2. Flip this biggest pancake to the top.
3. Now flip it into the correct position.

Example:

Worst case: Every pancake is in the wrong position. 2 flips to fix, so

U, <2n-—3.



A better upper bound

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*t
Department of Electrical Engineering, University of California, Berkeley, CA 94720, US.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o")
for all & in (the symmetric group) S,.. We show that f(n)=(Sn+5)/3, and that f(n)=17n/16 for
na mu]nple of 16. If, furthermore, each integer is required to participate in an even number of

p the corresponding function g(n) is shown to obey 3r'2—1<g(n)<2n+3.

So U, < ? ~ 1.6667n.



A better better upper bound

An (18/11)n upper bound for sorting by prefix reversals
B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.0. Shields, L.H. Sudborough *, W. Voit

‘Computer Science Department, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX 75080, United States

ARTICLE INFO ABSTRACT

Keywords: The pancake problem asks for the minimum number of prefix reversals sufficient for sorting
pancake problem any permutation of length . We improve the upper bound for the pancake problem to
S::ci:geb';p::%; reversals (18/1n+0(1) ~ (1.6363)n.

e © 2008 Elsevier BV. All rights reserved.
Upper bounds

18
So U, < 1—1" 1 abit ~ 1.6363n.



What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.



What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.
In a permutation: two consecutive entries of the form i,i + 1 ori+ 1,1i.

Example:
m=314592687
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What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.
In a permutation: two consecutive entries of the form i,i + 1 ori+ 1,1i.

Example:
m=314592687
 S—  S—

The sorted permutation 12 - - - n has n — 1 adjacencies.



What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.
In a permutation: two consecutive entries of the form i,i + 1 ori+ 1,1i.

Example:
m=314592687
 S—  S—

The sorted permutation 12 - - - n has n — 1 adjacencies.

Each flip increases #adjacencies by < 1.



What about lower bounds?

Adjacency in a stack is a pair of neighbouring pancakes of adjacent size.
In a permutation: two consecutive entries of the form i,i + 1 ori+ 1,1i.

Example:
m=314592687
 S—  S—

The sorted permutation 12 - - - n has n — 1 adjacencies.

Each flip increases #adjacencies by < 1.

So any permutation with zero adjacencies will need at least n — 1 flips.
L,>n—1.

Example: 1=246 ---n135---n—1 (neven)



A better lower bound

Similar (but more complicated) ideas gives:

15n
L, > 14 ~ 1.0714n

forn > 6.



State-of-the-art

If there are n pancakes, what is the maximum number f,, of flips (in terms of
n) that I will ever have to use to rearrange them?

Jacob E. Goodman (a.k.a. Harry Dweighter), 1975

Forn > 6:
1.0714n < f,, < 1.6363n.



State-of-the-art

If there are n pancakes, what is the maximum number f,, of flips (in terms of
n) that I will ever have to use to rearrange them?

Jacob E. Goodman (a.k.a. Harry Dweighter), 1975

Forn > 6:
1.0714n < f,;, < 1.6363n.
For small n (by computer search):

n‘123456789 10 11 12 13 14 15 16 17 18 19
fn‘013457891011131415161718192022




Applications: genomics

Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals

SRIDHAR HANNENHALLI

Bioinformatics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania
AND
PAVEL A. PEVZNER

University of Southern California, Los Angeles, California

Abstract. Genomes frequently evolve by reversals p(i, j) that transform a gene order ) ---
MWy 0 WM <0+ W, into my - mm_y - Wm -+ a,. Reversal distance between
permutations s and o is the minimum number of reversals to transform  into o. Analysis of genome
rearrangements in molecular biology started in the late 1930’s, when Dobzhansky and Sturtevant
published a milestone paper presenting a rearrangement scenario with 17 inversions between the
species of Drosophila. Analysis of genomes evolving by inversions leads to a combinatorial problem of
sorting by reversals studied in detail recently. We study sorting of signed permutations by reversals, a
problem that adequately models rearrang ts in small genomes like chloroplast or mitochondrial
DNA. The previously suggested approximation algorithms for sorting signed permutations by
reversals compute the reversal distance between permutations with an astonishing accuracy for both
simulated and biological data. We prove a duality theorem explaining this intriguing performance and
show that there exists a “hidden” parameter that allows one to compute the reversal distance between
signed permutations in polynomial time.
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On the problem of sorting burnt pancakes

David S. Cohen* !, Manuel Blum?
Computer Science Division, University of California, Berkeley, CA 94720, USA

Received 30 June 1992; revised 5 October 1993

Abstract

number of flips required in the worst case (o sort a stack of n pancakes, Equivalently, we seek
bounds on the number of prefix reversals necessary to sort a list of n elements. Bounds of 17n/16
and (5n + 5)/3 were shown by Gates and Papadimitriou in 1979. In this paper, we consider
a traditional variation of the problem in which the pancakes are two sided (one side is “burnt”),
and must be sorted to the size-ordered configuration in which every pancake has its burnt side
down. Let g(n) be the number of flips required to sort n “burnt pancakes”. We find that
3n/2 < g(n) € 2n — 2, where the upper bound holds for n 2> 10. We consider the conjecture that
the most difficult case for sorting n burnt pancakes is —I,, the configuration having the
pancakes in proper size order, but in which each individual pancake is upside down. We present
an algorithm for sorting —1I, in 23n/14 + ¢ flips, where ¢ i1s a small constant, thereby
establishing a bound of g(n} < 23n/14 + ¢ under the conjecture. Furthermore, the longstanding
upper bound of f(n) is also improved to 23n/14 + ¢ under the conjecture.



Superpermutations



Meet Haruhi Suzumiya




The Haruhi problem

What is the least number of Haruhi episodes that you would have to watch in
order to see the original 14 episodes in every order possible?



The generalised Haruhi problem

What is the least number of Haruhi episodes that you would have to watch in
order to see n distinct episodes in every order possible?



The Haruhi problem

What is the least number of Haruhi episodes that you would have to watch in
order to see the original 14 episodes in every order possible?

In maths terms, we want to find the shortest superpermutation for each n.



Example: n = 3

Watch episodes 1, 2 and 3 in these orders:
123 132 213 231 312 321
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Example: n = 3

Watch episodes 1, 2 and 3 in these orders:
132 321

The following sequence of length 9 contains all 6 of these:
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Example: n = 3

Watch episodes 1, 2 and 3 in these orders:
321

The following sequence of length 9 contains all 6 of these:
123124321



Example: n = 3

Watch episodes 1, 2 and 3 in these orders:

The following sequence of length 9 contains all 6 of these:
123121321,



Example: n =4

Watch episodes 1, 2, 3 and 4 in these orders:
1234 1243 1324 1342 1423 1432 2134 2143
2314 2341 2413 2431 3124 3142 3214 3241
3412 3421 4123 4132 4213 4231 4312 4321
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The following sequence of length 33 contains all 24 of these:
123412314231243121342132413214321
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Watch episodes 1, 2, 3 and 4 in these orders:
1243 1324 1342 1423 1432 2134 2143
2314 2413 2431 3124 3142 3214 3241
3421 4123 4132 4213 4231 4312 4321

The following sequence of length 33 contains all 24 of these:
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Example: n =4

Watch episodes 1, 2, 3 and 4 in these orders:
1243 1324 1342 1423 1432 2134 2143
2314 2413 2431 3124 3142 3214 3241
3421 4132 4213 4231 4312 4321

The following sequence of length 33 contains all 24 of these:
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Example: n =4

Watch episodes 1, 2, 3 and 4 in these orders:
1243 1324 1342 1423 1432 2134 2143
2314 2413 2431 3124 3142 3214 3241
3421 4132 4213 4231 4312 4321

The following sequence of length 33 contains all 24 of these:

12341231,4231243121342132413214321



Example: n =4

Watch episodes 1, 2, 3 and 4 in these orders:
1243 1324 1342 1423 1432 2134 2143
2413 2431 3124 3142 3214 3241
3421 4132 4213 4231 4312 4321

The following sequence of length 33 contains all 24 of these:

123412314231243121342132413214321



Example: n =4

Watch episodes 1, 2, 3 and 4 in these orders:
1243 1324 1342 1423 1432 2134 2143
2413 2431 3124 3214 3241
3421 4132 4213 4231 4312 4321

The following sequence of length 33 contains all 24 of these:

123412314231243121342132413214321



Example: n =4

Watch episodes 1, 2, 3 and 4 in these orders:
1243 1324 1342 1423 1432 2134 2143
2413 2431 3124 3214 3241
3421 4132 4213 4231 4312 4321

The following sequence of length 33 contains all 24 of these:
123412314231243121342132413214321



Shortest superpermutations

Forn =1, 2, 3, 4, 5, the shortest superpermutations have lengths
1, 3, 9, 33, 153.

For n = 6, the shortest known has length 872. Best lower bound is 867.



Shortest superpermutations

Forn =1, 2, 3, 4, 5, the shortest superpermutations have lengths
1, 3,9, 33, 153.
For n = 6, the shortest known has length 872. Best lower bound is 867.

For n = 7, the shortest known has length 5906. Best lower bound is 5884.



Shortest superpermutations

Forn =1, 2, 3, 4, 5, the shortest superpermutations have lengths

1, 3,9, 33, 153.
For n = 6, the shortest known has length 872. Best lower bound is 867.
For n = 7, the shortest known has length 5906. Best lower bound is 5884.

For n = 14, it’s between 93 884313 611 and 93924 230411.



Upper bounds (via explicit construction)

Best upper bound (n > 7):

nl+m—1)+m=-2+(n—-3)+n—-23.

@ 23 gregegan.net/SCIENCI ttations. html * % O L D

Superpermutations

by Greg Egan

ERMUTATUIOSNPSERP
RMUTATUIOSNPSERPE
MUTATUIOSNPSERPER
UTATUIOSNPSERPERM
TATUIOSNPSERPERMU
ATUIOSNPSERPERMUT
TUIOSNPSERPERMUTA

Very soon after Chaffin’s result, Robin Hﬂusmn announced!! the discovery of a superpermutation for n=6 with only 872 characters, one less than L(6)=873. He
found this by treating the as an example of the Travelling Salesman Problem, and using algorithms designed to generate
solutions to that problem. So the ongmal ‘minimal superpermutation conjecture was proved false!

By applying the usual recursion to Houston's shorter n=6 superpermutations, it becomes possible to generate superpermutations for any greater value of  that
are also one character shorter than £(n).

‘However, it turns out that for n>7, there is a way to do even better. By adapting a construction devised by Aaron Williams! in 2013, it’s possible to generate
superpermutations of length:

Ly =nl + (-1l + (-2)! + (1-3) +n -3



n =7 record published by ... piano?

= OYoiluhe” Search a e a B

The full performance of 5906 (a superpermutation on n=7) by Greg Egan

Matt_Parker_2

12K views 5 years ago
This is it. The whole thing.

If you want just the audio track to listen to when you're, | don't know, probably doing mathematics, it's on Bandcamp for ...more



Lower bounds

Easy lower bound:
n'+(n—1)

Proof: There are n! permutations of length n. Each must start at a different
position in the superpermutation, so that’s n! symbols.

After the last permutation starts, there must be n — 1 more symbols to
complete this final permutation.



Lower bounds

Easy lower bound:
n'+(n—1)

Proof: There are n! permutations of length n. Each must start at a different
position in the superpermutation, so that’s n! symbols.

After the last permutation starts, there must be n — 1 more symbols to
complete this final permutation.

Now things get a little weird. ..



On an anime fan website far far away. ..




A lower bound on the length of the shortest superpattern

Anonymous 4chan Poster, Robin Houston, Jay Pantone, and Vince Vatter

October 25, 2018

This proof is inspired by that posted anonymously at
http://mathsci.wikia.com/wiki/The_Haruhi_Problem
which itself was taken from a 4chan discussion archived at

https://warosu.org/sci/thread/S3751105#p3751197

Theorem (anonymous)

Every superpermutation for the permutations of length n has length at least

n+m—1)1+nm—-2)!+nr—3.



® © @ G superpermutation - Google s X + v

€« 2 C google.co.uk/search?sca_esv=25cd74cf61df00be... 1?() = 0 & D H
Go gle superpermutation X & Q
Al Images Videos ~News Maps  More v Tools

About 8 results (0.16 seconds)
@ wireD
How a 4chan Post Helped Solve a 25-Year-Old Math Puzzle

In September 16, 2011, an anime fan posted a math question to the online bulletin
board 4chan about the cult classic television series The...

11 Nov 2018

Y/ The verge
An anonymous 4chan post could help solve a 25-year-old
math mystery

A4gchan poster might have solved part of a very tricky math problem that
mathematicians have been working on for at least 25 years.

24 Oct 2018

@ Ingy100
Anonymous anime fan might just have solved a question
that's stumped maths experts for 25 years

Somehow, someway, a fan of an obscure Japanese anime series has managed to
inadvertently solve a complex maths question which has stumped...

31 Oct 2018

[@ cicazINE

Thanks to " The Melancholy of Haruhi Suzumiya®, a difficult
math problem that has not been solved for 25 years may be

Mathematicians around the world have expressed their belief that a discussion on the
Avercaac hiilletin hnard drhan mav cnhe a difficl



Summary: state-of-the-art superpermutations

For n = 6 the shortest superpermutation has length between 867 and 872.
(Aside: Over 100M CPU hours did not yield a better construction.)

For n > 7, the shortest superpermutation has length between
n+nm—D'+n—-2)+n-3

and
n+mn—1)+m-2)4+(n—-3)+n-—3.



Thanks!



