Simple Permutations

R.L.F. Brignall
joint work with Sophie Huczynska, Nik Ruškuc and Vincent Vatter

School of Mathematics and Statistics
University of St Andrews

Thursday 15th June, 2006
Introduction

1. Basic Concepts
 - Permutation Classes
 - Intervals and Simple Permutations

2. Algebraic Generating Functions for Sets of Permutations
 - Finitely Many Simples
 - Sets of Permutations

3. A Decomposition Theorem with Enumerative Consequences
 - Aim
 - Pin Sequences
 - Decomposing Simple Permutations

4. Decidability and Unavoidable Structures
 - More on Pins
 - Decidability
Outline

1 Basic Concepts
 - Permutation Classes
 - Intervals and Simple Permutations

2 Algebraic Generating Functions for Sets of Permutations
 - Finitely Many Simples
 - Sets of Permutations

3 A Decomposition Theorem with Enumerative Consequences
 - Aim
 - Pin Sequences
 - Decomposing Simple Permutations

4 Decidability and Unavoidable Structures
 - More on Pins
 - Decidability
Basic Concepts
Permutation Classes

Pattern Involvement

- Regard a permutation of length \(n \) as an ordering of the symbols 1, \ldots, \(n \).

- A permutation \(\tau = t_1 t_2 \ldots t_k \) is involved in the permutation \(\sigma = s_1 s_2 \ldots s_n \) if there exists a subsequence \(s_{i_1}, s_{i_2}, \ldots, s_{i_k} \) order isomorphic to \(\tau \).

Example
Basic Concepts
Permutation Classes

Pattern Involvement

- Regard a permutation of length \(n \) as an ordering of the symbols \(1, \ldots, n \).
- A permutation \(\tau = t_1 t_2 \ldots t_k \) is involved in the permutation \(\sigma = s_1 s_2 \ldots s_n \) if there exists a subsequence \(s_{i_1}, s_{i_2}, \ldots, s_{i_k} \) order isomorphic to \(\tau \).

Example
Basic Concepts
Permutation Classes

Pattern Involvement

- Regard a permutation of length n as an ordering of the symbols $1, \ldots, n$.

- A permutation $\tau = t_1 t_2 \ldots t_k$ is involved in the permutation $\sigma = s_1 s_2 \ldots s_n$ if there exists a subsequence $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ order isomorphic to τ.

Example

\[
\begin{array}{c}
1 & 3 & 5 & 2 & 4 \\
4 & 2 & 1 & 6 & 3 & 8 & 5 & 7
\end{array}
\]
Basic Concepts
Permutation Classes

Pattern Involvement

- Regard a permutation of length n as an ordering of the symbols $1, \ldots, n$.
- A permutation $\tau = t_1 t_2 \ldots t_k$ is involved in the permutation $\sigma = s_1 s_2 \ldots s_n$ if there exists a subsequence $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ order isomorphic to τ.

Example

1 3 5 2 4 \prec 4 2 1 6 3 8 5 7
Permutation Classes

- Involvement forms a partial order on the set of all permutations.
- Downsets of permutations in this partial order form permutation classes.
- A permutation class C can be seen to avoid certain permutations. Write $C = \text{Av}(B)$.

Example

The class $C = \text{Av}(12)$ consists of all the decreasing permutations:

$$\{1, 21, 321, 4321, \ldots\}$$
Involvement forms a partial order on the set of all permutations.

Downsets of permutations in this partial order form permutation classes.

A permutation class C can be seen to avoid certain permutations. Write $C = Av(B)$.

Example

The class $C = Av(12)$ consists of all the decreasing permutations:

$\{1, 21, 321, 4321, \ldots \}$
Involvement forms a **partial order** on the set of all permutations.

Downsets of permutations in this partial order form **permutation classes**.

A permutation class \mathcal{C} can be seen to **avoid** certain permutations. Write $\mathcal{C} = \text{Av}(B)$.

Example

The class $\mathcal{C} = \text{Av}(12)$ consists of all the decreasing permutations:

$$\{1, 21, 321, 4321, \ldots\}$$
Involvement forms a **partial order** on the set of all permutations.

Downsets of permutations in this partial order form **permutation classes**.

A permutation class C can be seen to **avoid** certain permutations. Write $C = \text{Av}(B)$.

Example

The class $C = \text{Av}(12)$ consists of all the decreasing permutations:

$\{1, 21, 321, 4321, \ldots\}$
Involvement forms a partial order on the set of all permutations.

Downsets of permutations in this partial order form permutation classes.

A permutation class C can be seen to avoid certain permutations. Write $C = \text{Av}(B)$.

Example

The class $C = \text{Av}(12)$ consists of all the decreasing permutations:

$$\{1, 2, 3, 21, 321, 4321, \ldots\}$$
Generating Functions

- C_n – permutations in C of length n.
- $\sum |C_n| x^n$ is the generating function.

Example

The generating function of $C = Av(12)$ is:

$$1 + x + x^2 + x^3 + \cdots = \frac{1}{1-x}$$
Basic Concepts
Permutation Classes

Generating Functions

- C_n – permutations in C of length n.
- $\sum |C_n| x^n$ is the generating function.

Example

The generating function of $C = Av(12)$ is:

$$1 + x + x^2 + x^3 + \cdots = \frac{1}{1-x}$$
Basic Concepts

Permutation Classes

Generating Functions

- C_n – permutations in C of length n.
- $\sum |C_n| x^n$ is the generating function.

Example

The generating function of $C = \text{Av}(12)$ is:

$$1 + x + x^2 + x^3 + \cdots = \frac{1}{1 - x}$$
Generating Functions

- \(C_n \) – permutations in \(C \) of length \(n \).
- \(\sum |C_n| x^n \) is the generating function.

Example

The generating function of \(C = \text{Av}(12) \) is:

\[
1 + x + x^2 + x^3 + \cdots = \frac{1}{1 - x}
\]
Pick any permutation π.

An interval of π is a set of contiguous indices $I = [a, b]$ such that $\pi(I) = \{\pi(i) : i \in I\}$ is also contiguous.

Example
Pick any permutation \(\pi \).

An interval of \(\pi \) is a set of contiguous indices \(I = [a, b] \) such that \(\pi(I) = \{\pi(i) : i \in I\} \) is also contiguous.
Pick any permutation π.

An interval of π is a set of contiguous indices $I = [a, b]$ such that $\pi(I) = \{\pi(i) : i \in I\}$ is also contiguous.
Pick any permutation π.

An interval of π is a set of contiguous indices $I = [a, b]$ such that $\pi(I) = \{\pi(i) : i \in I\}$ is also contiguous.
Only intervals are *singletons* and the *whole thing*.

Example
Only intervals are **singletons** and the **whole thing**.

Example
Only intervals are **singletons** and the **whole thing**.
Basic Concepts
Intervals and Simple Permutations

Simple Permutations

- Only intervals are *singletons* and the *whole thing*.
Only intervals are *singletons* and the *whole thing*.

Example

![Graph showing intervals and permutations](image-url)
Only intervals are *singletons* and the *whole thing*.

Example
Only intervals are *singletons* and the *whole thing*.
Special Simple Permutations

- Parallel alternations.
- Wedge permutations
- Two flavours of wedge simple permutation.
Special Simple Permutations

- Parallel alternations.
- Wedge permutations
- Two flavours of wedge simple permutation.
Special Simple Permutations

- Parallel alternations.
- **Wedge** permutations – not simple!
- Two flavours of **wedge simple** permutation.
Special Simple Permutations

- Parallel alternations.
- Wedge permutations
- Two flavours of *wedge simple* permutation.
Outline

1 Basic Concepts
 - Permutation Classes
 - Intervals and Simple Permutations

2 Algebraic Generating Functions for Sets of Permutations
 - Finitely Many Simples
 - Sets of Permutations

3 A Decomposition Theorem with Enumerative Consequences
 - Aim
 - Pin Sequences
 - Decomposing Simple Permutations

4 Decidability and Unavoidable Structures
 - More on Pins
 - Decidability
Motivation

Example

- 132-avoiders: generic structure.
- Only simple permutations are 1, 12, and 21.
- Enumerate recursively: $f(x) = xf(x)^2 + 1$.
Motivation

Example

- 132-avoiders: generic structure.
- Only simple permutations are 1, 12, and 21.
- Enumerate recursively: \(f(x) = xf(x)^2 + 1 \).
Motivation

Example

- 132-avoiders: generic structure.
- Only simple permutations are 1, 12, and 21.
- Enumerate recursively: $f(x) = xf(x)^2 + 1$.

“...the standard intuition of what a family with an algebraic generating function looks like: the algebraicity suggests that it may (or should...), be possible to give a recursive description of the objects based on disjoint union of sets and concatenation of objects.”

— Bousquet-Mélou, 2006

- We can always write permutations with a simple block pattern, the substitution decomposition.
- Use recursive enumeration for classes with finitely many simple permutations.
- Expect an algebraic generating function.
Motivation II

“...the standard intuition of what a family with an algebraic generating function looks like: the algebraicity suggests that it may (or should...), be possible to give a recursive description of the objects based on disjoint union of sets and concatenation of objects.”

— Bousquet-Mélou, 2006

- We can always write permutations with a simple block pattern, the substitution decomposition.
- Use recursive enumeration for classes with finitely many simple permutations.
- Expect an algebraic generating function.
“...the standard intuition of what a family with an algebraic generating function looks like: the algebraicity suggests that it may (or should...), be possible to give a recursive description of the objects based on disjoint union of sets and concatenation of objects.”

— Bousquet-Mélou, 2006

- We can always write permutations with a simple block pattern, the substitution decomposition.
- Use recursive enumeration for classes with finitely many simple permutations.
- Expect an algebraic generating function.
“...the standard intuition of what a family with an algebraic generating function looks like: the algebraicity suggests that it may (or should...), be possible to give a recursive description of the objects based on disjoint union of sets and concatenation of objects.”

— Bousquet-Mélou, 2006

We can always write permutations with a simple block pattern, the substitution decomposition.

Use recursive enumeration for classes with finitely many simple permutations.

Expect an algebraic generating function.
Theorem (RB, SH, VV)

In a permutation class \mathcal{C} with only finitely many simple permutations, the following sequences have algebraic generating functions:

- the number of permutations in \mathcal{C}_n (Albert and Atkinson),
- the number of alternating permutations in \mathcal{C}_n,
- the number of even permutations in \mathcal{C}_n,
- the number of Dumont permutations in \mathcal{C}_n,
- the number of permutations in \mathcal{C}_n avoiding any finite set of blocked or barred permutations,
- the number of involutions in \mathcal{C}_n, and
- Any (finite) combination of the above.
Algebraic Generating Functions for Sets of Permutations

Sets of Permutations

Algebraic Generating Functions

Theorem (RB, SH, VV)

In a permutation class C with only finitely many simple permutations, the following sequences have algebraic generating functions:

- the number of permutations in C_n (Albert and Atkinson),
- the number of alternating permutations in C_n,
- the number of even permutations in C_n,
- the number of Dumont permutations in C_n,
- the number of permutations in C_n avoiding any finite set of blocked or barred permutations,
- the number of involutions in C_n, and
- Any (finite) combination of the above.
Theorem (RB, SH, VV)

In a permutation class \mathcal{C} with only finitely many simple permutations, the following sequences have algebraic generating functions:

- the number of permutations in \mathcal{C}_n (Albert and Atkinson),
- the number of alternating permutations in \mathcal{C}_n,
- the number of even permutations in \mathcal{C}_n,
- the number of Dumont permutations in \mathcal{C}_n,
- the number of permutations in \mathcal{C}_n avoiding any finite set of blocked or barred permutations,
- the number of involutions in \mathcal{C}_n, and
- Any (finite) combination of the above.
Algebraic Generating Functions for Sets of Permutations

Sets of Permutations

Algebraic Generating Functions

Theorem (RB, SH, VV)

In a permutation class C with only finitely many simple permutations, the following sequences have algebraic generating functions:

- the number of permutations in C_n (Albert and Atkinson),
- the number of alternating permutations in C_n,
- the number of even permutations in C_n,
- the number of Dumont permutations in C_n,
- the number of permutations in C_n avoiding any finite set of blocked or barred permutations,
- the number of involutions in C_n, and
- Any (finite) combination of the above.
Algebraic Generating Functions for Sets of Permutations

Sets of Permutations

Algebraic Generating Functions

Theorem (RB, SH, VV)

In a permutation class \mathcal{C} with only finitely many simple permutations, the following sequences have algebraic generating functions:

- the number of permutations in \mathcal{C}_n (Albert and Atkinson),
- the number of alternating permutations in \mathcal{C}_n,
- the number of even permutations in \mathcal{C}_n,
- the number of Dumont permutations in \mathcal{C}_n,
- the number of permutations in \mathcal{C}_n avoiding any finite set of blocked or barred permutations,
- the number of involutions in \mathcal{C}_n, and
- Any (finite) combination of the above.

-
Theorem (RB, SH, VV)

In a permutation class C with only finitely many simple permutations, the following sequences have algebraic generating functions:

- the number of permutations in C_n (Albert and Atkinson),
- the number of alternating permutations in C_n,
- the number of even permutations in C_n,
- the number of Dumont permutations in C_n,
- the number of permutations in C_n avoiding any finite set of blocked or barred permutations,
- the number of involutions in C_n, and
- Any (finite) combination of the above.
In a permutation class C with only finitely many simple permutations, the following sequences have algebraic generating functions:

- the number of permutations in C_n (Albert and Atkinson),
- the number of alternating permutations in C_n,
- the number of even permutations in C_n,
- the number of Dumont permutations in C_n,
- the number of permutations in C_n avoiding any finite set of blocked or barred permutations,
- the number of involutions in C_n, and
- Any (finite) combination of the above.
A Decomposition Theorem with Enumerative Consequences

Outline

1. Basic Concepts
 - Permutation Classes
 - Intervals and Simple Permutations

2. Algebraic Generating Functions for Sets of Permutations
 - Finitely Many Simples
 - Sets of Permutations

3. A Decomposition Theorem with Enumerative Consequences
 - Aim
 - Pin Sequences
 - Decomposing Simple Permutations

4. Decidability and Unavoidable Structures
 - More on Pins
 - Decidability
A Decomposition Theorem with Enumerative Consequences

Aim

What we want to find

- Large simple permutation, size $f(k)$.
- Find two simple permutations inside, each of size k.
- Overlap of at most two points – almost disjoint.
A Decomposition Theorem with Enumerative Consequences

Aim

What we want to find

- Large simple permutation, size $f(k)$.
- Find two simple permutations inside, each of size k.
- Overlap of at most two points – almost disjoint.
A Decomposition Theorem with Enumerative Consequences

Aim

What we want to find

- Large simple permutation, size $f(k)$.
- Find **two** simple permutations inside, each of size k.
- Overlap of at most two points – almost disjoint.
A Decomposition Theorem with Enumerative Consequences

Aim

What we want to find

- Large simple permutation, size \(f(k) \).
- Find two simple permutations inside, each of size \(k \).
- Overlap of at most two points – almost disjoint.
Why I

- Every simple of length ≥ 4 contains 132.
- Every simple of length $\geq f(4)$ contains 2 almost disjoint copies of 132.
- $\geq f(f(4))$ contains 4 copies of 132.

Theorem (Bóna; Mansour and Vainshtein)

For every fixed r, the class of all permutations containing at most r copies of 132 has an algebraic generating function.
Why I

- Every simple of length ≥ 4 contains 132.
- Every simple of length $\geq f(4)$ contains 2 almost disjoint copies of 132.
- $\geq f(f(4))$ contains 4 copies of 132.

Theorem (Bóna; Mansour and Vainshtein)

For every fixed r, the class of all permutations containing at most r copies of 132 has an algebraic generating function.
A Decomposition Theorem with Enumerative Consequences

Aim

Why I

- Every simple of length ≥ 4 contains 132.
- Every simple of length $\geq f(4)$ contains 2 almost disjoint copies of 132.
- $\geq f(f(4))$ contains 4 copies of 132.

Theorem (Bóna; Mansour and Vainshtein)

For every fixed r, the class of all permutations containing at most r copies of 132 has an algebraic generating function.
A Decomposition Theorem with Enumerative Consequences

Aim

Why I

- Every simple of length ≥ 4 contains 132.
- Every simple of length $\geq f(4)$ contains 2 almost disjoint copies of 132.
- $\geq f(f(4))$ contains 4 copies of 132.

\[\vdots \]

Theorem (Bóna; Mansour and Vainshtein)

For every fixed r, the class of all permutations containing at most r copies of 132 has an algebraic generating function.
A Decomposition Theorem with Enumerative Consequences

Aim

Why II

Av(β_1^{≤r_1}, β_2^{≤r_2}, \ldots, β_k^{≤r_k}) — the class with: \leq r_1 copies of β_1, \leq r_2 copies of β_2, etc.

Corollary

If the class Av(β_1, β_2, \ldots, β_k) contains only finitely many simple permutations then for all choices of nonnegative integers r_1, r_2, \ldots, and r_k, the class Av(β_1^{≤r_1}, β_2^{≤r_2}, \ldots, β_k^{≤r_k}) also contains only finitely many simple permutations.

Corollary

For all r and s, every subclass of Av(2413^{≤r}, 3142^{≤s}) contains only finitely many simple permutations and thus has an algebraic generating function.
A Decomposition Theorem with Enumerative Consequences

Aim

Why II

\[\text{Av}(\beta_1^{\leq r_1}, \beta_2^{\leq r_2}, \ldots, \beta_k^{\leq r_k}) \] — the class with: \(\leq r_1 \) copies of \(\beta_1 \), \(\leq r_2 \) copies of \(\beta_2 \), etc.

Corollary

If the class \(\text{Av}(\beta_1, \beta_2, \ldots, \beta_k) \) contains only finitely many simple permutations then for all choices of nonnegative integers \(r_1, r_2, \ldots, r_k \), the class \(\text{Av}(\beta_1^{\leq r_1}, \beta_2^{\leq r_2}, \ldots, \beta_k^{\leq r_k}) \) also contains only finitely many simple permutations.

Corollary

For all \(r \) and \(s \), every subclass of \(\text{Av}(2413^{\leq r}, 3142^{\leq s}) \) contains only finitely many simple permutations and thus has an algebraic generating function.
A Decomposition Theorem with Enumerative Consequences

Aim

Why II

- \(\text{Av}(\beta_1^{\leq r_1}, \beta_2^{\leq r_2}, \ldots, \beta_k^{\leq r_k}) \) — the class with: \(\leq r_1 \) copies of \(\beta_1 \), \(\leq r_2 \) copies of \(\beta_2 \), etc.

Corollary

If the class \(\text{Av}(\beta_1, \beta_2, \ldots, \beta_k) \) contains only finitely many simple permutations then for all choices of nonnegative integers \(r_1, r_2, \ldots, r_k \), the class \(\text{Av}(\beta_1^{\leq r_1}, \beta_2^{\leq r_2}, \ldots, \beta_k^{\leq r_k}) \) also contains only finitely many simple permutations.

Corollary

For all \(r \) and \(s \), every subclass of \(\text{Av}(2413^{\leq r}, 3142^{\leq s}) \) contains only finitely many simple permutations and thus has an algebraic generating function.
Start with any two points.

Extend up, down, left, or right – this is a right pin.

A proper pin must be maximal and cut the previous pin, but not the rectangle.

A right-reaching pin sequence.
Proper Pin Sequences

- Start with any two points.
- Extend up, down, left, or right — this is a right pin.
- A proper pin must be maximal and cut the previous pin, but not the rectangle.
- A right-reaching pin sequence.
Proper Pin Sequences

- Start with any two points.
- Extend up, down, left, or right – this is a right pin.
- A proper pin must be maximal and cut the previous pin, but not the rectangle.
- A right-reaching pin sequence.
Proper Pin Sequences

- Start with any two points.
- Extend up, down, left, or right – this is a right pin.
- A proper pin must be maximal and cut the previous pin, but not the rectangle.
- A right-reaching pin sequence.
Start with any two points.
Extend up, down, left, or right – this is a right pin.
A proper pin must be maximal and cut the previous pin, but not the rectangle.
A right-reaching pin sequence.
Proper Pin Sequences

- Start with any two points.
- Extend up, down, left, or right – this is a right pin.
- A proper pin must be maximal and cut the previous pin, but not the rectangle.
- A right-reaching pin sequence.
Proper Pin Sequences

- Start with any two points.
- Extend up, down, left, or right – this is a right pin.
- A proper pin must be maximal and cut the previous pin, but not the rectangle.
- A right-reaching pin sequence.
Start with any two points.

Extend up, down, left, or right – this is a right pin.

A proper pin must be maximal and cut the previous pin, but not the rectangle.

A right-reaching pin sequence.
The points of the proper pin sequence form a simple permutation.
A Decomposition Theorem with Enumerative Consequences
Decomposing Simple Permutations

A Technical Theorem

Theorem

Every simple permutation of length at least $2(2048k^8)^{(2048k^8)^{(2k)}}$
contains either a proper pin sequence of length at least $2k$
or a parallel alternation or a wedge simple permutation of length at least $2k$.

- Proper pin sequence \Rightarrow two almost disjoint simples.
- Parallel alternation \Rightarrow two almost disjoint simples.
- Wedge simple permutation \Rightarrow two almost disjoint simples.
A Decomposition Theorem with Enumerative Consequences
Decomposing Simple Permutations

A Technical Theorem

Theorem

Every simple permutation of length at least $2(2048k^8)(2048k^8)^{(2k)}$ contains either a proper pin sequence of length at least $2k$ or a parallel alternation or a wedge simple permutation of length at least $2k$.

- Proper pin sequence \Rightarrow two almost disjoint simples.
- Parallel alternation \Rightarrow two almost disjoint simples.
- Wedge simple permutation \Rightarrow two almost disjoint simples.
A Decomposition Theorem with Enumerative Consequences
Decomposing Simple Permutations

A Technical Theorem

Theorem

Every simple permutation of length at least $2(2048k^8)^{2048k^8^{2k}}$ contains either a proper pin sequence of length at least $2k$ or a parallel alternation or a wedge simple permutation of length at least $2k$.

- Proper pin sequence \Rightarrow two almost disjoint simples.
- Parallel alternation \Rightarrow two almost disjoint simples.
- Wedge simple permutation \Rightarrow two almost disjoint simples.
A Decomposition Theorem with Enumerative Consequences

Decomposing Simple Permutations

A Technical Theorem

Theorem

Every simple permutation of length at least $2(2048k^8)(2048k^8)^{(2k)}$ contains either a proper pin sequence of length at least $2k$ or a parallel alternation or a wedge simple permutation of length at least $2k$.

- Proper pin sequence \Rightarrow two almost disjoint simples.
- Parallel alternation \Rightarrow two almost disjoint simples.
- **Wedge simple** permutation \Rightarrow two almost disjoint simples.
The Decomposition Theorem

Theorem (RB, SH, VV)

There is a function $f(k)$ such that every simple permutation of length at least $f(k)$ contains two simple subsequences, each of length at least k, which share at most two entries in common.
Decidability and Unavoidable Structures

Outline

1. Basic Concepts
 - Permutation Classes
 - Intervals and Simple Permutations

2. Algebraic Generating Functions for Sets of Permutations
 - Finitely Many Simples
 - Sets of Permutations

3. A Decomposition Theorem with Enumerative Consequences
 - Aim
 - Pin Sequences
 - Decomposing Simple Permutations

4. Decidability and Unavoidable Structures
 - More on Pins
 - Decidability
The Language of Pins

- Encode as: 1
- Pattern involvement \leftrightarrow partial order on pin words.
- Avoiding a pattern \leftrightarrow avoiding every pin word generating that pattern.
The Language of Pins

- Encode as: 11
- Pattern involvement \leftrightarrow partial order on pin words.
- Avoiding a pattern \leftrightarrow avoiding every pin word generating that pattern.
The Language of Pins

Encode as: 11R

- Pattern involvement ↔ partial order on pin words.
- Avoiding a pattern ↔ avoiding every pin word generating that pattern.
The Language of Pins

- Encode as: 11RU
- Pattern involvement ↔ partial order on pin words.
- Avoiding a pattern ↔ avoiding every pin word generating that pattern.
The Language of Pins

- Encode as: 11RUL
- Pattern involvement \leftrightarrow partial order on pin words.
- Avoiding a pattern \leftrightarrow avoiding every pin word generating that pattern.
The Language of Pins

- Encode as: 11RULD
- Pattern involvement \leftrightarrow partial order on pin words.
- Avoiding a pattern \leftrightarrow avoiding every pin word generating that pattern.
The Language of Pins

- Encode as: 11RULDR
- Pattern involvement \leftrightarrow partial order on pin words.
- Avoiding a pattern \leftrightarrow avoiding every pin word generating that pattern.
The Language of Pins

- Encode as: 11RULDRU
- Pattern involvement \leftrightarrow partial order on pin words.
- Avoiding a pattern \leftrightarrow avoiding every pin word generating that pattern.
Decidability and Unavoidable Structures
More on Pins

The Language of Pins

- Encode as: 11RULDRU
- Pattern involvement \leftrightarrow partial order on pin words.
- Avoiding a pattern \leftrightarrow avoiding every pin word generating that pattern.
The Language of Pins

- Encode as: 11RULDRU
- Pattern involvement \leftrightarrow partial order on pin words.
- Avoiding a pattern \leftrightarrow avoiding every pin word generating that pattern.
Decidability

Theorem (RB, NR, VV)

It is decidable whether a finitely based permutation class contains only finitely many simple permutations.

Proof.

- Technical theorem \Rightarrow only look for arbitrary parallel or wedge simple permutations, or proper pin sequences.
- Parallel and wedge simple permutations easily verified.
- Proper pin sequences \leftrightarrow the language of pins.
- Language of pins avoiding a given pattern is regular.
- Decidable if a regular language is infinite.
Decidability and Unavoidable Structures

Decidability

Theorem (RB, NR, VV)

It is decidable whether a finitely based permutation class contains only finitely many simple permutations.

Proof.

- Technical theorem \Rightarrow only look for arbitrary parallel or wedge simple permutations, or proper pin sequences.
 - Parallel and wedge simple permutations easily verified.
 - Proper pin sequences \leftrightarrow the language of pins.
 - Language of pins avoiding a given pattern is regular.
 - Decidable if a regular language is infinite.
Theorem (RB, NR, VV)

It is decidable whether a finitely based permutation class contains only finitely many simple permutations.

Proof.
- Technical theorem \(\Rightarrow\) only look for arbitrary parallel or wedge simple permutations, or proper pin sequences.
- Parallel and wedge simple permutations easily verified.
- Proper pin sequences \(\leftrightarrow\) the language of pins.
- Language of pins avoiding a given pattern is regular.
- Decidable if a regular language is infinite.
Theorem (RB, NR, VV)

It is decidable whether a finitely based permutation class contains only finitely many simple permutations.

Proof.

- Technical theorem \Rightarrow only look for arbitrary parallel or wedge simple permutations, or proper pin sequences.
- Parallel and wedge simple permutations easily verified.
- Proper pin sequences \leftrightarrow the language of pins.
- Language of pins avoiding a given pattern is regular.
- Decidable if a regular language is infinite.
Decidability and Unavoidable Structures

Decidability

Theorem (RB, NR, VV)

It is decidable whether a finitely based permutation class contains only finitely many simple permutations.

Proof.

- Technical theorem \(\Rightarrow \) only look for arbitrary parallel or wedge simple permutations, or proper pin sequences.
- Parallel and wedge simple permutations easily verified.
- Proper pin sequences \(\leftrightarrow \) the language of pins.
- Language of pins avoiding a given pattern is regular.
- Decidable if a regular language is infinite.
Decidability

Theorem (RB, NR, VV)

It is decidable whether a finitely based permutation class contains only finitely many simple permutations.

Proof.

- Technical theorem \implies only look for arbitrary parallel or wedge simple permutations, or proper pin sequences.
 - Parallel and wedge simple permutations easily verified.
 - Proper pin sequences \leftrightarrow the language of pins.
 - Language of pins avoiding a given pattern is regular.
 - Decidable if a regular language is infinite.
Áttu eitthvað ódýrara?
Áttu eitthvað ódýrara?

Do you have anything cheaper?