Antichains of Permutations

Robert Brignall

Department of Mathematics
University of Bristol

Tuesday 17th June, 2008
1. Introduction
 - Permutation Classes
 - Antichains
 - Partial Well Order

2. Grid Classes
 - Monotone Classes
 - Antichains and Pin Sequences
 - Juxtapositions
A permutation \(\tau = t_1 t_2 \ldots t_k \) is contained in the permutation \(\sigma = s_1 s_2 \ldots s_n \) if there exists a subsequence \(s_{i_1}, s_{i_2}, \ldots, s_{i_k} \) order isomorphic to \(\tau \).
A permutation $\tau = t_1 t_2 \ldots t_k$ is contained in the permutation $\sigma = s_1 s_2 \ldots s_n$ if there exists a subsequence $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ order isomorphic to τ.

Example

\[\begin{align*}
1 & 3 & 5 & 2 & 4 \\
4 & 2 & 1 & 6 & 3 & 8 & 5 & 7
\end{align*}\]
A permutation $\tau = t_1 t_2 \ldots t_k$ is contained in the permutation $\sigma = s_1 s_2 \ldots s_n$ if there exists a subsequence $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ order isomorphic to τ.

Example

- $1 3 5 2 4 \prec 4 2 1 6 3 8 5 7$
Containment forms a **partial order** on the set of all permutations.
Containment forms a partial order on the set of all permutations.

Downsets of permutations in this partial order form permutation classes.

i.e. \(\pi \in C \) and \(\sigma \leq \pi \) implies \(\sigma \in C \).
Containment forms a **partial order** on the set of all permutations.

Downsets of permutations in this partial order form permutation classes.

i.e. $\pi \in C$ and $\sigma \leq \pi$ implies $\sigma \in C$.

A permutation class C can be seen to avoid certain permutations. Write $C = \text{Av}(B) = \{\pi : \beta \not\leq \pi \text{ for all } \beta \in B\}$.
Containment forms a **partial order** on the set of all permutations.

Downsets of permutations in this partial order form permutation classes.

i.e. \(\pi \in C\) and \(\sigma \leq \pi\) implies \(\sigma \in C\).

A permutation class \(C\) can be seen to avoid certain permutations. Write \(C = \text{Av}(B) = \{\pi : \beta \not\leq \pi \text{ for all } \beta \in B\}\).

The minimal avoidance set is the **basis**. It is **unique** but need not be finite.
Containment forms a partial order on the set of all permutations.

Downsets of permutations in this partial order form permutation classes.

i.e. \(\pi \in C \) and \(\sigma \leq \pi \) implies \(\sigma \in C \).

A permutation class \(C \) can be seen to avoid certain permutations. Write \(C = Av(B) = \{ \pi : \beta \not\preceq \pi \text{ for all } \beta \in B \} \).

The minimal avoidance set is the basis. It is unique but need not be finite.

Example

The class \(C = Av(12) \) consists of all the decreasing permutations:

\(\{1, 21, 321, 4321, \ldots\} \)
Antichains

- Set of *pairwise incomparable* permutations.
Antichains

- Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)
Antichains

- Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

- **Bottom** copies of 4123 must match up (the anchor).
Antichains

- Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

- Each point is matched in turn.
Antichains

- Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

- Each point is matched in turn.
Antichains

- Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

- Each point is matched in turn.
Antichains

- Set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

- Last pair cannot be embedded.
Complete and Fundamental Antichains

- **Closure** of a set A: $\text{Cl}(A) = \{\pi : \pi \leq \alpha \text{ for some } \alpha \in A\}$.
Closure of a set A: $\text{Cl}(A) = \{ \pi : \pi \leq \alpha \text{ for some } \alpha \in A \}$.

An infinite antichain A is fundamental if $\text{Cl}(A)$ contains no infinite antichains except for A and its subsets.
Complete and Fundamental Antichains

- **Closure of a set** A: $\text{Cl}(A) = \{ \pi : \pi \leq \alpha \text{ for some } \alpha \in A \}$.

- An infinite antichain A is **fundamental** if $\text{Cl}(A)$ contains no infinite antichains except for A and its subsets.

- An infinite antichain is **complete** if no permutation can be added to make a bigger antichain.
Complete and Fundamental Antichains

- An infinite antichain \(A \) is **fundamental** if \(\text{Cl}(A) \) contains no infinite antichains except for \(A \) and its subsets.
- An infinite antichain is **complete** if no permutation can be added to make a bigger antichain.

Example

The increasing oscillating antichain is fundamental, but not complete.

Not complete: \(I \cup \{321\} \) is an antichain.
For any permutation π and antichain A, $A^{||\pi} = \{\alpha \in A : \pi^{||}\alpha\}$.
For any permutation π and antichain A, $A^{\parallel \pi} = \{ \alpha \in A : \pi \parallel \alpha \}$.

Lemma

A is fundamental if and only if the proper closure $Cl(A) \setminus A$ is pwo and for every $\pi \in Cl(A) \setminus A$ the set $A^{\parallel \pi}$ is finite.
For any permutation π and antichain A, $A^{||\pi} = \{\alpha \in A : \pi^{||\alpha}\}$.

Lemma

A is fundamental if and only if the proper closure $\text{Cl}(A) \setminus A$ is pwo and for every $\pi \in \text{Cl}(A) \setminus A$ the set $A^{||\pi}$ is finite.

This condition means that terms of a fundamental antichain look “similar”.
Conjecture (Murphy)

If A is a fundamental antichain then there exist only finitely many lengths n such that A has two or more permutations of length n.
Conjecture (Murphy)

If A is a fundamental antichain then there exist only finitely many lengths n such that A has two or more permutations of length n.

Conjecture

Every member of a fundamental antichain contains at most two proper intervals.
Define an order on antichains:

\[B \leq A \iff \text{for every } \alpha \in A, \text{ there exists } \beta \in B \text{ with } \beta \leq \alpha \]

Note that \(A \subseteq B \) implies \(B \leq A \)!

Interested in antichains that are \textit{minimal} under \(\leq \).
An Ordering on Antichains

- Define an order on antichains:

 \[B \leq A \iff \text{for every } \alpha \in A, \text{ there exists } \beta \in B \text{ with } \beta \leq \alpha \]

- Note that \(A \subseteq B \) implies \(B \leq A \)!

- Interested in antichains that are **minimal** under \(\leq \).

Lemma

An antichain is minimal under \(\leq \) if and only if it is complete and fundamental.
A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.
A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a permutation class given by a finite basis is pwo?

To prove pwo — Higman’s theorem is useful.
To prove not pwo — find an antichain.
A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a permutation class given by a finite basis is pwo?

- To prove pwo — Higman’s theorem is useful.
- To prove not pwo — find an antichain.

Proposition (Nash-Williams, 1963)

Every non-pwo permutation class contains an antichain that is minimal under \preceq.

Corollary

Every non-pwo permutation class contains a fundamental antichain.
Theorem (Cherlin and Latka, 2000)

For each natural number k, there is a finite set Λ_k of antichains minimal under \preceq with the property that a class avoiding exactly k permutations is pwo if and only if its intersection with each antichain in Λ_k is finite.
Theorem (Cherlin and Latka, 2000)

For each natural number k, there is a finite set Λ_k of antichains minimal under \preceq with the property that a class avoiding exactly k permutations is pwo if and only if its intersection with each antichain in Λ_k is finite.

- For hereditary properties of tournaments, Λ_1 has been identified.
More on Minimal Antichains

Theorem (Cherlin and Latka, 2000)

For each natural number k, there is a finite set Λ_k of antichains minimal under \preceq with the property that a class avoiding exactly k permutations is pwo if and only if its intersection with each antichain in Λ_k is finite.

For hereditary properties of tournaments, Λ_1 has been identified.

Proposition (Cherlin and Latka)

The problem of deciding whether a hereditary property of tournaments with two basis elements is pwo is decidable in polynomial time.
More on Minimal Antichains

Theorem (Cherlin and Latka, 2000)

For each natural number k, there is a finite set Λ_k of antichains minimal under \preceq with the property that a class avoiding exactly k permutations is pwo if and only if its intersection with each antichain in Λ_k is finite.

- For hereditary properties of tournaments, Λ_1 has been identified.

Proposition (Cherlin and Latka)

The problem of deciding whether a hereditary property of tournaments with two basis elements is pwo is decidable in polynomial time.

- Caveat: algorithm is not known.
Theorem (Cherlin and Latka, 2000)

For each natural number k, there is a finite set Λ_k of antichains minimal under \preceq with the property that a class avoiding exactly k permutations is pwo if and only if its intersection with each antichain in Λ_k is finite.

- For permutation classes, Λ_1 consists of the minimal antichains containing increasing oscillating, Widdershins and V.
More on Minimal Antichains

Theorem (Cherlin and Latka, 2000)

For each natural number k, there is a finite set Λ_k of antichains minimal under \preceq with the property that a class avoiding exactly k permutations is pwo if and only if its intersection with each antichain in Λ_k is finite.

- For permutation classes, Λ_1 consists of the minimal antichains containing increasing oscillating, Widdershins and V.

Proposition (Atkinson, Murphy and Ruškuc, 2002)

$\text{Av}(\beta)$ is pwo if and only if $\beta \in \{1, 12, 21, 132, 213, 231, 312\}$
• \(\mathcal{A} \) — set of all minimal antichains, viewed as a topological space.
• **Open sets**: for \(B \) a finite set of permutations

\[\mathcal{A}_B = \{ A \in \mathcal{A} : A \cap \text{Av}(B) \text{ is infinite} \} . \]
Topology

- \mathcal{A} — set of all minimal antichains, viewed as a topological space.
- **Open sets**: for B a finite set of permutations
 \[\mathcal{A}_B = \{ A \in \mathcal{A} : A \cap \text{Av}(B) \text{ is infinite} \}. \]

- **Equivalence relation**:
 \[A_1 \rho A_2 \iff \{ \mathcal{A}_B : A_1 \in \mathcal{A}_B \} = \{ \mathcal{A}_B : A_1 \in \mathcal{A}_B \}. \]

- Easier: $A_1 \rho A_2$ iff $\text{Cl}(A_1) \setminus A = \text{Cl}(A_2) \setminus A$.
- **Quotient**: $\mathcal{A}' = \mathcal{A}/\rho$ (is a T_0 space).
Topology

- \mathcal{A} — set of all minimal antichains, viewed as a topological space.
- **Open sets:** for B a finite set of permutations
 \[
 \mathcal{A}_B = \{ A \in \mathcal{A} : A \cap \text{Av}(B) \text{ is infinite}\}.
 \]
- **Equivalence relation:**
 \[
 A_1 \rho A_2 \Leftrightarrow \{ \mathcal{A}_B : A_1 \in \mathcal{A}_B \} = \{ \mathcal{A}_B : A_1 \in \mathcal{A}_B \}.
 \]
- Easier: $A_1 \rho A_2$ iff $\text{Cl}(A_1) \setminus A = \text{Cl}(A_2) \setminus A$.
- **Quotient:** $\mathcal{A}' = \mathcal{A}/\rho$ (is a T_0 space).
- $A \in \mathcal{A}$ is isolated in \mathcal{A}' if there is some finite basis B such all infinite fundamental antichains in $\text{Av}(B)$ are equivalent (in \mathcal{A}') to A.
Cherlin and Latka asked these for tournaments, but why not ask them for permutations?
Conjectures

- Cherlin and Latka asked these for tournaments, but why not ask them for permutations?

Conjecture

Not all minimal antichains are isolated.

- There are some minimal antichains that are never needed to prove that a finitely based class is non-pwo.
Conjectures

• Cherlin and Latka asked these for tournaments, but why not ask them for permutations?

Conjecture

Not all minimal antichains are isolated.

• There are some minimal antichains that are never needed to prove that a finitely based class is non-pwo.

Conjecture

For each isolated antichain A “in” A', there is an algorithm to decide whether an arbitrary permutation belongs to $C_l(A) \setminus A$.

• Minimal isolated antichains have some kind of reliable structure.
Grid Classes

- **Matrix** \mathcal{M} whose entries are permutation classes.
- **Grid(\mathcal{M})** the *grid class* of \mathcal{M}: all permutations which can be “gridded” so each cell satisfies constraints of \mathcal{M}.

Example

- Let $\mathcal{M} = \begin{pmatrix} \text{Av}(21) & \text{Av}(231) & \emptyset \\ \text{Av}(123) & \emptyset & \text{Av}(12) \end{pmatrix}$.

\[\in \text{Grid} (\mathcal{M})\]
Monotone Grid Classes

- **Special case**: all cells of \mathcal{M} are $\text{Av}(21)$ or $\text{Av}(12)$.
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

Example

\[
\mathcal{M} = \begin{pmatrix}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & -1
\end{pmatrix}
\]
Monotone Grid Classes

- **Special case**: all cells of \mathcal{M} are $\text{Av}(21)$ or $\text{Av}(12)$.
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

Example

\[
\mathcal{M} = \begin{pmatrix}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & -1
\end{pmatrix}
\]
The Graph of a Matrix

- **Graph of a matrix**, $G(M)$, formed by connecting together all non-zero entries that share a row or column and are not “separated” by any other nonzero entry.

Example

$$
\begin{pmatrix}
1 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{pmatrix}
$$
The Graph of a Matrix

- **Graph of a matrix**, $G(M)$, formed by connecting together all non-zero entries that share a row or column and are not “separated” by any other nonzero entry.

Example

\[
\begin{pmatrix}
1 & -1 \\
-1 & -1 & 1 \\
-1 & 1 \\
\end{pmatrix}
\]
The Graph of a Matrix

- **Graph of a matrix**, $G(M)$, formed by connecting together all non-zero entries that share a row or column and are not “separated” by any other nonzero entry.

Example

\[
\begin{pmatrix}
1 & -1 & 1 \\
-1 & -1 & 1 \\
1 & 1 & -1
\end{pmatrix}
\]
Theorem (Murphy and Vatter, 2003)

The monotone grid class $\text{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.
Theorem (Murphy and Vatter, 2003)

The monotone grid class $\text{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\text{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

(\Leftarrow) Partial multiplication table.
Theorem (Murphy and Vatter, 2003)

The monotone grid class $\text{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

(\Leftarrow) ± 1 correspond to directions.

\[\begin{array}{c|c|c|c}
\hline
1 & -1 & & \\
\hline
& 1 & & \\
\hline
-1 & & -1 & \\
\hline
\end{array} \]
The monotone grid class $\text{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

(\Leftarrow) Form one order per arrow.

- $1 < 9 < 8 < 4$.
- $5 < 10 < 6 < 7$.
- $2 < 3$.
- $1 < 2 < 3 < 4$.
- $5 < 6$.
- $10 < 9 < 8 < 7$.
Theorem (Murphy and Vatter, 2003)

The monotone grid class $\text{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

(\Leftarrow) No cycles, so this gives a poset.

- $1 < 9 < 8 < 4$.
- $5 < 10 < 6 < 7$.
- $2 < 3$.
- $1 < 2 < 3 < 4$.
- $5 < 6$.
- $10 < 9 < 8 < 7$.

(University of Bristol)
Theorem (Murphy and Vatter, 2003)

The monotone grid class $\text{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

(\Leftarrow) Linear extension: $5 < 10 < 1 < 9 < 2 < 6 < 8 < 3 < 7 < 4$

\[
\begin{array}{c}
5 \\
10 \\
1 \\
9 \\
8 \\
4 \\
2 \\
3 \\
7 \\
6
\end{array}
\]
Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\text{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

(\Leftarrow) Linear extension: $5 < 10 < 1 < 9 < 2 < 6 < 8 < 3 < 7 < 4$

Encode by region: 3412532541.
Monotone Grids and Partial Well Order

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\text{Grid} (\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, i.e. $G(\mathcal{M})$ contains no cycles.

Proof.

(\Leftarrow) Linear extension: $5 < 10 < 1 < 9 < 2 < 6 < 8 < 3 < 7 < 4$

- Encode by region: 3412532541.
- Higman's Theorem: $\{1, 2, 3, 4, 5\}^*$ is pwo under the subword order.
- Encoding is reversible, hence $\text{Grid}(\mathcal{M})$ is pwo.
Theorem (Murphy and Vatter, 2003)

The monotone grid class \(\text{Grid}(\mathcal{M}) \) is pwo if and only if \(G(\mathcal{M}) \) is a forest, i.e. \(G(\mathcal{M}) \) contains no cycles.

Proof.

\((\Rightarrow) \) Construct fundamental antichains that “walk” around a cycle.
The Widdershins Antichain

“Spirals” out from the centre.

Constructed by means of a **pin sequence**.

In general: a pin sequence with first and last pins inflated forms a fundamental antichain.
Quasi-Square

- Not constructible by a pin sequence.
Quasi-Square

- Not constructible by a pin sequence.
- Flip each column...
Quasi-Square

- Not constructible by a pin sequence.
- ...Widdershins!
Bigger Grids

Carry out row flips and column reversals: \(r_1 \circ r_2 \circ r_3 \circ f_3 \).
Carry out row flips and column reversals: \(r_1 \circ r_2 \circ r_3 \circ f_3 \).
Carry out row flips and column reversals: \(r_1 \circ r_2 \circ r_3 \circ f_3 \).
Carry out row flips and column reversals: $r_1 \circ r_2 \circ r_3 \circ f_3$.
Carry out row flips and column reversals: $r_1 \circ r_2 \circ r_3 \circ f_3$.
Carry out row flips and column reversals: $r_1 \circ r_2 \circ r_3 \circ f_3$.
Bigger Grids

Carry out row flips and column reversals: $r_1 \circ r_2 \circ r_3 \circ f_3$.

Resulting structure behaves a bit like a pin sequence.
Grid Pin Sequences

- **Local separation**: p_{i+1} separates p_i from p_{i+1}.
- **Row-column agreement**: p_{i+1} must be placed in the same row or column as p_i.
- **Local externality**: p_{i+1} extends from $\text{Rect}(p_{i-1}, p_i)$.
- **Non-interaction**: p_{i+1} could not have been used in p_1, \ldots, p_i.

Example

![Diagram showing grid pin sequences with pins labeled p_1 and p_2.](image-url)
Grid Pin Sequences

- **Local separation**: \(p_{i+1} \) separates \(p_i \) from \(p_{i+1} \).
- **Row-column agreement**: \(p_{i+1} \) must be placed in the same row or column as \(p_i \).
- **Local externality**: \(p_{i+1} \) extends from \(\text{Rect}(p_{i-1}, p_i) \).
- **Non-interaction**: \(p_{i+1} \) could not have been used in \(p_1, \ldots, p_i \).

Example

![Diagram showing grid pin sequences with points labeled \(p_1, p_2, p_3 \).]
Grid Pin Sequences

- **Local separation**: p_{i+1} separates p_i from p_{i+1}.
- **Row-column agreement**: p_{i+1} must be placed in the same row or column as p_i.
- **Local externality**: p_{i+1} extends from $\text{Rect}(p_{i-1}, p_i)$.
- **Non-interaction**: p_{i+1} could not have been used in p_1, \ldots, p_i.

Example

![Diagram of grid pin sequences with points p_2, p_3, p_4]
Grid Pin Sequences

- **Local separation**: p_{i+1} separates p_i from p_{i+1}.
- **Row-column agreement**: p_{i+1} must be placed in the same row or column as p_i.
- **Local externality**: p_{i+1} extends from $\text{Rect}(p_{i-1}, p_i)$.
- **Non-interaction**: p_{i+1} could not have been used in p_1, \ldots, p_i.

Example

![Diagram](image_url)

Example of local separation, row-column agreement, and local externality.
Grid Pin Sequences

- **Local separation**: p_{i+1} separates p_i from p_{i+1}.
- **Row-column agreement**: p_{i+1} must be placed in the same row or column as p_i.
- **Local externality**: p_{i+1} extends from $\text{Rect}(p_{i-1}, p_i)$.
- **Non-interaction**: p_{i+1} could not have been used in p_1, \ldots, p_i.

Example
Grid Pin Sequences

- **Local separation**: p_{i+1} separates p_i from p_{i+1}.
- **Row-column agreement**: p_{i+1} must be placed in the same row or column as p_i.
- **Local externality**: p_{i+1} extends from $\text{Rect}(p_{i-1}, p_i)$.
- **Non-interaction**: p_{i+1} could not have been used in p_1, \ldots, p_i.

Example
Grid Pin Sequences

- **Local separation**: p_{i+1} separates p_i from p_{i+1}.
- **Row-column agreement**: p_{i+1} must be placed in the same row or column as p_i.
- **Local externality**: p_{i+1} extends from $\text{Rect}(p_{i-1}, p_i)$.
- **Non-interaction**: p_{i+1} could not have been used in p_1, \ldots, p_i.

Example

```
\begin{align*}
\text{(University of Bristol)}
\end{align*}
```
Grid Pin Sequences

- **Local separation**: p_{i+1} separates p_i from p_{i+1}.
- **Row-column agreement**: p_{i+1} must be placed in the same row or column as p_i.
- **Local externality**: p_{i+1} extends from $\text{Rect}(p_i, p_{i-1})$.
- **Non-interaction**: p_{i+1} could not have been used in p_1, \ldots, p_i.

Example
Grid Pin Sequences

- **Local separation**: \(p_{i+1} \) separates \(p_i \) from \(p_{i+1} \).
- **Row-column agreement**: \(p_{i+1} \) must be placed in the same row or column as \(p_i \).
- **Local externality**: \(p_{i+1} \) extends from \(\text{Rect}(p_{i-1}, p_i) \).
- **Non-interaction**: \(p_{i+1} \) could not have been used in \(p_1, \ldots, p_i \).

Example

![Example diagram showing grid pin sequences](image)
Grid pin sequences on an $m \times n$ grid can be encoded in a regular language on \(\{ c_1, \ldots, c_m, r_1, \ldots, r_n \} \).
Grid pin sequences on an $m \times n$ grid can be **encoded in a regular language** on $\{c_1, \ldots, c_m, r_1, \ldots, r_n\}$.

Monotone grid classes — we only need to check grid pin sequences that go round in “circles”.
Optimism

- Grid pin sequences on an $m \times n$ grid can be encoded in a regular language on \{${c_1, \ldots, c_m, r_1, \ldots, r_n}$\}.
- Monotone grid classes — we only need to check grid pin sequences that go round in “circles”.

Conjecture

It is decidable whether a subclass of monotone grid class (“monotone griddable”) given by a finite basis is partially well ordered.
Grid pin sequences on an $m \times n$ grid can be encoded in a regular language on $\{c_1, \ldots, c_m, r_1, \ldots, r_n\}$.

Monotone grid classes — we only need to check grid pin sequences that go round in “circles”.

Conjecture

It is decidable whether a subclass of monotone grid class ("monotone griddable") given by a finite basis is partially well ordered.

Theorem (Hucznyska and Vatter, 2006)

A permutation class is monotone griddable if and only if it does not contain arbitrarily long sums of 21 or skew sums of 12.
Other Antichains

- Increasing Oscillating — pin sequence in a single cell.

![Graph showing increasing oscillating pin sequence in a single cell.](image-url)
Two cells: antichain V.
Other Antichains

- Two cells: antichain V.
- LHS: skew sums of 12.
Two cells: antichain V.
RHS: direct sums of 21.
The **juxtaposition** of two classes \mathcal{C} and \mathcal{D} is $[\mathcal{C} \: \mathcal{D}] = \text{Grid}(\mathcal{C} \: \mathcal{D})$.

Think of them as grid classes with 2 cells.

Question

When is the juxtaposition of two classes pwo?
If D contains arbitrarily long oscillations and $C \neq \text{Av}(12, 21)$ then $[C \ D]$ is not pwo. (“Tied by One” antichain)
If C and D both contain arbitrarily long sums of 21 or skew sums of 12, then $[C \ D]$ is not pwo.
If \mathcal{C} and \mathcal{D} do not contain arbitrarily long sums of 21 or skew sums of 12, then they are monotone griddable.

Not pwo if \mathcal{C} and \mathcal{D} contain arbitrarily long vertical alternations.
Thanks!
Appendix: Proper Pin Sequences

Start with a point placed in relation to the origin.
Appendix: Proper Pin Sequences

- Start with a point placed in relation to the origin.
- Extend up, down, left, or right – this is an up pin.
Appendix: Proper Pin Sequences

- Start with a point placed in relation to the origin.
- Extend up, down, left, or right – this is an up pin.
- A proper pin must be external and cut the previous pin, but not the rectangle.
Appendix: Proper Pin Sequences

- Start with a point placed in relation to the origin.
- Extend up, down, left, or right – this is an up pin.
- A proper pin must be external and cut the previous pin, but not the rectangle.
- Proper pins must travel by making 90° turns.
Appendix: Proper Pin Sequences

- Start with a point placed in relation to the origin.
- Extend up, down, left, or right – this is an up pin.
- A proper pin must be external and cut the previous pin, but not the rectangle.
- Proper pins must travel by making 90° turns.
Appendix: Proper Pin Sequences

- Start with a point placed in relation to the origin.
- Extend up, down, left, or right – this is an up pin.
- A proper pin must be external and cut the previous pin, but not the rectangle.
- Proper pins must travel by making 90° turns.
Appendix: Proper Pin Sequences

- Start with a point placed in relation to the origin.
- Extend up, down, left, or right – this is an up pin.
- A proper pin must be external and cut the previous pin, but not the rectangle.
- Proper pins must travel by making 90° turns.
Appendix: Proper Pin Sequences

- Start with a point placed in relation to the origin.
- Extend up, down, left, or right – this is an up pin.
- A proper pin must be external and cut the previous pin, but not the rectangle.
- Proper pins must travel by making 90° turns.
Appendix: Proper Pin Sequences

- Start with a point placed in relation to the origin.
- Extend up, down, left, or right – this is an up pin.
- A proper pin must be external and cut the previous pin, but not the rectangle.
- Proper pins must travel by making \(90^\circ\) turns.
Appendix: Proper Pin Sequences

- Start with a point placed in relation to the origin.
- Extend up, down, left, or right – this is an up pin.
- A proper pin must be external and cut the previous pin, but not the rectangle.
- Proper pins must travel by making 90° turns.
Encoding Grid Pin Sequences

- Letter r_i: place a pin in row i.
- Letter c_j: place a pin in column j.
- This defines the placement of the pin uniquely.
- For example: r_2

Example

\[\begin{array}{cccc}
 \text{___} & \text{___} & \text{___} & \text{___} \\
 \text{___} & \text{___} & \text{___} & \text{___} \\
 \text{___} & \text{___} & \text{___} & \text{___} \\
\end{array} \]

\[r_3 \quad r_2 \quad r_1 \]

\[\begin{array}{ccc}
 \text{___} & \text{___} & \text{___} \\
 \text{___} & \text{___} & \text{___} \\
 \text{___} & \text{___} & \text{___} \\
\end{array} \]

\[c_1 \quad c_2 \quad c_3 \]
Letter r_i: place a pin in row i.
Letter c_j: place a pin in column j.
This defines the placement of the pin uniquely.
For example: r_2c_3
Encoding Grid Pin Sequences

- Letter r_i: place a pin in row i.
- Letter c_j: place a pin in column j.
- This defines the placement of the pin uniquely.
- For example: $r_2c_3r_2$

Example

```
  r_3 __________
  |          |
  r_2       |
  |          |
  r_1|________|
     |     |
     c_1 c_2 c_3
```
Encoding Grid Pin Sequences

- Letter r_i: place a pin in row i.
- Letter c_j: place a pin in column j.
- This defines the placement of the pin uniquely.
- For example: $r_2c_3r_2c_1$

Example

![Example Diagram]

(University of Bristol) Antichains of Permutations
Letter r_i: place a pin in row i.
Letter c_j: place a pin in column j.
This defines the placement of the pin uniquely.
For example: $r_2c_3r_2c_1r_1$
Encoding Grid Pin Sequences

- Letter r_i: place a pin in row i.
- Letter c_j: place a pin in column j.
- This defines the placement of the pin uniquely.
- For example: $r_2 c_3 r_2 c_1 r_1 c_2$

Example

![Diagram showing pin placement examples](image-url)
Encoding Grid Pin Sequences

- Letter r_i: place a pin in row i.
- Letter c_j: place a pin in column j.
- This defines the placement of the pin uniquely.
- For example: $r_2c_3r_2c_1r_1c_2r_1$
Letter r_i: place a pin in row i.
Letter c_j: place a pin in column j.
This defines the placement of the pin uniquely.
For example: $r_2 c_3 r_2 c_1 r_1 c_2 r_1 c_3$
Encoding Grid Pin Sequences

- Letter r_i: place a pin in row i.
- Letter c_j: place a pin in column j.
- This defines the placement of the pin uniquely.
- For example: $r_2 c_3 r_2 c_1 r_1 c_2 r_1 c_3 r_2$

Example

```
 r3
 o

 r2
   o

 r1
   o
```

```
 c1  c2  c3
 o o o
```