Infinite Antichains: from Permutations to Graphs

Robert Brignall

The Open University

Monday 4th April, 2011
Pick your favourite family of combinatorial structures. E.g. graphs, permutations, tournaments, posets, …
Orderings on Structures

- Pick your favourite family of combinatorial structures.
 E.g. graphs, permutations, tournaments, posets, . . .
- Give your family an ordering.
 E.g. graph minor, induced subgraph, permutation containment, . . .
Orderings on Structures

- Pick your favourite family of combinatorial structures.
 E.g. graphs, permutations, tournaments, posets, ...

- Give your family an ordering.
 E.g. graph minor, induced subgraph, permutation containment, ...

- Does your ordering contain infinite antichains?
 i.e. an infinite set of pairwise incomparable elements.

Example (Induced subgraph antichains)

Cycles:

```
triangle
square
circle
circle
```

“Split end” graphs:

```
triangle
square
square
```

Robert Brignall (OU)
When are there antichains?

No infinite antichains – well-quasi-ordered.
- **Words** over a finite alphabet with subword ordering [Higman, 1952].
- **Trees** ordered by topological minors [Kruskal 1960; Nash-Williams, 1963]
- Graphs closed under **minors** [Robertson and Seymour, 1983—2004].

Infinite antichains.
- Graphs closed under **induced subgraphs** (or merely subgraphs).
- Permutations closed under **containment**.
- Tournaments, digraphs, posets, ... with their natural **induced substructure** ordering.
Downsets

Question

In your favourite ordering, which downsets contain infinite antichains?

- Downset (or **hereditary property**): set \mathcal{P} of objects such that

 \[G \in \mathcal{P} \text{ and } H \leq G \text{ implies } H \in \mathcal{P}. \]

 e.g. triangle-free graphs — (induced) subgraph ordering.

- For permutation containment, these are called **permutation classes**.
 e.g. the class of “stack sortable” permutations.
Permutation Containment

- Write permutations in one-line notation, e.g. \(\tau = 13524 \).
- A permutation \(\tau = \tau(1) \cdots \tau(k) \) is contained in the permutation \(\sigma = \sigma(1)\sigma(2) \cdots \sigma(n) \) if there exists a subsequence \(\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k) \) order isomorphic to \(\tau \).

Example

\[\begin{array}{cccccc}
1 & 3 & 5 & 2 & 4 \\
\end{array} \quad < \quad \begin{array}{cccccc}
4 & 2 & 1 & 6 & 3 & 8 & 5 & 7 \\
\end{array} \]
Containment is a **partial order** on the set of all permutations.

Recall: downsets are permutation classes. i.e. \(\pi \in \mathcal{C} \) and \(\sigma \leq \pi \) implies \(\sigma \in \mathcal{C} \).

Each class has a **unique** set of minimal forbidden elements. Write

\[
\mathcal{C} = \text{Av}(B) = \{\pi : \beta \not\leq \pi \text{ for all } \beta \in B\}.
\]

\(B \) is (unfortunately) called the **basis**.
Easy Examples

- \(\text{Av}(21) = \{1, 12, 123, 1234, \ldots\} \), the increasing permutations.
- \(\text{Av}(12) = \{1, 21, 321, 4321, \ldots\} \), the decreasing permutations.

Typical Elements
Easy Examples

\(\ominus 21 = \text{Av}(321, 312, 231) = \{1, 12, 21, 123, 132, 213, \ldots \} \).

\(\ominus 12 = \text{Av}(123, 213, 132) = \{1, 12, 21, 231, 312, 321, \ldots \} \).
Increasing Oscillations: a Permutation Antichain

Two typical elements

Need to show there is no embedding of one in the other.
Two typical elements

- Anchor: bottom copies of 4123 must match up.
Increasing Oscillations: a Permutation Antichain

Two typical elements

- Each point is matched in turn.
Increasing Oscillations: a Permutation Antichain

Two typical elements

- Each point is matched in turn.
Each point is matched in turn.
Increasing Oscillations: a Permutation Antichain

Two typical elements

Last pair cannot be embedded.
Increasing Oscillations: a Permutation Antichain

Two typical elements

Alternatively, make a graph: for $i < j$, $i \sim j$ iff $\pi(i) > \pi(j)$
Increasing Oscillations: a Permutation Antichain

Two typical elements

- The split end antichain!
Aside: Asymptotic Enumeration

- C_n – permutations in C of length n.
- **Growth rate** of C is $\lim_{n \to \infty} \sqrt[n]{|C_n|}$ (if it exists).
- Below $\kappa \approx 2.20557$, growth rates exist and can be characterised [Vatter, 2007+]:

\[
\begin{array}{cccccc}
0 & 1 & \phi & 2 & \kappa & \lambda \\
\hline
\end{array}
\]

- At κ, we find the increasing oscillating antichain, and hence uncountably many permutation classes. The proof uses grid classes (more later).
- Above $\lambda \approx 2.48188$, every real number is the growth rate of a permutation class [Vatter, 2010]. The proof builds classes based on this antichain.
- From order to chaos: What lies between κ and λ?
Grid Classes

- Hot topic: Crucial tool to study the structure of classes.
- **Matrix** \mathcal{M} whose entries are (infinite) permutation classes.
- $\text{Grid}(\mathcal{M})$ the **grid class** of \mathcal{M}: all permutations which can be “gridded” so each cell satisfies constraints of \mathcal{M}.

Example

- Let $\mathcal{M} = \begin{pmatrix} \text{Av}(21) & \text{Av}(231) & \emptyset \\ \text{Av}(123) & \emptyset & \text{Av}(12) \end{pmatrix}$.
There are some related concepts in graph theory:

- **Split graphs**: graphs that can be partitioned into a clique and an independent set.
- **Canonical properties**, used in asymptotic enumeration ("speeds") of hereditary properties [Balogh, Bollobás and Weinreich]
- **Matrix partitions** of graphs [Feder and Hell]
[B., 2009+]

- A general construction for infinite antichains in all but one family of grid classes.
- Within this family, proof that certain grid classes are well-quasi-ordered.
Antichains round Cycles

- Murphy and Vatter, 2003: Build an antichain by placing points sequentially around a “cycle”.

Two examples

- N.B. Each non-empty cell is monotone.
B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.
B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.
There and Back Again Antichains

- B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.
B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.
B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.
B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.
B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.
There and Back Again Antichains

- B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.

Example

```

```

Robert Brignall (OU) Infinite Antichains CGT 2011
B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.
B, 2009+: Build an antichain on a path, providing you can “turn around” at each end.
B, 2009+: Build an antichain on a path, providing you can "turn around" at each end.

Example
To Graphs...

- Two cheap results...

Conjecture (Ding, 1992)

The hereditary property of permutation graphs that do not contain (as an induced subgraph) a path or the complement of a path on \(n \geq 5 \) vertices is well-quasi-ordered.

Counterexample

becomes (roughly)
Double-split graphs

- **Double-split graph**: partitions into a matching, and the complement of a matching.
- As seen in the strong perfect graph theorem [Chudnovsky, Robertson, Seymour and Thomas, 2006].
- Hereditary property: take the **downward closure**. It is characterised by 44 minimal forbidden graphs [Alexeev, Fradkin, Kim, 2010]
Double-split graphs

- **Double-split graph**: partitions into a matching, and the complement of a matching.
- As seen in the strong perfect graph theorem [Chudnovsky, Robertson, Seymour and Thomas, 2006].
- Hereditary property: take the **downward closure**. It is characterised by 44 minimal forbidden graphs [Alexeev, Fradkin, Kim, 2010].
- … but it is not well-quasi-ordered:

Turn this into a graph

![Graph](image-url)
Thanks!