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Setting the Scene

@ Permutation of length n: an ordering on the symbols 1,. .., n.
o For example: 7t = 15482763.
@ Graphical viewpoint: plot the points (i, 77(i)).
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

123
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

1234
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

231
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

1
3
2

@ 231 is not stack-sortable.
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

@ 231 is not stack-sortable.

@ In general: can’t sort any permutation with a subsequence abc
such that c < a < b. (abc forms a 231 “pattern”.)
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Permutation Containment

@ Write permutations in one-line notation, e.g. T = 13524.

@ A permutation 7 = 7(1) - - - T(k) is contained in the permutation
o =0(1)0(2)--- o(n) if there exists a subsequence
o(ir)o (i) - - - o(ix) order isomorphic to 7.

13524 < 42163857
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Permutation Classes

@ Containment is a partial order on the set of all permutations.

@ Recall: downsets are permutation classes. i.e. 1 € Cand o < 71
implies o € C.
@ Each class has a unique set of minimal forbidden elements. Write

C=Av(B)={m:B £ mforall B € B}.

B is (unfortunately) called the basis.
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Easy Examples

o Av(21) = {1,12,123,1234,
o Av(12) = {1,21,321,4321,

Typical Elements

...}, the increasing permutations.

...}, the decreasing permutations.
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Easy Examples

o @21 = Av(321,312,231) = {1,12,21,123,132,213,...}.
0 512 = Av(123,213,132) = {1,12,21,231,312,321,...}.

Typical Elements
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Questions

Given a permutation class C:

@ Enumeration: How many of length n? Asymptotics?
@ Structure: What do the permutations in C look like?
@ Basis: C = Av(B) for some B. Is B finite?

@ Well-quasi-order: Does C contain infinite antichains?
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Exact Enumeration

o C, — permutations in C of length n.

° Z |Cy|x" is the generating function.

The generating function of C = Av(12) is:

I+x+x2 42>+ =
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Exact Enumeration

o C, — permutations in C of length n.

° Z |Cy|x" is the generating function.

The generating function of 21 = Av(231,312,321) is:

1

I+x+22 430+ = ———
1—x—x2
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Asymptotic Enumeration

o C, — permutations in C of length n.

Theorem (Marcus and Tardos, 2004)

For every permutation class C other than the class of all permutations, there
exists a constant K such that

@ Big open question: does the growth rate, liﬁm \/|Cy|, always exist?
n—oo
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Small Growth Rates

@ Growth rate of C is lim {/|C,| (if it exists).
n— 00

@ Below x ~ 2.20557, growth rates exist and can be characterised
[Vatter, 2011]:

0 1 ¢ 2 K
—--—] | IR Rt I

@ « is the lowest growth rate where we encounter infinite
antichains, and hence uncountably many permutation classes.

@ The proof of this uses grid classes.
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Increasing Oscillations: an Infinite Antichain

o (Infinite) set of pairwise incomparable permutations.

Two typical elements
q

'79

K

%L

@ Need to show there is no embedding of one in the other.
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Increasing Oscillations: an Infinite Antichain

o (Infinite) set of pairwise incomparable permutations.

Two typical elements
q

'79

K

%L

@ Anchor: bottom copies of 4123 must match up.
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Increasing Oscillations: an Infinite Antichain

o (Infinite) set of pairwise incomparable permutations.

Two typical elements
q

'79

%L

K

@ Each point is matched in turn.
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Increasing Oscillations: an Infinite Antichain

o (Infinite) set of pairwise incomparable permutations.

Two typical elements
q

'79

K

%L

@ Last pair cannot be embedded.
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Increasing Oscillations are Important

@ Atk ~ 2.20557, we find permutation classes that contain the
increasing oscillating antichain.

@ Above A ~ 2.48188, every real number is the growth rate of a
permutation class [Vatter, 2010].
The proof builds classes based on this antichain.

@ From order to chaos: What lies between x and A?
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Grid Classes

@ Idea: describe complicated classes in terms of easier ones.
@ Matrix M whose entries are (infinite) permutation classes.

@ Grid(M) the grid class of M: all permutations which can be
“gridded” so each cell satisfies constraints of M.

Av(21) Av(231 @
O I = ( AV((123)) (@ ) Av(12) >
;*T *i'"ij € Grid(M)
] e
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Monotone Grid Classes

@ Special case: all cells of M are Av(21) or Av(12).

@ Rewrite M as a matrix with entries in {0,1, —1}.

1 1 0 .
M=1| -10 1 . .
0 1 -1 . .
“I\HHHHHHHH.H
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Monotone Grid Classes

@ Special case: all cells of M are Av(21) or Av(12).

@ Rewrite M as a matrix with entries in {0,1, —1}.

S
* ly |
1 1 0 0 o
M= -1 0 1 . | .
0 1 1 * Iy
S
g
o5 <
—I\\\\\\\‘\\\\\‘\\\\\.\\
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Basis of Grid Classes

Given a grid class Grid(M), what is its basis? (Is it finite?)

@ A complete answer to this question seems a very long way off. ..
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Juxtapositions: 1 x k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

7 € Grid(C D): can draw a vertical line through 7 so that:
o Points to the left of the line lie in C.
@ Points to the right lie in D.

Basis elements of Grid(C D): minimal permutations so that for any
vertical line, we can find a basis element of C on the left, or D on the
right (or both).
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Juxtapositions: 1 x k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Basis elements formed by gluing basis elements of C and D together:

@ Red: Basis element of C.
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Juxtapositions: 1 x k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Basis elements formed by gluing basis elements of C and D together:

@ Green: Basis element of D, overlaps by (at most) 1 with red.
O

v
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Juxtapositions: 1 x k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Basis elements formed by gluing basis elements of C and D together:

@ Can we grid it? If line too far right: LHS is bad.
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Juxtapositions: 1 x k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Basis elements formed by gluing basis elements of C and D together:

@ Line too far left: RHS is bad.
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Juxtapositions: 1 x k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Basis elements formed by gluing basis elements of C and D together:

@ Crossover point: permutation not in Grid(C D).
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Juxtapositions: 1 x k grids

Lemma (Atkinson, 1999)

Grid(C D) is finitely based if C and D are finitely based.

Basis elements formed by gluing basis elements of C and D together:

@ Total points needed bounded by size of basis elements of C and D.
O

v
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Basis: 2 x 2 Grids

Lemma (Albert, Atkinson, B., 2011+)

The grid classes

C|D C|D C|D
.71 /N N\

are finitely based, for finitely based classes C and D.

@ Proof: same kind of arguments to 1 x 2 case.

@ Does not obviously extend to 2 x k.
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Geometric Grid Classes

o Fill a square grid with 45° lines.
@ Make permutations by choosing points from these lines.

@ These are not just monotone grid classes:

GGrid(>/ ) — Av(2143,2413, 3142, 3412)

is a subclass of:

Grid( — Av(2143,3412)

\/
/N

Theorem (Albert, Atkinson, Bouvel, Ruskuc, Vatter, 2011)

Every geometric grid class is finitely based.
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Basis: Some final comments

@ Strong belief that all monotone grid classes are finitely based.
(Not just geometric ones.)

. 1%) Av(321654) \ . ..
o Grid ( Av(321654) > is not finitely based:
- [ ]
— [ ]
— [ ]
= [ ]
= [ ]
= [ ]
= [ ]
= [ ]
= [ ]
-1 @
- @
= [ ]
FTTTTTTTTTT]
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More geometry

Theorem (Albert, Atkinson, Bouvel, Ruskuc, Vatter, 2011)

Geometric grid classes can be encoded by a reqular language, and therefore
have rational generating functions.

| A\

Proof.
b d
C
a e
416532+

O

o
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Practical enumeration

@ Test ground: count classes avoiding two permutations of length 4.

@ Up to symmetry, four we can use this on:
Av(1324,4312) Av(2143,4231)

Av(2143,4312)  Av(2143,4321)

@ Each class is the union of several geometric grid classes.

Robert Brignall (OU) Grid Classes 15th November 2011

22 /38



Enumerating Av(2143, 4312)

Lemma

Av(2143,4312) is contained in Grid (;

/N
~—

o If 7 € Grid () — Av(132,312) then done.

@ Scan 71 € Av(2143,4312) from right to left. Stop at first 132 or 312.
O

v
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Enumerating Av(2143, 4312)

Lemma

Av(2143,4312) is contained in Grid (;()

o If 7 € Grid () — Av(132,312) then done.

@ In either case, three regions on left hand side.

O

v
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Enumerating Av(2143, 4312)

Lemma

Av(2143,4312) is contained in Grid (;()

o If 7 € Grid () — Av(132,312) then done.

@ 132: Regions are monotone or empty to avoid 2143, 4312.

O

v
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Enumerating Av(2143, 4312)

Lemma

Av(2143,4312) is contained in Grid (/ <>

o If 7 € Grid () — Av(132,312) then done.

@ 132: Regions are monotone or empty to avoid 2143, 4312.

O

v

Robert Brignall (OU) Grid Classes 15th November 2011 23 /38



Enumerating Av(2143, 4312)

Lemma

Av(2143,4312) is contained in Grid (/ <>

o If 7 € Grid () — Av(132,312) then done.

@ 132: Regions are monotone or empty to avoid 2143, 4312.

O

v
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Enumerating Av(2143, 4312)

Lemma

Av(2143,4312) is contained in Grid (/ <>

o If 7 € Grid () — Av(132,312) then done.
@ 312: Similar.

O

v
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Av(2143, 4312) - refining the gridding

Lemma

Av(2143,4312) is equal to

N\
/

@ 4312 is a basis element of Grid §< .

@ Look at embeddings of 2143 — what does this exclude?

.
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Finishing off Av(2143, 4312)

Theorem (Albert, Atkinson, B., 2011)

Av(2143,4312) has generating function

1 — 13x + 69x% — 191x3 + 294x* — 252x° + 116x° — 23x7
(1 —x)2(1—3x)%(1 — 3x + x2)2

v

Use encoding:

v

.
7N
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Enumerating Av(2143, 4231)

Theorem (Albert, Atkinson, B., 2010)

Av(2143,4231) has generating function

1 — 12x + 60x2 — 162x3 + 259x* — 252x° + 146x° — 46x7 + 8x8
(1 —3x)(1 —x)*(1 — 3x + x2)2

This class is the union of:

O
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Two more classes

@ Av(2143, 4321): Structure is established, but haven’t bothered to
do the enumeration (yet).

@ Av(1324, 4312): We know the structure (but can we prove it?).

@ Real aim: To turn these ad hoc methods into something
routine/automatic.
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Well-quasi-order

Recall: well-quasi-order = no infinite antichains.

Theorem (Vatter and Waton, 2007)

Geometric grid classes are well-quasi-ordered.

@ Geometric grid classes can be encoded by words.

@ Words are wqo by Higman’s Lemma.
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The Graph of a Matrix

@ Graph of a matrix, G(M), formed by connecting together all
non-zero entries that share a row or column and are not
“separated” by any other nonzero entry.

C 0 0 D

v
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The Graph of a Matrix

@ Graph of a matrix, G(M), formed by connecting together all
non-zero entries that share a row or column and are not
“separated” by any other nonzero entry.

C D
&

D & C

D

v
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The Graph of a Matrix

@ Graph of a matrix, G(M), formed by connecting together all
non-zero entries that share a row or column and are not
“separated” by any other nonzero entry.

C D
&

D & C

D

v
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When monotone = geometric

@ For a monotone gridding matrix M:

Lemma (Albert, Atkinson, Bouvel, Ruskuc, Vatter, 2011)

GGrid(M) = Grid(M) if and only if the graph of M is a forest.

@ Proof idea: you can “iron out” kinks in the lines when there are no
cycles.

Monotone grid classes of forests are well-quasi-ordered.
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Monotone grids and well-quasi-order

Theorem (Murphy and Vatter, 2003)

The monotone grid class Grid (M) is wqo if and only if G(M) is a forest.

(=) Construct infinite antichains that “walk” around a cycle.

HH\HH‘HHH\H
I
|
|
,\
‘
4 4\;&<
.
|
I

O

o
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Griddability

@ Idea: Want wqo for general permutation classes. When can results
for grid classes be used?

o (Cis D-griddable if there exists a finite matrix M whose entries are
(subclasses of) D, and C C Grid(M).
Roughly, every permutation in C can be “chopped up” and shown
to lie in Grid(M).

@ Monotone griddable: a class C is the subclass of a monotone grid
class.
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When is a class griddable?

When is a class C monotone griddable?

Answer [Huczynska & Vatter, 2006]

A class C is monotone griddable if and only if it contains neither the
classes ©21 nor ©12.

@ More generally: D-griddable classes can be characterised for any
class D [Vatter, 2011].
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Beyond monotone

@ What can we say about infinite antichains for general grid classes?
@ Next stage: allow cells labelled by ©21 and ©12.

Av(2l) 0 0 Av(21)
0 o12 0 0

@21 0  Av(12) 0

0 0 0 ®©21
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Beyond monotone

@ What can we say about infinite antichains for general grid classes?
@ Next stage: allow cells labelled by ©21 and ©12.

Av(21) Av(21)

©12

21 —— Av(12)

@21

@ Can assume graph is a forest, but the number of
non-monotone-griddable cells in each component matters.
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

v

(F——
)

Gomai

O

y
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.

| A\

1]
O

D@D
)

O

v
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.

| A\

1]
O

D@D
)

O

v
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.

O
]

D@ L

O

v
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.

a

O
- O

O

v
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.

O

- l

O

v
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.

¢

@D [

O

v
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Theorem (B.)

A grid class whose graph has a component containing two or more
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¢

@D [

O
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.

a—

O

v
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.
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O

v
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not wqo.

Proof.

—

O

v
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Just one non-monotone

Simple permutations are the “building blocks” of permutation classes.

Theorem (B.)

If the non-monotone cell contains only finitely many simple permutations,
then the grid class is wqo.
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But sometimes one is too much...

@ One cell containing arbitrarily long increasing oscillations next to
a monotone cell is bad...

|
\
o
\
|
\
|
\
|
\
\
\
\

[ ]
7‘4.
T T T T T T T T T

@ Mind the gap: between finite simples and infinite oscillations, not
(yet) known.
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Thanks!
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